跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:f3de:de2a:940c:ec8b) 您好!臺灣時間:2024/12/04 07:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂秉洋
研究生(外文):Leu, Ping-Yang
論文名稱:應用人工智慧於需求預測之研究 — 以台灣某中小型 IC design house 為例
論文名稱(外文):Application of Artificial Intelligence in Demand Forecasting: A Case Study of a IC Design House Company
指導教授:吳建瑋吳建瑋引用關係
指導教授(外文):Wu, Chien-Wei
口試委員:林義貴陳子立
口試日期:2021-10-09
學位類別:碩士
校院名稱:國立清華大學
系所名稱:智慧製造跨院高階主管碩士在職學位學程
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:47
中文關鍵詞:IC設計與服務需求規劃機器學習人工智慧
外文關鍵詞:IC design and servicedemand planningmachine learningartificial intelligence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
積體電路 (IC) 設計在晶圓製造中扮演著重要的角色,然而,對於中小型IC設計公司經常面臨供應鏈不確定性問題。由於需求大幅波動,縮短了IC設計產品的生命週期,加上供應鏈日趨複雜,高技術製造產能擴張的訂貨交付時間較長。因此,需求規劃已成為這些公司做產能規劃時的重要關鍵。
準確的需求預測可使中小型IC設計公司達到資本效益,從而提高公司的獲利能力,然而,這些公司仍大多數依靠人為經驗進行需求規劃。故本研究開發具有不同預測模型和決策演算法的智慧代理人,以支援現有系統中的需求預測。為了結合領域知識與數據分析預測結果,這項研究遵循UNISON框架作為識別利基的系統方法,建構不同類型產品的最佳需求預測模型,並增強工業 3.5 的智慧供應鏈。
本研究以一IC設計公司為實證案例驗證提出架構之效果。驗證結果顯示本研究提出的解決方案具有實用可行性,能夠解決IC設計需求規劃的挑戰,滿足實際需要。
Integrated Circuit (IC) Design plays an important role in wafer fabrication. Distinguished from large-scale IC design companies which dominate the market share, medium sized IC design companies often suffers from issues of supply chain uncertainties. Due to the large fluctuations in demand, the shortened product life cycle of the industry, the supply chain is becoming increasingly complex, and the lead time for high-tech manufacturing capacity expansion is long, so demand planning has become critical for these companies. Accurate demand forecasting enables these companies to achieve capital effectiveness and thus enhance the profitability for the company, yet these companies are used to rely on domain insights and human experience to conduct demand planning. To adopt systematic agility, this study develops intelligent agent featuring different forecasting models and decision algorithm to support demand forecasting in the existing system. Derived from domain knowledge and data integrity, this research follows the UNISON framework as a systematic method to identify niches, to perceive the best demand forecast models for different types of products, and empower the intelligent supply chain for Industry 3.5. An empirical study was conducted at an IC design company. The results show that the developed solution has practical feasibility and can solve the challenge of IC design demand planning to meet actual needs.
Table of contents
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Research Objectives 4
1.3 Thesis Organization 4
Chapter 2 Literature Review 5
2.1 Industry 3.5 5
2.2 Demand planning in semiconductor supply chain 7
2.3 Aggregation model 9
2.4 Demand forecast models 10
2.4.1 ARIMA 11
2.4.2 Cumulative moving average 11
2.4.3 Simple exponential smoothing 12
2.4.4 Simple moving average 12
2.4.5 Holt’s linear trend method 13
2.4.6 AdaBoost 13
2.4.7 Extreme gradient boosting 14
Chapter 3 Proposed Research Framework 15
3.1 Understanding and defining the decision problem 15
3.2 Identifying niches 16
3.3 Structuring the influence relationship among uncertainty in the problem 17
3.3.1 Data collection and pre-processing 17
3.3.2 Feature engineering 18
3.3.3 Model Architecture 19
3.4 Sensing and describing the outcomes 21
3.5 Judge and measure overall performance 21
3.6 Tradeoff and decision 22
Chapter 4 An Empirical Study 23
4.1 Problem Definition and Background 23
4.2 Identifying niches 26
4.3 Data collection and pre-processing 26
4.4 Model Architecture and Optimization 28
4.4.1 Model Selection 28
4.4.2 Final Selector 29
4.4.3 Empirical Framework 29
4.4.4 Model Optimization 30
4.5 Objectively narrate the results 31
4.6 Optimal decision-making and execution 39
Chapter 5 Conclusion and future direction 40
5.1 Conclusion 40
5.2 Future direction 43
References
Adya, M., Collopy, F., Armstrong, J. S., & Kennedy, M. (2001). Automatic identification of time series features for rule-based forecasting. International Journal of Forecasting, 17(2), 143-157.
Chen, A., & Blue, J. (2010). Performance analysis of demand planning approaches for aggregating, forecasting and disaggregating interrelated demands. International Journal of Production Economics, 128(2), 586-602.
Chen, A., Yang, K., & Hsia, Z. (2008). Weighted least-square estimation of demand product mix and its applications to semiconductor demand. International Journal of Production Research, 46(16), 4445-4462.
Chen, Y.-J., & Chien, C.-F. (2018). An empirical study of demand forecasting of non-volatile memory for smart production of semiconductor manufacturing. International Journal of Production Research, 56(13), 4629-4643.
Chien, C.-F. (2007). Made in Taiwan: Shifting paradigms in high-tech industries. Industrial Engineer, 39(2), 47-50.
Chien, C.-F., Chen, Y.-J., Hsu, C.-Y., & Wang, H.-K. (2014). Overlay error compensation using advanced process control with dynamically adjusted proportional-integral R2R controller. IEEE Transactions on Automation Science and Engineering, 11(2), 473-484.
Chien, C.-F., Chen, Y.-J., & Peng, J.-T. (2010). Manufacturing intelligence for semiconductor demand forecast based on technology diffusion and product life cycle. International Journal of Production Economics, 128(2), 496-509.
Chien, C.-F., Dauzère-Pérès, S., Ehm, H., Fowler, J. W., Jiang, Z., Krishnaswamy, S., . . . Uzsoy, R. (2011). Modelling and analysis of semiconductor manufacturing in a shrinking world: challenges and successes. European Journal of Industrial Engineering 4, 5(3), 254-271.
Chien, C.-F., Dauzère-Pérès, S., Ehm, H., Fowler, J. W., Jiang, Z., Krishnaswamy, S., . . . Uzsoy, R. (2008). Modeling and analysis of semiconductor manufacturing in a shrinking world: challenges and successes. Paper presented at the 2008 Winter Simulation Conference.
Chien, C.-F., Hong, T.-y., & Guo, H.-Z. (2017). A Conceptual Framework for “Industry 3.5” to Empower Intelligent Manufacturing and Case Studies. Procedia Manufacturing, 11, 2009-2017.
Chien, C.-F., & Hsu, C.-Y. (2011). UNISON analysis to model and reduce step-and-scan overlay errors for semiconductor manufacturing. Journal of Intelligent Manufacturing, 22(3), 399-412.
Chien, C.-F., Lin, K.-Y., Sheu, J.-B., & Wu, C.-H. (2016). Retrospect and Prospect on Operations and Management Journals in Taiwan: From Industry 3.0 to Industry 3.5. Journal of Management, 33(1), 87-103.
Chien, C.-F., Lin, Y.-S., & Lin, S.-K. (2020). Deep reinforcement learning for selecting demand forecast models to empower Industry 3.5 and an empirical study for a semiconductor component distributor. International Journal of Production Research, 58(9), 2784-2804.
Chien, C.-F., Wang, H.-J., & Wang, M. (2007). A UNISON framework for analyzing alternative strategies of IC final testing for enhancing overall operational effectiveness. International Journal of Production Economics, 107(1), 20-30.
Chien, C.-F., Wang, H.-K., & Fu, W.-H. (2018). Industry 3.5 Framework of an Advanced Intelligent Manufacturing System: Case Studies from Semiconductor Intelligent Manufacturing. Management Review, 37, 105-121.
Chien, C.-F., Wu, C.-H., & Chiang, Y.-S. (2012). Coordinated capacity migration and expansion planning for semiconductor manufacturing under demand uncertainties. International Journal of Production Economics, 135(2), 860-869.
Choi, J. Y., & Lee, B. (2018). Combining LSTM network ensemble via adaptive weighting for improved time series forecasting. Mathematical Problems in Engineering, 2018.
Ehm, H., Ponsignon, T., & Kaufmann, T. (2011). The global supply chain is our new fab: Integration and automation challenges. Paper presented at the 2011 IEEE/SEMI Advanced Semiconductor Manufacturing Conference.
Fildes, R., & Petropoulos, F. (2015). Simple versus complex selection rules for forecasting many time series. Journal of Business Research, 68(8), 1692-1701.
Fowler, J. W., Mönch, L., & Ponsignon, T. (2015). Discrete-event simulation for semiconductor wafer fabrication facilities: A tutorial. International Journal of Industrial Engineering, 22(5).
Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.
Fu, W., & Chien, C.-F. (2019a). UNISON data-driven intermittent demand forecast framework to empower supply chain resilience and an empirical study in electronics distribution. Computers industrial engineering, 135, 940-949.
Fu, W., & Chien, C.-F. (2019b). UNISON data-driven intermittent demand forecast framework to empower supply chain resilience and an empirical study in electronics distribution. Computers & Industrial Engineering, 135, 940-949.
Fu, W., Chien, C.-F., & Tang, L. (2020). Bayesian network for integrated circuit testing probe card fault diagnosis and troubleshooting to empower Industry 3.5 smart production and an empirical study. Journal of Intelligent Manufacturing, 1-14.
Graefe, A. (2015). Improving forecasts using equally weighted predictors. Journal of Business Research, 68(8), 1792-1799.
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future generation computer systems, 29(7), 1645-1660.
Holt, D. B. (2004). How brands become icons: The principles of cultural branding: harvard business press.
Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group: Forschungsunion.
Kourentzes, N., Barrow, D., & Petropoulos, F. (2019). Another look at forecast selection and combination: Evidence from forecast pooling. International Journal of Production Economics, 209, 226-235.
Kourentzes, N., Petropoulos, F., & Trapero, J. R. (2014). Improving forecasting by estimating time series structural components across multiple frequencies. International Journal of Forecasting, 30(2), 291-302.
Lee, H. L., Padmanabhan, V., & Whang, S. (1997a). The bullwhip effect in supply chains. Sloan management review, 38, 93-102.
Lee, H. L., Padmanabhan, V., & Whang, S. (1997b). Information distortion in a supply chain: The bullwhip effect. Management science, 43(4), 546-558.
Lee, J., Bagheri, B., & Kao, H.-A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18-23.
Li, L. (2018). China's manufacturing locus in 2025: With a comparison of “Made-in-China 2025” and “Industry 4.0”. Technological Forecasting and Social Change, 135, 66-74.
Lin, K.-Y., Chien, C.-F., & Kerh, R. (2016). UNISON framework of data-driven innovation for extracting user experience of product design of wearable devices. Computers & Industrial Engineering, 99, 487-502.
Mönch, L., Uzsoy, R., & Fowler, J. W. (2018). A survey of semiconductor supply chain models part I: semiconductor supply chains, strategic network design, and supply chain simulation. International Journal of Production Research, 56(13), 4524-4545.
Moore, G. E. (1965). Cramming more components onto integrated circuits. In: McGraw-Hill New York, NY, USA:.
Morris, P. R. (1990). A history of the world semiconductor industry: IET.
Ning, L. (2008). State-led Catching up Strategies and Inherited Conflicts in Developing the ICT Industry: Behind the US–East Asia Semiconductor Disputes. Global Economic Review, 37(2), 265-292.
Obama, B. (2014). Statement by the President. whitehouse. gov, 7.
Poler, R., & Mula, J. (2011). Forecasting model selection through out-of-sample rolling horizon weighted errors. Expert Systems with Applications, 38(12), 14778-14785.
Prudêncio, R. B., Ludermir, T. B., & de Carvalho, F. d. A. J. P. R. L. (2004). A modal symbolic classifier for selecting time series models. 25(8), 911-921.
Qiu, X., Ren, Y., Suganthan, P. N., & Amaratunga, G. A. (2017). Empirical mode decomposition based ensemble deep learning for load demand time series forecasting. Applied Soft Computing, 54, 246-255.
Rajkumar, R., Lee, I., Sha, L., & Stankovic, J. (2010). Cyber-physical systems: the next computing revolution. Paper presented at the Design Automation Conference.
Taylor, J. W. J. J. o. t. O. R. S. (2003). Short-term electricity demand forecasting using double seasonal exponential smoothing. 54(8), 799-805.
Uzsoy, R., Fowler, J. W., & Mönch, L. (2018). A survey of semiconductor supply chain models Part II: demand planning, inventory management, and capacity planning. International Journal of Production Research, 56(13), 4546-4564.
Villegas, M. A., Pedregal, D. J., & Trapero, J. R. (2018). A support vector machine for model selection in demand forecasting applications. Computers industrial engineering, 121, 1-7.
Wang, C.-H., & Chen, J.-Y. (2019). Demand forecasting and financial estimation considering the interactive dynamics of semiconductor supply-chain companies. Computers industrial engineering, 138, 106104.
Wang, X., Smith-Miles, K., & Hyndman, R. (2009). Rule induction for forecasting method selection: Meta-learning the characteristics of univariate time series. Neurocomputing, 72(10-12), 2581-2594.
Whitehouse. (2011). President Obama Launches Advanced Manufacturing Partnership. Press Release, June, 24.
Wu, J.-Z., & Chien, C.-F. (2008a). Modeling semiconductor testing job scheduling and dynamic testing machine configuration. Expert Systems with Applications, 35(1-2), 485-496.
Wu, J.-Z., & Chien, C.-F. (2008b). Modeling strategic semiconductor assembly outsourcing decisions based on empirical settings. OR spectrum, 30(3), 401-430.
電子全文 電子全文(網際網路公開日期:20261026)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊