跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 22:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林亮辰
研究生(外文):Lin, Liang-Chen
論文名稱:探討以鉬(Mo)修飾碳載白金鈷(PtCo/C)觸媒對氧還原反應活性及穩定性的提升
論文名稱(外文):The Oxygen reduction reaction (ORR) activity and stability enhancement by Molybdenum (Mo) surface-modified platinum cobalt (PtCo/C) electrocatalyst
指導教授:潘詠庭
指導教授(外文):Pan, Yung-Tin
口試委員:胡啟章王冠文周鶴修陳翰儀
口試委員(外文):Hu, Chi-ChangWang, Kuan-WenChou, Ho-HsiuChen, Han-Yi
口試日期:2021-08-24
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:69
中文關鍵詞:氧還原反應鉬表面修飾鉑鈷觸媒金屬間互化物質子交換膜燃料電池旋轉圓盤電極X光吸收光譜
外文關鍵詞:Oxygen reduction reactionPtCoMo/CIntermetallic compoundPolymer electrolyte membrane fuel cellRotating disk electrodeX-ray absorption spectroscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:88
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
隨著交通網絡及經濟發展的成熟,燃油汽車及運輸車成為生活及商業鏈中不可或缺的角色。然而,經年累月由汽油和柴油燃燒所釋放出的溫室氣體及空污因子造成嚴重的環境及健康問題。近年因環保意識抬頭,為降低環境有害因子的排放,氫燃料電池車因具備良好的能量密度被認為是最具發展潛力的電動車系統之一。然而,應用於氫燃料電池的鉑觸媒(Platinum, Pt)價格高昂,其礦產速度更不足以支撐使燃料電池車普及市場所需鉑金屬用量。因此減量鉑的使用成為燃料電池車普及化的當務之急。
在氫燃料電池陰極的氧還原反應因有較高的活化過電位成為提升系統效率的關鍵反應,為了在觸媒減量的同時維持一定活性,因而發展出雙合金系統,以價格及稀有度相對較低的過渡金屬(例如:銅、鈷、鎳…
…等),優化鉑對含氧中間產物的吸附以提升氧還原反應速率。然而,目前有效提升氧還原反應的過渡金屬在酸性環境下面臨嚴重的溶解問題,導致觸媒穩定性降低。
基於上述知識,本工作製造表面富有鉑金屬的碳載鉑鈷觸媒(PtCo/C)及其金屬間互化物的結構(Intermetallic structure)初步減緩過度金屬的流失,再以鉬(Mo)修飾其表面改變觸媒表面原子間電荷分佈增進氧還原反應活性以及藉由其耐酸的特性穩定觸媒表面以維持電化學反應下的穩定性。材料鑑定以場發射掃描穿透式球差修正電子顯微鏡(ULTRA-HRTEM)、粉末X射線衍射儀(XRD)、能量散射光譜(EDS)、電感耦合電漿體原子發射光譜(ICP-AES)進行材料晶體結構及元素分佈鑑定,原子間電荷及鍵結型態則透過X射線電子能譜儀(XPS)及X光吸收光譜儀(XAS)作為分析手段。根據以上材料鑑定技術之解析,我們成功的製備出原子級別鉬團簇(Mo-cluster)修飾表面的鉑鈷金屬間互化奈米觸媒。X光吸收光譜的結果證實此類觸媒中活性位點──鉑,對氧的吸附力能夠被有效降低,使得鉑-氧的鍵能處於更有利於氧還原反應進行的狀態。此鉬修飾之鉑鈷觸媒(Mo-PtCo/C)之氧還原活性為0.92 A/mgPt,為單純鉑鈷觸媒(PtCo/C)和商用鉑碳觸媒(Pt/C)之2和4倍。經過30,000圈的加速實驗(Accelerated stress test, AST),鉬金屬表面修飾之鉑鈷碳載觸媒仍維持相較於未修飾之鉑鈷觸1.4倍氧還原活性。
With the development of the transportation network and economy, sedans and transporters play a vital role in our daily lives and the business chain. The combustion of gasoline and diesel release greenhouse gases and air pollutants, resulting in environmental and health issues. Recently, with the rising of ecological awareness, hydrogen fuel cell vehicles (FCVs) are considered one of the most potential electric cars with the characteristic of high energy density. However, the platinum (Pt) applied in FCVs was too expensive and precious to popularize, which does the work of reducing the usage of Pt on the priority list.
In the cathode of the hydrogen fuel cell, oxygen reduction reaction (ORR) at the cathode has higher overpotential than the anode, making it crucial to promote the fuel cell operation efficiency. To reduce Pt usage and maintain the activity simultaneously, low-cost transient metals (M= Cu, Co, Ni, …Etc.) were applied to optimize the oxygen absorption energy of Pt active sites and promote the kinetic. However, the transient metal faces severe dissolution in an acid medium that reduced the stability of the catalyst.
In this work, based on the knowledge mentioned above, Pt-rich surface platinum cobalt on Vulcan carbon (PtCo/C) catalyst in intermetallic structure was created to preliminary suppress the cobalt (Co) leaching. Molybdenum (Mo) was then added to modify the PtCo/C surface, which decreased the d band center of Pt and facilitated the ORR activity; moreover, the characteristic of its high acid tolerance maintained the excellent activity after the long-term electrochemical resting.
For the material characterization, spherical aberration-corrected field emission transmission electron microscope (ULTRA-HRTEM), x-ray diffractometer (XRD), energy dispersive spectrometer (EDS), and inductively coupled plasma atomic emission spectroscopy (ICP-AES) were applied for the study of crystalline structure and the composition of the elements. The electrons and the bonding between atoms were analyzed by x-ray photoelectron spectroscopy (XPS) and x-ray absorption spectroscopy (XAS). We successfully prepared atomic level Mo-cluster surface-modified PtCo catalyst (Mo-PtCo/C) according to the materials characterization results mentioned above. The Pt L3-edge XANES spectrum showed that the Mo surface-modified catalyst effectively reduced the oxygen absorption energy toward the Pt active site, favoring the ORR. Mo-PtCo/C performed 0.92 A/mgPt in ORR mass activity (MA), which is 2-fold and 4-fold enhancement compared to homemade PtCo/C and commercial Pt/C electrocatalyst, respectively. After 30,000 cycles of accelerated stress test (AST), the MA of Mo-PtCo/C catalyst maintains 1.4 times higher than the PtCo/C catalyst.
摘要 I
ABSTRACT III
誌謝辭 V
LIST OF FIGURES IX
LIST OF TABLES XIII
ABBREVIATION XIV
CHAPTER I INTRODUCTION 1
1.1Background 1
1.2 Polymer Electrolyte Membrane Fuel Cell (PEMFC) 3
1.3 Mechanism of Oxygen Reduction Reaction (ORR) 4
1.4 Reduction of Platinum (Pt) Usage in ORR 7
1.5 Pt-based alloy catalyst 8
1.6 Alloy and intermetallic 14
1.7 M’-doped PtM catalyst 18
1.8 Objective 23
CHAPTER II EXPEIMENTAL DESIGN 24
2.1 Chemicals 24
2.2 Analytical instrument 26
2.3 Catalyst preparation 28
2.3.1 PtCo/C synthesis 28
2.3.2 Mox-PtCo/C synthesis 29
2.4 Electrochemical measurement 29
2.4.1 Three-Electrode Electrochemical Testing System 30
2.4.2 Rotating Disk Electrode (RDE) 31
2.4.3 Film Preparation 33
2.4.4 Cyclic Voltammetry (CV) 33
2.4.5 Linear Sweep Voltammetry (LSV) 35
2.4.6 Accelerated stress test (AST) 37

CHAPTER III RESULTS AND DISCUSSION 40
3.1 Materials characterization of Mox-PtCo/C (x=1, 0.5, 0.2) 41
3.2 The activity enhancement of catalysts by alkaline leaching 45
3.3 The influence of synthesis temperature on Mo-PtCo/C alk 45
3.4 The ORR enhancement of Mox-PtCo/C (x=1, 0.5, 0.2) 450˚C alk 47
3.5 The influence of Mo ratio in Mox-PtCo/C to the AST 49
CHAPTER IV CONCLUSION 52
CHAPTER V FUTURE WORK 53
REFERENCE 56
APPENDIX 64
1. United states environmental protection agency. Greenhouse gas emissions from a typical passenger vehicle. https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle. (Accessed Mar 2018)
2. Ritchie, H.; Roser, M. Our World in Data. CO₂ and Greenhouse Gas Emissions. https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions. (Accessed Aug 2020).
3. Brinson, L. C.; Guzamn, F. HowStuffWorks. How much air pollution comes from cars? https://auto.howstuffworks.com/air-pollution-from-cars.htm. (Accessed Aug 29, 2012).
4. European environment agency. Emissions of air pollutants from transport. https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-air-pollutants-8/transport-emissions-of-air-pollutants-8. (Accessed Dec 17, 2019).
5. Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E., Environmental and Health Impacts of Air Pollution: A Review. Public Health Front. 2020, 8, 14-14.
6. Yong, J. Y.; Ramachandaramurthy, V. K.; Tan, K. M.; Mithulananthan, N., A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects. Renew. Sustain. Energy Rev. 2015, 49, 365-385.
7. Mahmoudzadeh Andwari, A.; Pesiridis, A.; Rajoo, S.; Martinez-Botas, R.; Esfahanian, V., A review of Battery Electric Vehicle technology and readiness levels. Renew. Sustain. Energy Rev. 2017, 78, 414-430.
8. Horiba, T.; Maeshima, T.; Matsumura, T.; Koseki, M.; Arai, J.; Muranaka, Y., Applications of high power density lithium ion batteries. J. Power Sources. 2005, 146 (1), 107-110.
9. Andaloro, L.; Arista, A.; Agnello, G.; Napoli, G.; Sergi, F.; Antonucci, V., Study and design of a hybrid electric vehicle (Lithium Batteries-PEM FC). Int. J. Hydrog. Energy. 2017, 42 (5), 3166-3184.
10. Garrett advancing motion. Hydrogen fuel cells vs battery electrics: Why fuel cells are a major contender. https://www.garrettmotion.com/news/media/garrett-blog/hydrogen-fuel-cells-vs-battery-electrics-why-fuel-cells-are-a-major-contender/. (Accessed Feb 10, 2020).
11. Holton, Oliver T.; Stevenson, Joseph W. The role of platinum in proton exchange membrane fuel cell. Platinum Metals Rev. 2013, 57, 259-271.
12. Sheng, W.; Gasteiger, H. A.; Shao-Horn, Y., Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes. J. Electrochem. Soc. 2010, 157 (11), B1529.
13. Guerrero Moreno, N.; Cisneros Molina, M.; Gervasio, D.; Pérez Robles, J. F., Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost. Renew. Sustain. Energy Rev. 2015, 52, 897-906.
14. Yumiya, H.; Kizaki, M.; Asai, H., Toyota Fuel Cell System (TFCS). World Electr. Veh. J. 2015, 7 (1).
15. Li, H.; Tang, Y.; Wang, Z.; Shi, Z.; Wu, S.; Song, D.; Zhang, J.; Fatih, K.; Zhang, J.; Wang, H.; Liu, Z.; Abouatallah, R.; Mazza, A., A review of water flooding issues in the proton exchange membrane fuel cell. J. Power Sources. 2008, 178 (1), 103-117.
16. Si, F.; Zhang, Y.; Yan, L.; Zhu, J.; Xiao, M.; Liu, C.; Xing, W.; Zhang, J., 4 - Electrochemical Oxygen Reduction Reaction. In Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Xing, W.; Yin, G.; Zhang, J., Eds. Elsevier: Amsterdam. 2014; pp 133-170.
17. Zhang, J., PEM fuel cell electrocatalysts and catalyst layers : fundamentals and applications. Springer: London. 2008. pp 1-87.
18. Stacy, J.; Regmi, Y. N.; Leonard, B.; Fan, M., The recent progress and future of oxygen reduction reaction catalysis: A review. Renew. Sustain. Energy Rev. 2017, 69, 401-414.
19. Wang, X. X.; Swihart, M. T.; Wu, G., Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2 (7), 578-589.
20. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B. 2004, 108 (46), 17886-17892.
21. Shao, M.; Peles, A.; Shoemaker, K., Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity. Nano Lett. 2011, 11 (9), 3714-3719.
22. Hoshi, N.; Nakamura, M.; Hitotsuyanagi, A., Active sites for the oxygen reduction reaction on the high index planes of Pt. Electrochim. Acta. 2013, 112, 899-904.
23. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Marković, N. M., Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science. 2007, 315 (5811), 493.
24. Wang, J.; Li, B.; Yersak, T.; Yang, D.; Xiao, Q.; Zhang, J.; Zhang, C., Recent advances in Pt-based octahedral nanocrystals as high performance fuel cell catalysts. J. Mater. Chem. A. 2016, 4 (30), 11559-11581.
25. Liu, M.; Zhao, Z.; Duan, X.; Huang, Y., Nanoscale Structure Design for High-Performance Pt-Based ORR Catalysts. Adv. Mater. 2019, 31 (6), 1802234.
26. Kadirgan, F.; Kannan, A. M.; Atilan, T.; Beyhan, S.; Ozenler, S. S.; Suzer, S.; Yörür, A., Carbon supported nano-sized Pt–Pd and Pt–Co electrocatalysts for proton exchange membrane fuel cells. Int. J. Hydrog. Energy. 2009, 34 (23), 9450-9460.
27. Kim, C.; Dionigi, F.; Beermann, V.; Wang, X.; Möller, T.; Strasser, P., Alloy Nanocatalysts for the Electrochemical Oxygen Reduction (ORR) and the Direct Electrochemical Carbon Dioxide Reduction Reaction (CO2RR). Adv. Mater. 2019, 31 (31), 1805617.
28. Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K., Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1 (7), 552-556.
29. Lin, R.; Che, L.; Shen, D.; Cai, X., High durability of Pt-Ni-Ir/C ternary catalyst of PEMFC by stepwise reduction synthesis. Electrochim. Acta. 2020, 330, 135251.
30. Liu, H.; Li, C.; Chen, D.; Cui, P.; Ye, F.; Yang, J., Uniformly dispersed platinum-cobalt alloy nanoparticles with stable compositions on carbon substrates for methanol oxidation reaction. Sci. Rep. 2017, 7 (1), 11421.
31. Kaito, T.; Tanaka, H.; Mitsumoto, H.; Sugawara, S.; Shinohara, K.; Ariga, H.; Uehara, H.; Takakusagi, S.; Asakura, K., In Situ X-ray Absorption Fine Structure Analysis of PtCo, PtCu, and PtNi Alloy Electrocatalysts: The Correlation of Enhanced Oxygen Reduction Reaction Activity and Structure. J. Phys. Chem. C. 2016, 120 (21), 11519-11527.
32. Kongkanand, A.; Ziegelbauer, J. M., Surface Platinum Electrooxidation in the Presence of Oxygen. J. Phys. Chem. C 2012, 116 (5), 3684-3693
33. Zhang, W.; Zhu, J.; Cheng, D.; Zeng, X. C., PtCoNi Alloy Nanoclusters for Synergistic Catalytic Oxygen Reduction Reaction. ACS Appl. Nano Mater. 2020, 3 (3), 2536-2544.
34. Hwang, S. J.; Yoo, S. J.; Jang, S.; Lim, T.-H.; Hong, S. A.; Kim, S.-K., Ternary Pt−Fe−Co Alloy Electrocatalysts Prepared by Electrodeposition: Elucidating the Roles of Fe and Co in the Oxygen Reduction Reaction. J. Phys. Chem. C. 2011, 115 (5), 2483-2488.
35. Noh, S. H.; Han, B.; Ohsaka, T., First-principles computational study of highly stable and active ternary PtCuNi nanocatalyst for oxygen reduction reaction. Nano Res. 2015, 8 (10), 3394-3403.
36. Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K., Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure. Angew. Chem. Int. Ed. 2006, 45 (18), 2897-2901.
37. Sugawara, T.; Kawashima, N.; Murakami, T. N., Kinetic study of Nafion degradation by Fenton reaction. J. Power Sources. 2011, 196 (5), 2615-2620.
38. Liu, W.; Zuckerbrod, D., In Situ Detection of Hydrogen Peroxide in PEM Fuel Cells. J. Electrochem. Soc. 2005, 152 (6), A1165.
39. Kinumoto, T.; Inaba, M.; Nakayama, Y.; Ogata, K.; Umebayashi, R.; Tasaka, A.; Iriyama, Y.; Abe, T.; Ogumi, Z., Durability of perfluorinated ionomer membrane against hydrogen peroxide. J. Power Sources. 2006, 158 (2), 1222-1228.
40. Li, J.; Sharma, S.; Liu, X.; Pan, Y.-T.; Spendelow, J. S.; Chi, M.; Jia, Y.; Zhang, P.; Cullen, D. A.; Xi, Z.; Lin, H.; Yin, Z.; Shen, B. Muzzio, M.; Yu, C.; Kim, Y. S.; Peterson, A. A.; More, K. L.; Zhu, H.; Sun, S., Hard-Magnet L10-CoPt Nanoparticles Advance Fuel Cell Catalysis. Joule. 2019, 3 (1), 124-135.
41. Wang, Z.; Yao, X.; Kang, Y.; Miao, L.; Xia, D.; Gan, L., Structurally Ordered Low-Pt Intermetallic Electrocatalysts toward Durably High Oxygen Reduction Reaction Activity. Adv. Funct. Mater. 2019, 29 (35), 1902987
42. Cao, L.; Zhao, Z.; Liu, Z.; Gao, W.; Dai, S.; Gha, J.; Xue, W.; Sun, H.; Duan, X.; Pan, X.; Mueller, T.; Huang, Y., Differential Surface Elemental Distribution Leads to Significantly Enhanced Stability of PtNi-Based ORR Catalysts. Matter. 2019, 1 (6), 1567-1580.
43. Jia, Q.; Zhao, Z.; Cao, L.; Li, J.; Ghoshal, S.; Davies, V.; Stavitski, E.; Attenkofer, K.; Liu, Z.; Li, M.; Duan, X.; Mukerjee, S.; Mueller, T.; Huang, Y., Roles of Mo Surface Dopants in Enhancing the ORR Performance of Octahedral PtNi Nanoparticles. Nano Lett. 2018, 18 (2), 798-804
44. Huang, X.; Zhao, Z.; Cao, L.; Chen, Y.; Zhu, E.; Lin, Z.; Li, M.; Yan, A.; Zettl, A.; Wang, Y. M.; Duan, X.; Mueller, T.; Huang, Y., High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science. 2015, 348 (6240), 1230.
45. Tu, W.; Luo, W.; Chen, C.; Chen, K.; Zhu, E.; Zhao, Z.; Wang, Z.; Hu, T.; Zai, H.; Ke, X.; Sui, M.; Chen, P.; Zhang, Q.; Chen, Q.; Li, Y.; Huang, Y., Tungsten as “Adhesive” in Pt2CuW0.25 Ternary Alloy for Highly Durable Oxygen Reduction Electrocatalysis. Adv. Funct. Mater. 2020, 30 (6), 1908230.
46. Wu, Y. J.; Zhao, Y. G.; Liu, J. J.; Wang, F., Adding refractory 5d transition metal W into PtCo system: an advanced ternary alloy for efficient oxygen reduction reaction dagger. J. Mater. Chem. A. 2018, 6 (23), 10700-10709.
47. Liang, J.; Li, N.; Zhao, Z.; Ma, L.; Wang, X.; Li, S.; Liu, X.; Wang, T.; Du, Y.; Lu, G.; Han, J.; Huang, Y.; Su, D.; Li, Q., Tungsten-Doped L10-PtCo Ultrasmall Nanoparticles as a High-Performance Fuel Cell Cathode. Angew. Chem. Int. Ed. 2019, 58 (43), 15471-15477.
48. Ho, V. T. T.; Pan, C.-J.; Rick, J.; Su, W.-N.; Hwang, B.-J., Nanostructured Ti0.7Mo0.3O2 Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society 2011, 133 (30), 11716-11724.
49. Feng, S.; Chen, J.; Qian, G.; Mo, Y.; Lu, J.; Chen, W.; Luo, L.; Yin, S., Metal–Support Interactions in a Molybdenum Oxide Anchored PtNi Alloy for Improving Oxygen Reduction Activity. ACS Applied Energy Materials 2020, 3 (12), 12246-12253.
50. Smith, T. J.; Stevenson, K. J., 4 - Reference Electrodes. In Handbook of Electrochemistry, Zoski, C. G., Ed. Elsevier: Amsterdam. 2007; pp 73-110.
51. Kasem K. Kasem, Jones, S. Platinum as a Reference Electrode in Electrodechemical Measurements. Platinum Metals Rev. 2008, 52 (2), 100-106.
52. Denuault, G.; Sosna, M.; Williams, K.-J., 11 - Classical Experiments. In Handbook of Electrochemistry, Zoski, C. G., Ed. Elsevier: Amsterdam. 2007; pp 431-469.
53. Hsieh, Y.F.; Wu, P. W.; Lin, P. Electrochemical Characterization of Pt-based Catalysts on Carbon Supports for Direct Methanol Fuel Cells. https://140.113.39.130/cgi-bin/gs32/tugsweb.cgi?o=dnctucdr&s=id=%22GT079
118834%22.&searchmode=basic. (Accessed 2010).
54. Zhu, Z.; Liu, Q.; Liu, X.; Shui, J., Temperature Impacts on Oxygen Reduction Reaction Measured by the Rotating Disk Electrode Technique. J. Phys. Chem. C. 2020, 124 (5), 3069-3079.
55. Shinozaki, K.; Zack, J. W.; Pylypenko, S.; Pivovar, B. S.; Kocha, S. S., Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique. J. Electrochem. Soc. 2015, 162 (12), F1384-F1396.
56. Garsany, Y.; Singer, I.; Swider-Lyons, K., Impact of film drying procedures on RDE characterization of Pt/VC electrocatalysts. J. Electroanal. Chem. 2011, 662, 396-406.
57. Stariha, S.; Macauley, N.; Sneed, B. T.; Langlois, D.; More, K. L.; Mukundan, R.; Borup, R. L., Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells. J. Electrochem. Soc. 2018, 165 (7), F492-F501.
58. Li, X.; An, L.; Chen, X.; Zhang, N.; Xia, D.; Huang, W.; Chu, W.; Wu, Z., Durability Enhancement of Intermetallics Electrocatalysts via N-anchor Effect for Fuel Cells. Sci. Rep. 2013, 3 (1), 3234.
59. Sandbeck, D. J. S.; Brummel, O.; Mayrhofer, K. J. J.; Libuda, J.; Katsounaros, I.; Cherevko, S., Dissolution of Platinum Single Crystals in Acidic Medium. ChemPhysChem 2019, 20 (22), 2997-3003.
60. Gamler, J. T. L.; Ashberry, H. M.; Skrabalak, S. E.; Koczkur, K. M., Random Alloyed versus Intermetallic Nanoparticles: A Comparison of Electrocatalytic Performance. Adv. Mater. 2018, 30 (40), 1801563.
61. Dionigi, F.; Weber, C. C.; Primbs, M.; Gocyla, M.; Bonastre, A. M.; Spöri, C.; Schmies, H.; Hornberger, E.; Kühl, S.; Drnec, J.; Heggen, M.; Sharman, J.; Dunin-Borkowski, R. E.; Strasser, P., Controlling Near-Surface Ni Composition in Octahedral PtNi(Mo) Nanoparticles by Mo Doping for a Highly Active Oxygen Reduction Reaction Catalyst. Nano Lett. 2019, 19 (10), 6876-6885.
62. Gómez-Marín, A. M.; Bott-Neto, J. L.; Souza Jr, J. B.; Silva, T. L.; Beck Jr, W.; Varanda, L. C.; Ticianelli, E. A., Electrocatalytic Activity of Different Phases of Molybdenum Carbide/Carbon and Platinum–Molybdenum Carbide/Carbon Composites toward the Oxygen Reduction Reaction. ChemElectroChem. 2016, 3 (10), 1570-1579.
63. Lu, J.; Luo, L.; Yin, S.; Hasan, S. W.; Tsiakaras, P., Oxygen Reduction Reaction over PtFeM (M = Mo, V, W) Alloy Electrocatalysts: Role of the Compressive Strain Effect on Pt. ACS Sustain. Chem. Eng. 2019, 7 (19), 16209-16214.
64. Mao, J.; Chen, W.; He, D.; Wan, J.; Pei, J.; Dong, J.; Wang, Y.; An, P.; Jin, Z.; Xing, W.; Tang, H.; Zhuang, Z.; Liang, X.; Huang, Y.; Zhou, G.; Wang, L.; Wang, D.; Li, Y., Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3 (8), e1603068.
65. Wang, F.; Wang, X.; Guo, Z.; Yu, J.; Zhu, H., Study on Catalytic Oxygen Reduction Performance of Mo-PtCu Octahedral Catalyst. Energy Fuels. 2021, 35 (4), 3368-3375.
66. Zahid, M.; Li, J.; Ismail, A.; Zaera, F.; Zhu, Y., Platinum and cobalt intermetallic nanoparticles confined within MIL-101(Cr) for enhanced selective hydrogenation of the carbonyl bond in α,β-unsaturated aldehydes: synergistic effects of electronically modified Pt sites and Lewis acid sites. Catal. Sci. Technol. 2021, 11 (7), 2433-2445.
67. Xie, W.; Ji, L.-L.; Zhou, J.-L.; Pan, H.-B.; Zhu, J.-F.; Zhang, Y.; Sun, S.; Bao, J.; Gao, C., Effect of Mn Promoter on Structure and Performance of K-Co-Mo Catalyst for Synthesis of Higher Alcohols from CO Hydrogenation. Chin. J. Chem. Phys. 2016, 29 (6), 671-680.
68. Wang, C.; Wang, D.; Liu, S.; Jiang, P.; Lin, Z.; Xu, P.; Yang, K.; Lu, J.; Tong, H.; Hu, L.; Zhang, W.; Chen, Q., Engineering the coordination environment enables molybdenum single-atom catalyst for efficient oxygen reduction reaction. J. Catal. 2020, 389, 150-156.
69. van Haandel, L.; Smolentsev, G.; van Bokhoven, J. A.; Hensen, E. J. M.; Weber, T., Evidence of Octahedral Co–Mo–S Sites in Hydrodesulfurization Catalysts as Determined by Resonant Inelastic X-ray Scattering and X-ray Absorption Spectroscopy. ACS Catal. 2020, 10 (19), 10978-10988.
70. Rochet, A.; Baubet, B.; Moizan, V.; Pichon, C.; Briois, V., Co-K and Mo-K edges Quick-XAS study of the sulphidation properties of Mo/Al2O3 and CoMo/Al2O3 catalysts. C. R. Chim. 2016, 19 (10), 1337-1351.
71. Pichon, C.; Gandubert, A. D.; Legens, C.; Guillaume, D., XAS Study at Mo and Co K‐Edges of the Sulfidation of a CoMo / Al2O3 Hydrotreating Catalyst. AIP Conf. Proc. 2007, 882 (1), 681-683.
72. Lai, F.-J.; Su, W.-N.; Sarma, L. S.; Liu, D.-G.; Hsieh, C.-A.; Lee, J.-F.; Hwang, B.-J., Chemical Dealloying Mechanism of Bimetallic Pt–Co Nanoparticles and Enhancement of Catalytic Activity toward Oxygen Reduction. Chem. Eur. J. 2010, 16 (15), 4602-4611.
73. Jiang, K.; Liu, B.; Luo, M.; Ning, S.; Peng, M.; Zhao, Y.; Lu, Y.-R.; Chan, T.-S.; De Groot, F. M. F.; Tan, Y., Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 2019, 10 (1), 1743.
74. Crabb, E. M.; Ravikumar, M. K.; Qian, Y.; Russell, A. E.; Maniguet, S.; Yao, J.; Thompsett, D.; Hurford, M.; Ball, S. C., Controlled Modification of Carbon Supported Platinum Electrocatalysts by Mo. Electrochem. Solid-State Lett. 2002, 5 (1), A5.
75. Choi, S. H.; Lee, J. S., XAFS Characterization of Pt–Mo Bimetallic Catalysts for CO Hydrogenation. J. Catal. 1997, 167 (2), 364-371.
76. Cesar, L. G.; Yang, C.; Lu, Z.; Ren, Y.; Zhang, G.; Miller, J. T., Identification of a Pt3Co Surface Intermetallic Alloy in Pt–Co Propane Dehydrogenation Catalysts. ACS Catal. 2019, 9 (6), 5231-5244.
77. Price, S. W. T.; Ignatyev, K.; Geraki, K.; Basham, M.; Filik, J.; Vo, N. T.; Witte, P. T.; Beale, A. M.; Mosselmans, J. F. W., Chemical imaging of single catalyst particles with scanning μ-XANES-CT and μ-XRF-CT. Phys. Chem. Chem. Phys. 2015, 17 (1), 521-529.
78. Kuwahara, Y.; Furuichi, N.; Seki, H.; Yamashita, H., One-pot synthesis of molybdenum oxide nanoparticles encapsulated in hollow silica spheres: an efficient and reusable catalyst for epoxidation of olefins. J. Mater. Chem. A. 2017, 5 (35), 18518-18526.
79. Cho, K. Y.; Yeom, Y. S.; Seo, H. Y.; Kumar, P.; Lee, A. S.; Baek, K.-Y.; Yoon, H. G., Molybdenum-Doped PdPt@Pt Core–Shell Octahedra Supported by Ionic Block Copolymer-Functionalized Graphene as a Highly Active and Durable Oxygen Reduction Electrocatalyst. ACS Appl. Mater. Interface. 2017, 9 (2), 1524-1535.
80. Luo, Y.; Kirchhoff, B.; Fantauzzi, D.; Calvillo, L.; Estudillo-Wong, L. A.; Granozzi, G.; Jacob, T.; Alonso-Vante, N., Molybdenum Doping Augments Platinum–Copper Oxygen Reduction Electrocatalyst. ChemSusChem. 2018, 11 (1), 193-201.
81. He, C.; Ma, Z.; Wu, Q.; Cai, Y.; Huang, Y.; Liu, K.; Fan, Y.; Wang, H.; Li, Q.; Qi, J.; Li, Q.; Wu, X., Promoting the ORR catalysis of Pt-Fe intermetallic catalysts by increasing atomic utilization and electronic regulation. Electrochim. Acta. 2020, 330, 135119.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊