跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 22:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:普馬諾
研究生(外文):Patil, Manoj Dnyanadev
論文名稱:金金屬催化炔類轉化成高度官能化之碳環與雜環之途徑
論文名稱(外文):Gold-Catalyzed Divergent Transformations of Alkyne into Highly Functionalized Carbo and Heterocycles
指導教授:劉瑞雄
指導教授(外文):Liu, Rai-Shung
口試委員:彭之皓蔡易州李文泰侯敦仁
口試委員(外文):Peng, Chi-HowTsai, Yi-ChouLi, Wen-TaiHou, Duen-Ren
口試日期:2020-10-28
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:英文
論文頁數:483
中文關鍵詞:金催化有機合成有機金屬化學催化劑金碳烯化學金碳烯
外文關鍵詞:Gold catalystOrganic synthesisOrganometallic Synthesiscatalysiscarbene chemistrygold carbene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文描述利用金金屬及銀金屬催化劑開發新型有機合成轉化方法,使用這些金屬能夠容易將基質在溫和、選擇性以及有效的條件下合成轉化成一系列雜環產物。為了使讀者容易理解,本篇論文將分成四個章節進行介紹。

第一章內容包含從炔類、硝酮和親核試劑而得的金碳烯,條件下的曼尼希反應指出親核試劑控制了化學選擇性有著協同催化作用。而對於1-炔基-4-醇和2-乙炔基酚,在金催化氧化反應硝酮的情況下得到具同位選擇性的含氮二氫呋喃-3(2H)-酮,該反應機制涉及金碳烯和亞胺透過氧-氫-氮鍵結的曼尼希反應。而對於芳氧基乙炔來說,他們金烯醇選擇性的與硝酮反應生成3-亞烷基苯並呋喃-2-酮(由碳-氫-氧 氫鍵控制)。

第二章內容包含由蒽氧基與芳氧基乙炔或是芳基炔丙基醚行一系列環化反應建構苯並呋喃[2,3-b]喹啉和6H-chromeno [3,4-b]喹啉骨架,這些雜環骨架雖然具有生物重要性但難以從現今文獻方法中得到,而本篇提及的策略藉由廣泛的基質被凸顯出來。而推測反應機制透過α-亞氨基金碳烯間體、氧芳基和苯甲醛之間的依序環化反應的機理。

第三章內容包含由兩種不同的芳烴與金碳烯提供的三芳基甲烷的產物的金催化的氧化交叉偶聯反應組成。值得注意的是以磷酸作為助催化劑(10 mol%)在四氫呋喃溶液下可以有效抑制競爭性均相交聯反應。這些交叉偶聯反應具有廣泛適用的基質由吲哚,芳基胺和α-芳基重氮氰化物或酯類。我們的反應機理分析指出芳基苯胺的鹼度極大地影響了對交叉偶聯模的化學選擇性,並且還發現磷酸的存在增強了交叉偶聯效率,進一步為這種新的催化作用提供了機械學見解。

第四章內容包含金催化三種分子由丙酸酯,呋喃和異噁唑的逐步環化而產生具取代基的吡咯,這些環化反應具有廣泛的基質應用以及產物吡咯存在於許多生物活性分子中。
This dissertation describes development of new synthetic organic transformation using gold and silver catalysts. The use of these metals enable mild, selective and efficient transformation to give a range of heterocyclic products from readily available substrates. This thesis is divided into four chapters for ease of understanding.
Chapter one is comprised of gold enolates from alkynes, nitrones and nucleophiles; their Mannich reactions manifest nucleophile-directed chemoselectivity to indicate a cooperative catalysis. For 1-alkyn-4-ols and 2-ethynylphenols, their gold-catalyzed nitrone oxidations afforded N-containing dihydrofuran-3(2H)-ones with syn-selectivity; the mechanism involves Mannich reactions of gold enolates with imines via an O-H--N bonding. For aryloxyethynes, their gold enolates react selectively with nitrones to deliver 3-alkylidenebenzofuran-2-ones, as controlled by a C-H--O hydrogen bonding.

Chapter two is comprised of a facile annulation of anthranils with aryloxyethynes or aryl propargyl ethers to construct useful benzofuro[2,3-b]quinoline and 6H-chromeno[3,4-b]quinoline frameworks respectively; these heterocycles are not readily available from literature methods despite their biological significance. This high atom- and step-economy strategy is highlighted by a broad substrate scope. The reaction mechanism is proposed to proceed through sequential cyclizations among the oxyaryl group, gold carbene and benzaldehyde of the α-imino gold carbene intermediates.

Chapter three is comprised of gold-catalyzed oxidative cross-coupling reactions of two distinct arenes with one gold carbene furnish triarylmethane products. Notably, competitive homo-coupling reactions are efficiently suppressed with a phosphoric acid as co-catalyst (10 mol %) in THF. These cross-coupling reactions have applicable substrates over a wide scope, with respect to indoles, arylamines and α-aryl diazo cyanides or esters. Our mechanistic analysis indicates that the basicity of the arylanilines greatly affects the chemoselectivity toward the cross-coupling mode. We discover also that the presence of a phosphoric acid enhances the cross-coupling efficiency, further providing mechanistic insight into this new catalysis.

Chapter four is comprised of gold-catalyzed three component atom and step-economical annulations between propiolates, furans and isoxazoles to yield substituted pyrrole. These annulations were compatible with substrates over a wide scope. These resulting pyrroles are present in many bioactive molecules.
CONTENTS


Abstract III
Acknowledgement VII
Contents X
List of Schemes XIII
List of Tables XVI
List of Figures XVI
List of Publications XVIII
Abbreviations XIX





Chapter 1: Catalytic Transformations of Alkynes into either α-Alkoxy or α-Aryl Enolates: Mannich Reactions by Cooperative Catalysis and Evidence for Nucleophile-Directed Chemoselectivity.
Introduction
Result and Discussion 2
14
Conclusion 29
Experimental Procedure 29
Spectral Data 31
Reference 44
X-ray Crystallographic Data 47
1H and 13C NMR Spectra 55

Chapter 2: Direct Access to Benzofuro[2,3-b]quinoline and 6H-Chromeno [3,4-b]quinoline Cores through Gold-Catalyzed Annulation of Anthranils with Arenoxyethynes and Aryl propargyl ethers.
Introduction
Result and Discussion 104
114
Conclusion 130
Experimental Procedure 130
Spectral Data 133
Reference 149
X-ray Crystallographic Data 152
1H and 13C NMR Spectra 156

Chapter 3: Gold-catalyzed Oxidative Cross-coupling Reactions Among Two Distinct Arenes and One Gold Carbene with Phosphoric Acids as Cocatalysts
Introduction
Result and Discussion 231
240
Conclusion 261
Experimental Procedure 261
Spectral Data 265
Reference 285
X-ray Crystallographic Data 289
1H and 13C NMR Spectra 293

Chapter 4: Gold(I)-Catalysed Three-Component Reaction between Alkynes, Furans and Isoxazoles to Access Substituted Pyrroles
Introduction
Result and Discussion 374
386
Conclusion 405
Experimental Procedure 405
Spectral Data 406
Reference 424
X-ray Crystallographic Data 426
1H and 13C NMR Spectra 430



List of Schemes
Chapter 1
Scheme 1: Generation of Gold carbenes from alkynes: A formalism to α-Carbene Gold carbene 4
Scheme 2: Common approaches to α-oxo gold carbenes from alkynes 5
Scheme 3: Intramolecular and intermolecular catalytic generation of a-oxo
gold carbenes 6
Scheme 4: Rearrangement alkynyl sulfoxides catalyzed by gold(I)
complexes. 7
Scheme 5: Synthesis of tetrahydrobenz[b]azepin-4-ones via intramolecular α- oxo gold carbenoid generation 7
Scheme 6: First example of accessing α-oxo gold carbenes via intermolecular oxidation of terminal alkynes 8
Scheme 7: Gold catalyzed synthesis of oxetan-3-ones from propargylic alcohols 8
Scheme 8: Gold-catalyzed [2+2+1] annulation of alkynes to synthesize 2,5 disubstituted oxazoles 9
Scheme 9: Oxidative cyclization of 1,5 enyne via 5-exo dig mode. 9
Scheme 10: Oxidative cyclization of 1,5 enyne via 5-endo dig mode 10
Scheme 11: oxidative annulation of homopropargyl alcohols with nitrone. 11
Scheme 12: Proposed reaction mechanism for Mannich-type addition 12
Scheme 13: General Mannich reaction and its mechanism 13
Scheme 14: Gold enolates with Mannich reaction. 14
Scheme 15: General synthetic procedure for synthesis of (ethynyloxy)benzene (1-1a) 17
Scheme 16: General synthetic procedure for synthesis of (prop-2-yn-1-yloxy)benzene (1-1h) 17
Scheme 17: General synthetic procedure for synthesis of nitrone (1-2a) 17
Scheme 18: Postulated reaction mechanism for gold-enolate enabled mannich reaction 26
Scheme 19: Postulated reaction mechanism 27

Chapter 2
Scheme 1: Gold-catalyzed [3+2] cycloaddition of ynamides with isoxazoles 106
Scheme 2: Gold-catalyzed [4+3]- and [4+2]-annulations of 3-en-1-ynamides with isoxazoles 107
Scheme 3: Gold catalyzed transfer of N-acylimino nitrenes to ynamides 107
Scheme 4: Gold-catalyzed C-H annulation of anthranils with alkynes 109
Scheme 5: Gold (III)-catalyzed annulation of N-benzyl ynamide and anthranil 110
Scheme 6: Gold (III)-catalyzed annulation reaction of N-furylmethylene ynamides and anthranils 111
Scheme 7: Gold-catalyzed annulations of N-aryl ynamides with Benzisoxazoles 112
Scheme 8: General synthetic procedure for synthesis of (ethynyloxy)benzene (1-1a). 117
Scheme 9: General synthetic procedure for synthesis of (prop-2-yn-1-yloxy)benzene (1-1h) 118
Scheme 10: Synthetic procedure of benzo[c]isoxazole (2-2a) 118
Scheme 11: A plausible mechanism 129


Chapter 3
Scheme 1: Formation of gold carbenes from diazo compounds 231
Scheme 2: Metal-mediated carbene transfer from diazo compounds 232
Scheme 3: General reactions of C-H activation and O-H insersion 233
Scheme 4: Palladium-catalyzed asymmetric O-H insertion 233
Scheme 5: Palladium-catalyzed asymmetric O-H insertion 234
Scheme 6: Ru-Catalyzed C2-Selective Functionalization of NH-Indole with diazo acetates 235
Scheme 7: Proposed Mechanisms for the construction of BIMs 236
Scheme 8: Proposed mechanism of the iridium/iminium co-catalyzed three-component reaction 237
Scheme 9: Plausible reaction mechanism of gold-catalyzed oxidative coupling 238
Scheme 10: Synthesis of N-methyl indole and N-phenyl indole 243
Scheme 11: Synthesis of 2-diazo-2-phenylacetonitrile 244
Scheme 12: Synthesis of N, N-dimethylaniline 245
Scheme 13: Cross-coupling reactions between two different anilines 253
Scheme 14: Chemical functionalization’s of cross-coupling products 254
Scheme 15: The role of anilines in cross-coupling reactions 258
Scheme 16: A postulated mechanism 259

Chapter 4
Scheme 1: Gold-catalyzed [3+2], [3+3] and [4+1] annulations 374
Scheme 2: Formalization of difference in N-oxide attack and O- and N-attack of isoxazoles on gold activated alkyne 375
Scheme 3: Enantioselective addition of nitroalkanes to isoxazoles 376
Scheme 4: Enantioselective cyclopropanation of styrylisoxazoles 377
Scheme 5: Asymmetric synthesis of dihydroxy-4-nitroisoxazolinones from isoxazoles 377
Scheme 6: Regioselective trifluoromethylation of 4-nitroisoxazoles. 378
Scheme 7: Rhodium-catalyzed [3+2] cycloaddition of triazole with isoxazole 379
Scheme 8: Rh-catalyzed ring opening reaction of isoxazoles with diazo compounds 380
Scheme 9: Rh-catalyzed ring expansion reaction of isoxazoles with vinyldiazo
carboxylates to give 1,4-dihydropyridine 381
Scheme 10: Platinum-catalyzed formal [5+2]- and [4+2]-annulations of isoxazoles 382
Scheme 11: Gold-catalyzed [4+1]-annulation between 1,4-diyn-3-ols and isoxazoles 383
Scheme 12: Proposed mechanism for gold-catalyzed [4+1]-annulation between 1,4-diyn-3-ols and isoxazoles 384
Scheme 13: Annulations between propiolate derivatives and isoxazoles 385
Scheme 14: Gold(I)-Catalyzed Cyclization of Furans with Alkynes 387
Scheme 15: Synthetic procedure of tert-butyl 3-phenyl propiolate (4-1a) 380
Scheme 16: Synthetic procedure of tert-butyl 3-phenyl propiolate (4-1a) 382
Scheme 17: Synthetic procedure of 1,3-diphenylprop-2-yn-1-one (4-2c) 382
Scheme 18: Synthetic procedure of 2,5-diphenylfuran (4-2e) 382
Scheme 19: Synthetic procedure of 3,5-dimethylisoxazole (4-3b) 382
Scheme 20: Synthetic procedure of 3-methyl isoxazole (4-3b) 383
Scheme 21: Effect of nucleophilicity of furans 399
Scheme 22: Effect of nucleophilicity of Isoxazoles 400
Scheme 23: Effect of bulky furan and rate of reaction 402
Scheme 24: A postulated mechanism 403
List of Tables
Chapter 1
Table 1: Reactions of phenoxyethyne 1-1a with nitrone 1-2a over gold catalysts 15
Table 2: Catalytic Reactions on phenoxyethyne 1-1a-g 18
Table 3: Gold-catalyzed reactions of various nitrones 1-2b-k 21
Table 4: Gold-catalyzed reactions of various phenyl propargyl ethers and nitrones 24

Chapter 2
Table 1: Catalytic Annulations with various gold catalysts 115
Table 2: Catalytic Annulations with various phenoxyethyne 119
Table 3: Catalytic Annulations with various benzoisoxazole 119
Table 4: Annulations of various aryl propargyl ethers 125
Table 5: Catalytic Annulations with various benzoisoxazole with propargyl ether 127

Chapter 3
Table 1: Cross-coupling reactions under various conditions 241
Table 2: Oxidative coupling reactions with various indoles 246
Table 3: Cross-coupling reactions with α-diazo species
Table 4: Cross-coupling reactions with various anilines 249
251

Chapter 4
Table 1: Optimization of reaction condition 389
Table 2: Gold-catalyzed annulation with various propiolates 394
Table 3: Gold-catalyzed annulation with various furans 497

List of Figures
Chapter 1
Figure 1: Singlet and triplet carbenes 3
Figure 2: Fischer and schrock carbenes 3
Figure 3: List of substrates 16
Figure 4: ORTEP diagram of compound 1-4d and 1-5a 28

Chapter 2
Figure 1: The general retrosynthetic basis for the synthesis of diverse N-heterocycles 104
Figure 2: Selective bioactive natural alkaloids 114
Figure 3: List of substrates
Figure 4: ORTEP diagram of compounds 2-3a and 2-6l 117
130

Chapter 3

Figure 1: Classification of carbene precursors 233
Figure 2: List of substrates 243
Figure 3: ORTEP diagram of compounds (3-4b) and (3-4’’) 261

Chapter 4
Figure 1: List of substrates 391
Figure 2: ORTEP diagram of compounds (4-4f) and (4-5d’) 404
References for Chapter 1
1. a) Hudlicky, T.; Natchus, M. G. In Organic Synthesis: Theory and Applications; T. Hudlicky, Ed.; JAI: Greenwich, CT, 1993; Vol. 2, pp 1. b) Yamashita, K.; Yamamoto, Y.; Nishiyama, H. J. Am. Chem. Soc. 2012, 134, 7660.
2. a) Kobayashi, S.; Jorgensen, K. A. Cycloaddition Reactions in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2002. b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. c) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. d) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.
3. a) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. b) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431. c) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208.
4. a) Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505. b) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002. c) Gorin, D. J.; Dube, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 14480. d) López, S.; Herrero-Gómez, E.; Pérez-Galán, P.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 6029. e) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2005, 44, 6990. f) For cyclization of allenynes with nucleophiles, see: Lemie´re, G.; Gandon, V.; Agenet, N.; Goddard, J.; de.Kozak, A.; Aubert, C.; Fensterbank, L.; Malacria, M. Angew. Chem. Int. Ed. 2006, 45, 7596. g) Gorin, D. J.; Dube, P.;Toste, F. D. J. Am.Chem. Soc. 2006, 128, 14480.
5. a) Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, J.; Sabel, J. Angew. Chem. 1962, 74, 93; Angew. Chem. Int. Ed. 1962, 1, 80. b) Fukuda, Y.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991, 64, 2013. c) Hashmi, A. S. K.; Schward, L.; Choi, J.-H.; Frost, T. M. Angew. Chem. Int. Ed. 2000, 39, 2285.
6. a) Fukuda, Y.; Utimoto, K.; Nozaki, H. Heterocycles, 1987, 25, 297. b) Fukuda, Y.; Utimoto, K. Synthesis, 1991, 975. c) Lok, R.; Leone, R. E.; Williams, A. J. J. Org. Chem. 1996, 61, 3289. d) Arcadi, A.; Giuseppe, S. D.; Marinelli, F.; Rossi, E. Adv. Synth. Catal. 2001, 343, 443.
7. a) Hutchings, G. J. Gold Bull. 1996, 29, 123. b) Hutchings, G. J. Catal. Today, 2002, 72, 11.
8. Reviews for gold-catalyzed annulation or cycloaddition reactions, a) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. b) Patil, N. T.; Yamamoto, Y. ARKIVOC 2007, 5, 6. c) Abu Sohel, S. Md.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269. d) Fürstner, A.; Davies, P. W. Angew Chem. Int. Ed. 2007, 46, 3410. e) Shapiro, N. D.; Toste, F. D. Synlett, 2010, 675.
9. a) Soriano, E.; J. Marco-Contelles. Acc. Chem. Res. 2009, 42, 1026. b) Lee, S. I.; N. Chatani. Chem. Commun. 2009, 371. c) Kirsch S. F. Synthesis 2008, 3183. d) Muzart. J. Tetrahedron, 2008, 64, 5815. e) Widenhoefer R. A. Chem. Eur. J. 2008, 14, 5382.
10. a) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2008, 47, 6754. b) Bongers, N.; Krause. N. Angew. Chem. Int. Ed. 2008, 47, 2178. c) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. d) Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657.
11. a) Boorman, T. C.; Larrosa. I. Chem. Soc. Rev. 2011, 40, 1910. b) Bandini. M. Chem. Soc. Rev. 2011, 40, 1358. c) Krause, N.; Winter. C. Chem. Rev. 2011, 111, 1994. d) Alcaide, B.; Almendros, P.; Alonso, J. M. Org. Biomol. Chem. 2011, 9, 4405. e) Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2011, 47, 6536. f) Das, A.; Sohel, S. M. A.; Liu, R.-S. Org. Biomol. Chem. 2010, 8, 960.
12. Zhang, L. Acc. Chem. Res., 2014, 47, 877.
13. Yeom, H. S.; Shin, S. Acc. Chem. Res. 2014, 47, 966.
14. a) Xiao, J.; Li, X. Angew. Chem. Int. Ed. 2011, 50, 7226. b) Zhang, L. Acc. Chem. Res. 2014, 47, 877. c) Zheng, Z; Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev. 2016, 45, 4448. d) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348.
15. a) James, M. C. B.; Hashmi, A. S. K. In Modern Gold Catalyzed Synthesis; Hashmi, A. S. K., Toste, F. D., Eds.; Wiley-VCH: Weinheim, Germany, 2012; pp 273. b) Nevado, C.; de Haro, T. In New Strategies in Chemical Synthesis and Catalysis; Pignataro, B., Ed.; Wiley-VCH: Weinheim, Germany, 2012; pp 247. c) Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7226. d) Moss, R. A., Doyle, M. P., Eds. Contemporary Carbene Chemistry; Wiley: New York, 2014; Chapter 16. e) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. f) Davies, H. M. L.; Denton, J. R. Chem. Soc. Rev. 2009, 38, 3061; For 8-methylquinoline oxides, see selected examples: g) Li, B.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 14070. h) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482. i) Luo, Y.; Ji, K.; Li, Y.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 17412. j) Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200; For other pyridine N-oxides, see selected examples: k) Ye, L.; He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550.
16. Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160.
17. Cui, L.; Zhang, G.; Peng, Y.; Zhang, L. Org. Lett. 2009, 11, 1225.
18. a) Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258. b) Ye, L. He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550.
19. He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482.
20. Vasu, D.; Hung, H.-H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu. R.-S. Angew. Chem. 2011, 123, 7043; Angew. Chem. Int. Ed. 2011, 50, 6911.
21. a) Wei, H.; Zhou, S.; Qiu, L.; Qian, Y.; Hu, W.; Xu, X. Adv. Synth. Catal. 2019, 361, 3569. b) Wei, H.; Bao, M.; Dong, K.; Qiu, L.; Qian, Y.; Hu, W.; Xu, X. Angew. Chem. Int. Ed. 2018, 57, 17200.
22. a) Trost, B. M.; Bartlett, M. J. Acc. Chem. Res. 2015, 48, 688. b) Alcaide, B.; Almendros, P. Eur. J. Org. Chem. 2002, 1595. c) Geary, L. M.; Hultin, P. G. Tetrahedron: Asymmetry, 2009, 20, 131. d) Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem. Soc. Rev. 2004, 33, 65.
23. a) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626. b) Córdova, A. Acc. Chem. Res. 2004, 37, 102. c) Verkade, J. M. M; van Hemert, L. J. C.; Quaedflieg, P. J. M.; Rutjes, F. P. J. T. Chem. Soc. Rev. 2008, 37, 29.
24. Gallier, F.; Martel, A.; Dujardin, G. Angew. Chem. Int. Ed. 2017, 56, 12424.
25. a) Tejedor, D. G.; Cotos, Méndez-Abt, L.; García-Tellado F. Chem. Soc. Rev. 2013, 42, 458. b) Castro, A. M. M. Chem. Rev. 2004, 104, 2939. c) Hiersemann, M.; Abraham, L. Eur. J. Org. Chem. 2002, 1461-1471; d) Nubbemeyer, U. Synthesis, 2003, 7, 961.
26. Reviews for metal enolates: a) Braun, M. Helvetica chimica Acta, 2015, 98, 1. b) Casiraghi, G.; Battistini, L.; Curti, C.; Rassu, G.; Zanardi, F. Chem. Rev. 2011, 111, 3076. c) Denmark, S. E.; Heemstra, J. R.; Beutner, G. L. Angew. Chem. Int. Ed. 2005, 44, 4682. d) Korch, K. M.; Loskot, S. A.; Stoltz, B. M. In Patai’s Chemistry of Functional Groups, John Wiley & Sons. Ltd., 2016, pages 1-85; e) R. Mahrwald, Modern Aldol reactions, Ed. R. Mahrwald, Wiley, 2004, vol. 1, pages 1-328.
27. Crystallographic data of compound 1-4c and 1-5a were deposited in Cambridge Crystallographic Data Center: a) 1-4c CCDC 1829107, b) 1-5a 2023104.
28. a) Wang, Y.; Ye, L.; Zhang, L. Chem. Commun., 2011, 47, 7815. b) Wang, Y.; Liu, L.; Zhang, L. Chem. Sci., 2013, 4, 739. c) Huple, D. B.; Mokar B. D.; Liu, R.-S. Angew. Chem., Int. Ed., 2015, 54, 14924.
29. Wei, H.; Zhou, S.; Qiu, L.; Qian, Y.; Hu, W.; Xu, X. Adv. Synth. Catal. 2019, 361, 3569.
30. For the role of a hydrogen bonding on metal enolates, see selected examples: a) Hu, W.; Xu, X., Zhou, J.; Liu, W.-J.; Huang, H.; Hu, J.; Yang, L.; Gong, L.-Z. J. Am. Chem. Soc. 2008, 130, 7782. b) Huang, H.; Guo, X.; Hu, W. Angew. Chem. Int. Ed. 2007, 46, 1337. c) Qiu, H.; Li, M.; Jiang, L.-Q.; Li, F.-P.; Zan, L.; Zhai, C.-W.; Doyle, M.; Hu, W.-H. Nat. Chem. 2012, 4, 733.
31. a) For compounds (1-1a) – (1-1g): Graf, K.; Rühl, C. L; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2013, 52, 12727. b) For compounds (1-1h)-(1-1j)
32. Compounds (1-2a) –(1-2k): Vasu, D.; Liu, R.-S. Chem. Eur. J. 2012, 18, 13638.

References for Chapter 2
1. General reviews on preparation of nitrogen-heterocycles: a) “Amino-Based Building Blocks for the Construction of Biomolecules (Ed.: A. Ricci), Wiley-VCH, Weinheim, 2007, pp. 207-256-592; b) Balasubramanian, M., Keay J. G. Comprehensive Heterocyclic Chemistry (Eds.: A. R. Katritzky, C. W. Rees), Pergamon, Oxford, 1984, pp. 245-300. c) Z. Jin, Nat. Prod. Rep. 2011, 28, 1143. d) Amines: Synthesis Properties and Applications (Ed.: S. A. Lawrence), Cambridge University Press, Cambridge, 2004. (e) Modern Amination Methods (Ed.: A. Ricci), Wiley-VCH, Weinheim, 2007.
2. π-Acid catalysis reviews: (a) Furstner, A.; Davies,P. W.; Angew. Chem. Int. Ed. 2007, 46, 3410. (b) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. (c) Gorin, D. J.; Toste, F. D. Nature, 2007, 446, 395.
3. General and recent reviews of gold catalysis and its applications a) Obradors, C.; Echavarren A. M. Acc. Chem. Res. 2014, 47, 902. b) Fensterbank, L.; Malacria, M. Acc. Chem. Res. 2014, 47, 953. c) Garayalde, D.; Nevado, C. ACS Catal. 2012, 2, 1462. d) Rudolph, M.; Hashmi, A. S. K. Chem. Soc. Rev. 2012, 41, 2448. e) Lopez, F.; Mascarenas, J. L. Beilstein J. Org. Chem. 2011, 7, 1075. f) Furstner, A. Chem. Soc. Rev. 2009, 38, 3208. g) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326.
4. a) Dequirez, G.; Pons, V.; Dauban, P. Angew. Chem. Int. Ed. 2012, 51, 7384. b) Collet, F.; Lescot, C.; Dauban, P. Chem. Soc. Rev. 2011, 40, 1926. c) Doyle, M. P. Reactive Intermediate Chemistry (Eds.: R. A. Moss, M. S. Platz, M. Jones, Jr.), Wiley Interscience, New York, 2004, pp. 561.
5. Doyle, M. P.; Hu, W.; Timmons, D. J. Org. Lett. 2001, 3, 3741.
6. a) Zhou, A.-H.; He, Q.; Shu, C.; Yu, Y.-F.; Liu, S.; Zhao, T.; Zhang, W.; Lu X.; Ye, L.-W. Chem. Sci., 2015, 6, 1265.
7. Giri, S. S.; Liu, R.-S. Chem. Sci., 2018, 9, 2991.
8. Zeng, Z.; Jin, H.; Xie , J.; Tian , B.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Org. Lett., 2017, 19, 1020.
9. Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed., 2016, 55, 794.
10. Zeng, Z.; Jin, H.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed., 2018, 57, 16549.
11. Tsai, M.-H.; Wang, C.-Y.; Raj, A. S. K.; Liu, R.-S. Chem. Commun. 2018, 54, 10866.
12. a) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal., 2016, 358, 1348. b) Li, L.; Tan, T.-D.; Zhang, Y.-Q.; Liu X.; Ye, L.-W. Org. Biomol. Chem., 2017, 15, 8483.
13. a) Zhou, A.-H.; He, Q.; Shu, C.; Yu, Y.-F.; Liu, S.; Zhao, T.; Zhang, W.; Lu, X.; Ye, L.-W. Chem. Sci., 2015, 6, 1265. b) Xiao, X.-Y.; Zhou, A.-H.; Shu, C.; Pan, F.; Li ,T.; Ye, L.-W. Chem. Asian J., 2015, 10, 1854 c) Shen, W.-B.; Xiao, X.-Y.; Sun, Q.; Zhou, B.; Zhu, X.-Q.; Yan, J.-Z.; Lu, X. Ye, L.-W. Angew. Chem. Int. Ed., 2017, 56, 605. d) Giri, S. S. Liu, R.-S. Chem. Sci., 2018, 9, 2991. e) Mokar, B. D.; Jadhav, P. D.; Pandit, Y. B.; Liu, R.-S. Chem. Sci., 2018, 9, 4488. f) Kardile, R. D.; Kale, B. S.; Sharma P.; Liu, Rai-Shung. Org. Lett., 2018, 20, 3806. g) Hsieh, H.-C.; Tan, K.-C.; Raj, A. S. K.; Liu, R.-S. Chem. Commun., 2019, 55, 1979.
14. a) Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed., 2016, 55, 794 b) Jin, H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed., 2016, 55, 12688 c) Zeng, Z.; Jin, H.; Sekine, K.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed., 2018, 57, 6935. d) Zeng, Z.; Jin, H.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed., 2018, 57, 16549. e) Singh, R. R.; Skaria, M.; Chen, L.-Y.; Cheng, M.-J.; Liu, R.-S. Chem. Sci., 2019, 10, 1201.
15. a) Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed., 2017, 56, 1026 b) Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed., 2017, 56, 12736.
16. a) Ayafor, J. F.; Sondengam, B. L.; Bilon, A. N.; Tsamo, E. S.; Kimbu, F.; Okogun, J. I. J. Nat. Prod., 1982, 45, 714. b) Okogun, J. I.; Ayafor, J. F. J. Chem. Soc., Chem. Commun., 1977, 0, 652.
17. a) Chen, K.-S.; Chang, Y.-L.; Teng, C.-M.; Chen, C.-F.; Wu, Y.-C. Planta Med., 2000, 66, 80. b) Yang, G.; Chen, D. Chem Biodivers., 2008, 5, 1718.
18. Chaturvedula, V. S. P.; Schilling, J. K.; Miller, J. S; Andriantsiferana, R.; Rasamison, V. E.; Kingston, D. G. I. J. Nat. Prod., 66, 532.
19. Yang, Z.-D.; Zhang, D.-B.; Ren, J.; Yang, M.-J. Med. Chem. Res., 2012, 21, 722.
20. Emam, A.; Eweis, M.; Elbadry, M. Drug Discoveries & Therapeutics., 2010; 4, 399.
21. Yang, C.-L.; Tseng, C.-H.; Chen, Y.-L.; Lu, C.-M.; Kao, C.-L.; Wu, M.-H.; Tzeng, C.-C. Eur. J. Med. Chem., 2010, 45, 602.
22. a) Kawase, Y.; Yamaguchi, S.; Maeda, O.; Hayashi, A.; Hayashi, I.; Tabata, K.; Kondo, M. J. Heterocyclic Chem., 1979, 16, 487. b) Kawase, Y.; Yamaguchi, S.; Morita, M.; Uesugi, T. Bull. Chem. Soc. Jpn., 1980, 53, 1057.
23. Crystallographic data of compound 2-3a and 2-6l have been deposited at Cambridge Crystallographic Data Centre: 2-3a CCDC: 1897138, 2-6l CCDC: 2026424
24. a) Wang, B.; Liang, M.; Tang, J.; Deng, Y.; Zhao, J.; Sun, H.; Tung, C.-H.; Jia, J.; Xu, Z. Org. Lett., 2016, 18, 4614. b) Han, J.; Shimizu, N.; Lu, Z.; Amii, H.; Hammond, G. B.; Xu, B. Org. Lett., 2014, 16, 3500. c) Barrio, P.; Kumar, M.; Lu, Z.; Han, J.; Xu, B.; Hammond, G. B. Chem. Eur. J., 2016, 22, 16410.
25. a) For compounds (1-1a) – (1-1g): Graf, K.; Rühl, C. L; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2013, 52, 12727. b) For compounds (1-1h)-(1-1j) V. S. P. R. Lingam, R. Vinodkumar, K. Mukkanti, A. Thomas, B. Gopalan, Tetrahedron Lett., 2008, 49, 4260. c) Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed., 2017, 56, 12736.
26. Kitamura, C.; Abe, Y.; Ohara, T.; Yoneda, A.; Kawase, T.; Kobayashi, T.; Naito, H.; Komatsu, T.; Chem. Eur. J., 2010, 16, 890.
27. A. G. Griesbeck, M. Franke, J. Neudorfl, H. Kotaka, Beilstein J. Org. Chem. 2011, 7, 127–134.

References for Chapter 3
1. a) Comprehensive reviews on α-diazocarbonyl compounds, see: Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091. b) Padwa A.; Austin, D. J. Angew. Chem., Int. Ed. 1994, 33, 1797. c) Padwa A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223. d) Doyle,; McKervey M. A.; Ye, T. in Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998. e) Doyle M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911. f) Padwa, A. J. Organomet. Chem. 2001, 3, 617. g) Hodgson, D. M.; Pierard, F. Y. T. M.; Stupple, P. A. Chem. Soc. Rev. 2001, 30, 50. h) Davies H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861.
2. a) Doyle, M.P.; Duffy, R.; Ratnikov, M. Chem. Rev. 2010,110, 704. b) Gil-lingham, D.; Fei, N. Chem. Soc. Rev. 2013, 42, 4918. c) Sun, X.L.; tang, Y. Acc. Chem. Res. 2008, 41, 937. d) Rh (I)-catalyzed sequential C(sp)–C(sp3) and C(sp3)–C(sp3) bond formation through migratory carbene insertion, Xia, Y.; Feng, S.; Liu. Z. Angew. Chem. Int. Ed. 2015, 54, 7891. e) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; Mckervey, M. A. Chem. Rev. 2015, 115, 9981.
3. a) Manning, J. R.; Davies, H. M. L. Nature 2008, 451, 417. b) Morton, D.; Davies, H. M. L. Chem. Soc. Rev. 2011, 40, 1857. c) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704.
4. a) Yang, J.; Wu, H.; Shen, L.; Qin, Y. J. Am. Chem. Soc. 2007, 129, 13794. b) Liu, B.; Zhu, S.-F.; Zhang, W.; Chen, C.; Zhou, Q-L. J. Am. Chem. Soc. 2007, 129, 5834. c) Zhu, S.-F.; Song, X.-G.; Li, Y.; Cai, Y.; Zhou, Q.-L. J. Am. Chem. Soc. 2010, 132, 16374.
5. Zhu, S.-F.; Zhou, Q.-L. Natl. Sci. Rev. 2014, 1, 580.
6. Gold Catalyst for Carbene-Transfer Reactions from Ethyl Diazoacetate. Fructos, M. R.; Belderrain, T. R.; de Frémont, P.; Scott, N. M.; Nolan, S. P.; Díaz-Requejo, M. M.; Pérez, P. J. Angew. Chem. Int. Ed. 2005, 44, 5284.
7. For a book on carbene chemistry: R. A. Moss and M. P. Doyle, Contemporary Carbene Chemistry, John Wiley & Sons, 2013.
8. For selected reviews on C–H bond insertion by metal carbenoids: a) Doyle M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911. b) Davies H. M. L.; Antoulinakis, E. G. J. Organomet. Chem. 2001, 47, 617. c) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. d) Davies, H. M. L; Manning, J. R. Nature 2008, 451, 417. e) Doyle, M. P.; Duffy, R.; Ratnikov M.; Zhou, L. Chem. Rev. 2010, 110, 704. f) Slattery, C. N.; Ford A.; Maguire, A. R. Tetrahedron 2010, 66, 6681. g) Doyle, M. P.; Ratnikov M.; Liu, Y. Org. Biomol. Chem. 2011, 9, 4007. h) Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857. i) Gillingham, D.; Fei, N. Chem. Soc. Rev. 2013, 42, 4918.
9. a) Xie, X.-L.; Zhu, S.-F.; Guo, J.-X.; Cai, Y.; Zhou, Q.-L. Angew. Chem. Int. Ed., 2014, 53, 2978.
10. Yu, Z.; Ma, B.; Chen, M.; Wu, H.-H.; Liu, L.; Zhang, J. J. Am. Chem. Soc., 2014, 136, 6904.
11. Chan, W.-W.; Yeung, S. –H.; Zhou, Z.; Chan, A. S. C.; Yu W. -Y. Org. Lett. 2010, 12, 604.
12. Bayindirab, S.; Saracoglu N. RSC Adv. 2016, 6, 72959.
13. Li, M.; Guo, X.; Jin, W.; Zheng, Q.; Liu, S.; Hu, W. Chem. Commun. 2016, 52, 2736.
14. R. R. Singh, R.-S. Liu, Chem. Commun., 2017, 53, 4593-4596.
15. a) Doyle, M. P. in Comprehensive Organometallic Chemistry II, Abel, E. W.; Stone, F. G. A., Ed.; Pergamon: Oxford UK, vol 12, p. 387-469. b) Doyle, M. P.; McKervy, M. A.; Ye, T. Wiley; New York USA, 1998. c) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev., 2003, 103, 2861-2904. d) Liu, L.; Zhang, J. Chem. Soc. Rev., 2016, 45, 506-516. e) Fructos, M. R.; Díaz-Requejo M. M.; Pérez, P. J. Chem. Commun. 2016, 52, 7326-7335.
16. For gold carbenes derived from diazo precursors, see selected papers: a) Fructos, M. R.; Belderrain, T. R.; de Fremont, P.; Scott, N. M.; Nolan, S. P.; Requejo, M. M.; Perez, P. J. A Angew. Chem., Int. Ed., 2005, 44, 5284. b) Xu, G.; Zhu, C.; Gu, W.; Li, J.; Sun, J. Angew. Chem., Int. Ed., 2015, 54, 883. c) Barluenga, J.; Lonzi, G.; Tomas, M.; Lopez, L. A. Chem -Eur. J., 2013, 19, 1573. d) Briones, J. F.; Davies, H. M. L. J. Am. Chem. Soc., 2012, 134, 11916-11919. e) Pagar, V. V.; Jadhav, A. M., Liu, R.-S. J. Am. Chem. Soc., 2011, 133, 20728. f) Jadhav, A. M.; Pagar, V. V.; Liu, R.-S. Angew. Chem., Int. Ed., 2012, 51, 11809. g) Pagar, V. V.; Liu, R.-S. Angew. Chem., Int. Ed., 2015, 54, 4923.
17. For Au see: a) Yu, Z.; Ma B.; Chen, M.; Wu, H.-H.; Liu, L.; Zhang, J. J. Am. Chem. Soc., 2014, 136, 6904. b) Xi, Y.; Su, Y.; Yu, Z.; Dong, B.; McClain, E. J.; Lan, Y.; Shi, X. Angew. Chem., Int. Ed., 2014, 53, 9817. c) López, E.; Lonzi,G.; López, L. A. Organometallics, 2014, 33, 5924. d) Rivilla, I.; Gomez-Emeterio, ́ B. P.; Fructos, M. R.; Díaz-Requejo, M. M.; Perez, P. J. Organometallics, 2011, 30, 2855.
18. For Rh, Cu, Ag, Pd, see: a) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev., 2010, 110, 704. b) Davies, H. M. L.; Lian, Y.-J. Acc. Chem. Res. 2012, 45, 923. c) Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857. d) Díaz-Requejo, M. M.; Pérez, P. J. Chem. Rev. 2008, 108, 3379. e) Liu, Z.; Wang J. J. Org. Chem. 2013, 78, 10024. f) DeAngelis A., Shurtleff V. W., Dmitrenko, O.; Fox, J. M. J. Am. Chem.Soc. 2011, 133, 1650. g) Rosenfeld, M. J.; Shankar, B. K.; Shechter, H. J. Org.Chem. 1988, 53, 2699. h) Yadagiri, D.; Anbarasan, P. Org. Lett. 2014, 16, 2510. i) Chan, W.-W.; Lo, S.-F.; Zhou, Z.; Yu, W.-Y. J. Am. Chem. Soc. 2012, 134, 13565. j) Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 5364.
19. For Cu see: a) Maier, T. C.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 4594-4595. b) Zhu, C. S.-F.; Liu, B.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 12616. For Pd see: c) Xie, X.-L.; Zhu, S.-F.; Guo, J.-X.; Cai, Y.; Zhou, Q.-L. Angew. Chem. Int. Ed., 2014, 53, 2978.
20. a) Guo, X.; Hu, W.-H. Acc. Chem. Res., 2013, 46, 2427. b) Qiu, H.; Li, M.; Jiang, L.-Q.; Lv, F.-P.; Zan, L.; Zhai, C.-W.; Doyle, M. P.; Hu, W.-H. Nat. Chem., 2012, 4, 733-738. c) Guan, X.; Yang, L.; Hu, W.-H. Angew. Chem., Int. Ed., 2010, 49, 2190. d) Jing, C.-C.; Xing, D.; Hu, W.-H. Org. Lett., 2015, 17, 4336. e) Jiang, J.; Ma, X.-C.; Liu, S.-Y.; Qian, Y.; Li, F.-P.; Qiu, L.; Wu, X.; Hu, W.-H. Chem. Commun., 2013, 49, 4238.
21. Metal carbenes as dication synthons were previously reported in a stoichiometric fashion whereas this system is performed catalytically. See Liang, K.-W.; Li, W.-T.; Lee, G.-H.; Peng, S.-M.; Liu, R.-S. J. Am. Chem. Soc., 1997, 119, 4404.
22. See selected reviews: a) Yeung, C. S.; Dong, V. M. Chem. Rev., 2011, 111, 1215. b) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev., 2011, 111, 1780. c) Hussain, I.; Singh, T. Adv. Synth. Catal., 2014, 356, 1661-1696. d) Kuhl, N.; Hopkinson M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem. Int. Ed., 2012, 51, 10236. e) Ashenhurst, J. AChem. Soc. Rev.,2010,39, 540.
23. a) Christ, P.; Lindsay, A. G.; Vormittag, S. S.; Neudçrfl, J.-M.; Berkessel, A.; and C. O’Donoghue, M-A. Chem. Eur. J. 2011, 17, 8524. b) Kather, R.; Rychagova, E.; Camacho, P.-S.; Ashbrook, S. E.; Woollins, J. D.; Robben, L.; Lork, E.; Ketkov S. and Beckmann J. Chem. Commun., 2016, 52, 10992.
24. Crystallographic data of compound 3-4b and 3-4’’ was deposited in Cambridge Crystallographic Data Centre: (3-4b)-CCDC: 2009271, (3-4’’)-CCDC: 2009271.
25. Heckrodt, T. J.; Chen,Y.; Singh, Rajinder. Tetrahedron., 2019, 75, 2385.
26. a) Maity, S.; Das, D.; Sarkar, S. and Samanta, R. Org. Lett. 2018, 20, 5167. b) Wang, Q.; Yang, J.; Zheng, Y.; and Liao, X. J. Chem. Res., 2017, 41, 193.
27. a) Singh, R. R.; Liu, R.-S. Chem. Commun., 2017, 53, 4593. b) Keipour, H.; Ollevier, T. Org. Lett. 2017, 19, 5736. c) Denton, J. R.; Davies, H. M. L. Org. Lett. 2009, 11, 787. d) Duplais, C.; Bures, F.; Sapountzis, I.; Korn, T. J.; Cahiez, G.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43, 2968.
28. a) Yang, Q.; Lei, X.; Yin, Z.; Deng, Z.; Peng, Y. Synthesis, 2019, 51, 538. b) Gooßen, L. J.; Paetzold, J.; rBriel, O.; Rivas-Nass, A.; Karch, R.; Kayser, B. Synlett, 2005, 2, 0275.

References for Chapter 4
1. For recent reviews, see: a) Jimenez-Nunez, E.; Echavarren, A. M.; Chem. Commun., 2007, 333; b) Hashmi, A. S. K.; Hutchings, G. J.; Angew. Chem. Int. Ed. 2006, 45, 7896; c) Hoffmann-Roder, A.; Krause, N.; Org. Biomol. Chem. 2005, 3, 387.
2. For selected examples, see: a) Manning, J. R.; Davies, H. M.; J. Am. Chem. Soc. 2008, 130, 8602; b) Coffman, K. C.; Palazzo, T. A.; Hartley, T. P.; Fettinger, J. C.; Tantillo, D. J.; Kurth, M. J.; Org. Lett. 2013, 15, 2062; c) Zhou, A. H.; He, Q.; Shu, C.; Yu, Y. F.; Liu, S.; Zhao, T.; Zhang, W.; Lu, X.; Ye, L.-W. Chem. Sci. 2015, 6, 1265; d) Kawai, H.; Tachi, K.; Tokunaga, E.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2011, 50, 7803; e) Liu, X. L.; Han, W. Y.; Zhang, X. M.; Yuan, W. C. Org. Lett. 2013, 15, 1246; f) Takikawa, H.; Takada, A.; Hikita, K.; Suzuki, K. Angew. Chem. Int. Ed. 2008, 47, 7446; g) Lei, X.; Gao, M.; Tang, Y. Org. Lett. 2016, 18, 4990; h) Galenko, E. E.; Galenko, A. V.; Khlebnikov, A. F.; Novikov, M. S. RSC Adv. 2015, 5, 18172; i) Pusch, S.; Opatz, T. Org. Lett. 2014, 16, 5430.
3. See selected review for gold-catalyzed N-oxide reactions: a) Zhang, L. Acc. Chem. Res. 2014, 47, 877; b) Yeom, H.-S.; Shin, S. Acc. Chem. Res. 2014, 47, 966; c) Zheng, Z.; Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev., 2016, 45, 4448; d) Harris, R. J.; Widenhoefer, R. A. Chem. Soc. Rev., 2016, 45, 4533.
4. a) Pinho e Melo, T. M. V. Curr. Org. Chem. 2005, 9, 925; b) Iddon, B. Heterocycles 1994, 37, 1263; c) Pace, A.; Buscemi, S.; Vivona, N. Org. Prep. Proc. 2007, 39, 1; d) Hamama, W. S.; Ibrahim, M. E.; Zoorob, H. H. Synth. Commun. 2013, 43, 2393; e) Heaney, F. Eur. J. Org. Chem. 2012, 3043; f) Patil, N. T.; Yamamoto,Y. Chem. Rev. 2008, 108, 3395; g) Lu, T.; Hu, F. Synthesis 2012, 44, 2805; h) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084; i) Pinho e Melo, T. M. V. D. Eur. J. Org. Chem. 2010, 3363.
5. Baschieri, A.; Bernardi, L.; Ricci, A.; Suresh, S.; Adamo, M. F. A. Angew. Chem. Int. Ed. 2009, 48, 9342.
6. Fiandra, C. Del; Piras, L.; Fini, F.; Disetti, P.; Moccia, M.; Adamo, M. F. A. Chem. Commun. 2012, 48, 3863.
7. Adamo, M. F. A.; Nagabelli, M. Org. Lett. 2008, 10, 1807.
8. see [2d]; For trifluoromethylation of isoxazole triflones, see: b) Kawai, H.; Sugita, Y.; Tokunaga, E.; Sato, H.; Shiro, M.; Shibata, N. Chemistry Open .2014, 3, 14.
9. Lei, X.; Li, L.; He, Y.-P.; Tang, Y. Org. Lett. 2015, 17, 5224.
10. Manning, J. R.; Davies, H. M. L. Tetrahedron, 2008, 64, 6901.
11. Shen, W.-B.; Xiao, X.-Y.; Sun, Q.; Zhou, B.; Zhu, X.-Q.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Angew. Chem. Int. Ed. 2017, 56, 605.
12. a) Martinez-Farina, C. F.; Jakeman, D. L. Chem. Commun. 2015, 51, 14617; b) Martnez, W. R.; Milito, G. C. G.; da Silva, T. G.; Silva, R. O.; Menezes, P. H. RSC Adv. 2014, 4, 14715; c) Shah, F.; Mukherjee, P.; Gut, J.; Legac, J.; Rosenthal, P. J.; Tekwani, B. L.; Avery, M. A. J. Chem. Inf. Model. 2011, 51, 852; d) Mueller, R.; Rodriguez, A. L.; Dawson, E. S.; Butkiewicz, M. T.; Nguyen, T.; Oleszkiewicz, S.; Bleckmann, A.; Weaver, C. D.; Lindsley, C.W.; Conn, P. J.; Meiler, J. ACS Chem. Neurosci. 2010, 1, 288.
13. a) Hashmi, A. S. K., Rudolph, M.; Weyrauch, J. P.; Wölfle, M.; Frey, W.; Bats, J. W. Angew. Chem., Int. Ed., 2005, 44, 2798; b) Martín-Matute, B.; Nevado, C. D.; Cárdenas, J.; Echavarren, A. M. J. Am. Chem. Soc., 2003, 125, 5757.
14. Kardile, R. D.; Kale, B. S.; Sharma, P.; Liu, R.-S. Org. Lett. 2018, 20, 3806.
15. Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed. 2017, 56, 1026.
16. a) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028; b) Llpez, F.; MascareÇas, J. L. Beilstein J. Org. Chem. 2011, 7, 1075; c) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180; d) Muratore, M. E.; Homs, A.; Obradors, C.; Echavarren, A. M. Chem. Asian J. 2014, 9, 3066; e) Qian, D.; Zhang, J. Chem. Rec. 2014, 14, 280.
17. For bioactive molecules containing pyrrole cores, see: a) Estvez, V.; Villacampa, M.; Menndez, J. C. Chem. Soc. Rev. 2014, 43, 4633; b) Baumann, M.; Baxendale, I. R.; Ley, S. V.; Nikbin, N. Beilstein J. Org. Chem. 2011, 7, 442; c) Carson, J. R.; Carmosin, R. J.; Pitis, P. M.; Vaught, J. L.; Almond, H. R.; Stables, J. P.; Wolf, H. H.; Swinyard, E. A.; White, H. S. J. Med. Chem. 1997, 40, 1578.
18. For bioactive molecules containing imidazo[1,2-a] pyridine cores, see: a) Langer, S. Z.; Arbilla, S.; Benavides, J.; Scatton, B. Adv. Biochem. Psychopharmacol. 1990, 46, 61; b) Boerner, R. J.; Moller, H. J. Psychopharmakother. 1997, 4, 145; c) Gudmundsson, K.; Boggs, S. D. PCT Int. Appl. WO2006026703, 2006.
19. For a 1,5-acyl shift, see: a) Rao, W.; Koh, M.; Kothandaraman, J. P.; Chan, P. W. H. J. Am. Chem. Soc. 2012, 134, 10811; b) Leboeuf, D.; Simonneau, A.; Aubert, C.; Malacria, M.; Gandon, V.; Fensterbank, L. Angew. Chem. Int. Ed. 2011, 50, 6868; c) Rao, W.; Koh, M. J.; Chan, P. W. H. J. Org. Chem. 2013, 78, 3183.
20. Huguet, N.; Leboeuf, D.; Echavarren, A. M. Chem. Eur. J. 2013, 19, 6581.
21. a) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348; b) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028; c) Llpez, F.; MascareÇas, J. L.; Beilstein, J. Org. Chem. 2011, 7, 1075; d) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.
22. Hashmi, A. S. K.; Carmen Blanco, M.; Kurpejovic, E.; Frey, W.; Bats, J. W. Adv. Synth. Catal. 2006, 348, 709.
23. Crystallographic data of compound 3-4b and 3-4’’ was deposited in Cambridge Crystallographic Data Centre: (3-4b)-CCDC: 2009271, (3-4’’)-CCDC: 2009271.
24. Karad, S. N.; Chung, W.-K. and Liu, R.-S. Chem. Commun., 2015, 51, 13004.
25. Kitamura, C.; Abe, Y.; Ohara, T.; Yoneda, A.; Kawase, T.; Kobayashi, T.; Naito, H.; Komatsu, T.; Chem. Eur. J., 2010, 16, 890.
26. Griesbeck, A. G.; Franke, M.; Neudorfl, J.; Kotaka, H. Beilstein J. Org. Chem. 2011, 7, 127.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top