|
1. Tsong, T.Y., Detection of three kinetic phases in the thermal unfolding of ferricytochrome c. Biochemistry, 1973. 12(12): p. 2209-14. 2. Brandts, J.F., H.R. Halvorson, and M. Brennan, Consideration of the Possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry, 1975. 14(22): p. 4953-63. 3. Fischer, G., H. Bang, and C. Mech, [Determination of enzymatic catalysis for the cis-trans-isomerization of peptide binding in proline-containing peptides]. Biomed Biochim Acta, 1984. 43(10): p. 1101-11. 4. Fischer, G., et al., Conformational specificity of chymotrypsin toward proline-containing substrates. Biochim Biophys Acta, 1984. 791(1): p. 87-97. 5. Fischer, G. and H. Bang, The refolding of urea-denatured ribonuclease A is catalyzed by peptidyl-prolyl cis-trans isomerase. Biochim Biophys Acta, 1985. 828(1): p. 39-42. 6. Lang, K., F.X. Schmid, and G. Fischer, Catalysis of protein folding by prolyl isomerase. Nature, 1987. 329(6136): p. 268-70. 7. Fischer, G. and F.X. Schmid, The mechanism of protein folding. Implications of in vitro refolding models for de novo protein folding and translocation in the cell. Biochemistry, 1990. 29(9): p. 2205-12. 8. Ünal, C.M. and M. Steinert, Microbial Peptidyl-Prolyl cis/trans Isomerases (PPIases): Virulence Factors and Potential Alternative Drug Targets. Microbiology and Molecular Biology Reviews, 2014. 78(3): p. 544-571. 9. Fischer, G., et al., Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature, 1989. 337(6206): p. 476-8. 10. Takahashi, N., T. Hayano, and M. Suzuki, Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature, 1989. 337(6206): p. 473-5. 11. Handschumacher, R.E., et al., Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science, 1984. 226(4674): p. 544-7. 12. Harding, M.W., R.E. Handschumacher, and D.W. Speicher, Isolation and amino acid sequence of cyclophilin. J Biol Chem, 1986. 261(18): p. 8547-55. 13. Harding, M.W., et al., A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature, 1989. 341(6244): p. 758-60. 14. Siekierka, J.J., et al., A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature, 1989. 341(6244): p. 755-7. 15. Rahfeld, J.U., et al., A novel peptidyl-prolyl cis/trans isomerase from Escherichia coli. FEBS Lett, 1994. 343(1): p. 65-9. 16. Rahfeld, J.U., et al., Confirmation of the existence of a third family among peptidyl-prolyl cis/trans isomerases. Amino acid sequence and recombinant production of parvulin. FEBS Lett, 1994. 352(2): p. 180-4. 17. Scholz, C., et al., Catalysis of protein folding by parvulin. J Mol Biol, 1997. 273(3): p. 752-62. 18. Hennig, L., et al., Selective inactivation of parvulin-like peptidyl-prolyl cis/trans isomerases by juglone. Biochemistry, 1998. 37(17): p. 5953-60. 19. Timerman, A.P., et al., Characterization of an exchange reaction between soluble FKBP-12 and the FKBP.ryanodine receptor complex. Modulation by FKBP mutants deficient in peptidyl-prolyl isomerase activity. J Biol Chem, 1995. 270(6): p. 2451-9. 20. Behrens, S., et al., The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. Embo j, 2001. 20(1-2): p. 285-94. 21. Kramer, G., et al., Trigger factor peptidyl-prolyl cis/trans isomerase activity is not essential for the folding of cytosolic proteins in Escherichia coli. J Biol Chem, 2004. 279(14): p. 14165-70. 22. Wang, P. and J. Heitman, The cyclophilins. Genome Biol, 2005. 6(7): p. 226. 23. Galat, A., Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity--targets--functions. Curr Top Med Chem, 2003. 3(12): p. 1315-47. 24. Waldmeier, P.C., et al., Cyclophilin D as a drug target. Curr Med Chem, 2003. 10(16): p. 1485-506. 25. Liu, J., et al., Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell, 1991. 66(4): p. 807-15. 26. Foor, F., et al., Calcineurin mediates inhibition by FK506 and cyclosporin of recovery from alpha-factor arrest in yeast. Nature, 1992. 360(6405): p. 682-4. 27. Rycyzyn, M.A. and C.V. Clevenger, The intranuclear prolactin/cyclophilin B complex as a transcriptional inducer. Proc Natl Acad Sci U S A, 2002. 99(10): p. 6790-5. 28. Stamnes, M.A., et al., The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of Drosophila rhodopsins. Cell, 1991. 65(2): p. 219-27. 29. Amanakis, G. and E. Murphy, Cyclophilin D: An Integrator of Mitochondrial Function. Frontiers in physiology, 2020. 11: p. 595-595. 30. Mi, H., et al., A nuclear RNA-binding cyclophilin in human T cells. FEBS Lett, 1996. 398(2-3): p. 201-5. 31. Leverson, J.D. and S.A. Ness, Point mutations in v-Myb disrupt a cyclophilin-catalyzed negative regulatory mechanism. Mol Cell, 1998. 1(2): p. 203-11. 32. Anderson, S.K., et al., A cyclophilin-related protein involved in the function of natural killer cells. Proc Natl Acad Sci U S A, 1993. 90(2): p. 542-6. 33. Dornan, J., P. Taylor, and M.D. Walkinshaw, Structures of immunophilins and their ligand complexes. Curr Top Med Chem, 2003. 3(12): p. 1392-409. 34. Andreeva, L., R. Heads, and C.J. Green, Cyclophilins and their possible role in the stress response. Int J Exp Pathol, 1999. 80(6): p. 305-15. 35. Hamilton, G.S. and J.P. Steiner, Immunophilins: beyond immunosuppression. J Med Chem, 1998. 41(26): p. 5119-43. 36. Ryffel, B., et al., Distribution of the cyclosporine binding protein cyclophilin in human tissues. Immunology, 1991. 72(3): p. 399-404. 37. Sherry, B., et al., Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages. Proc Natl Acad Sci U S A, 1992. 89(8): p. 3511-5. 38. Mikol, V., et al., X-ray structure of a monomeric cyclophilin A-cyclosporin A crystal complex at 2.1 A resolution. J Mol Biol, 1993. 234(4): p. 1119-30. 39. Peterson, M.R., et al., The three-dimensional structure of a Plasmodium falciparum cyclophilin in complex with the potent anti-malarial cyclosporin A. J Mol Biol, 2000. 298(1): p. 123-33. 40. Liu, J., et al., Inhibition of T cell signaling by immunophilin-ligand complexes correlates with loss of calcineurin phosphatase activity. Biochemistry, 1992. 31(16): p. 3896-901. 41. Breuder, T., et al., Calcineurin is essential in cyclosporin A- and FK506-sensitive yeast strains. Proc Natl Acad Sci U S A, 1994. 91(12): p. 5372-6. 42. O'Keefe, S.J., et al., FK-506- and CsA-sensitive activation of the interleukin-2 promoter by calcineurin. Nature, 1992. 357(6380): p. 692-4. 43. Mikol, V., J. Kallen, and M.D. Walkinshaw, X-ray structure of a cyclophilin B/cyclosporin complex: comparison with cyclophilin A and delineation of its calcineurin-binding domain. Proc Natl Acad Sci U S A, 1994. 91(11): p. 5183-6. 44. Ke, H., et al., Crystal structure of murine cyclophilin C complexed with immunosuppressive drug cyclosporin A. Proc Natl Acad Sci U S A, 1993. 90(24): p. 11850-4. 45. Taylor, P., et al., Two structures of cyclophilin 40: folding and fidelity in the TPR domains. Structure, 2001. 9(5): p. 431-8. 46. Nigro, P., G. Pompilio, and M.C. Capogrossi, Cyclophilin A: a key player for human disease. Cell Death Dis, 2013. 4(10): p. e888. 47. Lee, J. and S.S. Kim, An overview of cyclophilins in human cancers. J Int Med Res, 2010. 38(5): p. 1561-74. 48. Lee, J. and S.S. Kim, Current implications of cyclophilins in human cancers. Journal of experimental & clinical cancer research : CR, 2010. 29(1): p. 97-97. 49. Obchoei, S., et al., Cyclophilin A enhances cell proliferation and tumor growth of liver fluke-associated cholangiocarcinoma. Mol Cancer, 2011. 10: p. 102. 50. Obchoei, S., et al., Cyclophilin A: potential functions and therapeutic target for human cancer. Med Sci Monit, 2009. 15(11): p. Ra221-32. 51. Satoh, K., et al., Cyclophilin A mediates vascular remodeling by promoting inflammation and vascular smooth muscle cell proliferation. Circulation, 2008. 117(24): p. 3088-98. 52. Yoo, S., et al., Molecular recognition in the HIV-1 capsid/cyclophilin A complex. J Mol Biol, 1997. 269(5): p. 780-95. 53. Gamble, T.R., et al., Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell, 1996. 87(7): p. 1285-94. 54. Dietrich, L., et al., Structural consequences of cyclophilin A binding on maturational refolding in human immunodeficiency virus type 1 capsid protein. Journal of virology, 2001. 75(10): p. 4721-4733. 55. Liu, X., Z. Zhao, and W. Liu, Insights into the roles of cyclophilin A during influenza virus infection. Viruses, 2013. 5(1): p. 182-191. 56. Liu, X., et al., Cyclophilin A restricts influenza A virus replication through degradation of the M1 protein. PLoS One, 2012. 7(2): p. e31063. 57. Liu, X., Z. Zhao, and W. Liu, Insights into the roles of cyclophilin A during influenza virus infection. Viruses, 2013. 5(1): p. 182-91. 58. Su, H. and Y. Yang, The roles of CyPA and CD147 in cardiac remodelling. Exp Mol Pathol, 2018. 104(3): p. 222-226. 59. Pfefferle, S., et al., The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog, 2011. 7(10): p. e1002331. 60. Beri, D., et al., Demonstration and Characterization of Cyst-Like Structures in the Life Cycle of Trichomonas vaginalis. Front Cell Infect Microbiol, 2019. 9: p. 430. 61. Mielczarek, E. and J. Blaszkowska, Trichomonas vaginalis: pathogenicity and potential role in human reproductive failure. Infection, 2016. 44(4): p. 447-58. 62. Petrin, D., et al., Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev, 1998. 11(2): p. 300-17. 63. Pereira-Neves, A., K.C. Ribeiro, and M. Benchimol, Pseudocysts in trichomonads--new insights. Protist, 2003. 154(3-4): p. 313-29. 64. Van Der Pol, B., Trichomonas vaginalis Infection: The Most Prevalent Nonviral Sexually Transmitted Infection Receives the Least Public Health Attention. Clinical Infectious Diseases, 2007. 44(1): p. 23-25. 65. McClelland, R.S., et al., Infection with Trichomonas vaginalis increases the risk of HIV-1 acquisition. J Infect Dis, 2007. 195(5): p. 698-702. 66. Ghosh, I., et al., Association between high risk human papillomavirus infection and co-infection with Candida spp. and Trichomonas vaginalis in women with cervical premalignant and malignant lesions. J Clin Virol, 2017. 87: p. 43-48. 67. Gimenes, F., et al., Male infertility: a public health issue caused by sexually transmitted pathogens. Nat Rev Urol, 2014. 11(12): p. 672-87. 68. Stark, J.R., et al., Prospective study of Trichomonas vaginalis infection and prostate cancer incidence and mortality: Physicians' Health Study. J Natl Cancer Inst, 2009. 101(20): p. 1406-11. 69. Dornan, J., et al., Biochemical and structural characterization of a divergent loop cyclophilin from Caenorhabditis elegans. J Biol Chem, 1999. 274(49): p. 34877-83. 70. Martin, T., et al., Structural basis of interaction between dimeric cyclophilin 1 and Myb1 transcription factor in Trichomonas vaginalis. Sci Rep, 2018. 8(1): p. 5410. 71. Chu, C.H., et al., Membrane localization of a Myb3 transcription factor regulated by a TvCyP1 cyclophilin in the parasitic protozoan Trichomonas vaginalis. FEBS J, 2018. 285(5): p. 929-946. 72. Hsu, H.M., et al., Endomembrane Protein Trafficking Regulated by a TvCyP2 Cyclophilin in the Protozoan Parasite, Trichomonas vaginalis. Sci Rep, 2020. 10(1): p. 1275. 73. Oh, I.H. and E.P. Reddy, The myb gene family in cell growth, differentiation and apoptosis. Oncogene, 1999. 18(19): p. 3017-33. 74. Hsu, H.M., et al., Transcriptional regulation of an iron-inducible gene by differential and alternate promoter entries of multiple Myb proteins in the protozoan parasite Trichomonas vaginalis. Eukaryot Cell, 2009. 8(3): p. 362-72. 75. Lou, Y.C., et al., NMR structural analysis of DNA recognition by a novel Myb1 DNA-binding domain in the protozoan parasite Trichomonas vaginalis. Nucleic Acids Res, 2009. 37(7): p. 2381-94. 76. Wei, S.Y., et al., Structure of the Trichomonas vaginalis Myb3 DNA-binding domain bound to a promoter sequence reveals a unique C-terminal β-hairpin conformation. Nucleic Acids Res, 2012. 40(1): p. 449-60. 77. Wei, S.Y., et al., Structure of the Trichomonas vaginalis Myb3 DNA-binding domain bound to a promoter sequence reveals a unique C-terminal beta-hairpin conformation. Nucleic Acids Res, 2012. 40(1): p. 449-60. 78. McPherson, A., Current approaches to macromolecular crystallization. Eur J Biochem, 1990. 189(1): p. 1-23. 79. Otwinowski, Z. and W. Minor, [20] Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol, 1997. 276: p. 307-326. 80. McCoy, A.J., et al., Phaser crystallographic software. Journal of Applied Crystallography, 2007. 40(4): p. 658-674. 81. Emsley, P., et al., Features and development of Coot. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 4): p. 486-501. 82. Zwart, P.H., et al., Automated structure solution with the PHENIX suite. Methods Mol Biol, 2008. 426: p. 419-35. 83. Adams, P.D., et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 2): p. 213-21. 84. Laskowski, R.A., et al., PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 1993. 26(2): p. 283-291. 85. Chen, V.B., et al., MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D, 2010. 66(1): p. 12-21. 86. Martin, T., et al., (1)H, (13)C and (15)N resonance assignments and secondary structures of cyclophilin 2 from Trichomonas vaginalis. Biomol NMR Assign, 2018. 12(1): p. 27-30. 87. Johnson, B.A. and R.A. Blevins, NMR View: A computer program for the visualization and analysis of NMR data. J Biomol NMR, 1994. 4(5): p. 603-14. 88. Aryal, S., et al., N-Terminal Segment of TvCyP2 Cyclophilin from Trichomonas vaginalis Is Involved in Self-Association, Membrane Interaction, and Subcellular Localization. Biomolecules, 2020. 10(9). 89. Davis, T.L., et al., The crystal structure of human WD40 repeat-containing peptidylprolyl isomerase (PPWD1). Febs j, 2008. 275(9): p. 2283-95. 90. Reidt, U., et al., Crystal structure of a complex between human spliceosomal cyclophilin H and a U4/U6 snRNP-60K peptide. J Mol Biol, 2003. 331(1): p. 45-56. 91. Rajiv, C. and T.L. Davis, Structural and Functional Insights into Human Nuclear Cyclophilins. Biomolecules, 2018. 8(4). 92. Mentel, M., et al., Protein import into hydrogenosomes of Trichomonas vaginalis involves both N-terminal and internal targeting signals: a case study of thioredoxin reductases. Eukaryot Cell, 2008. 7(10): p. 1750-7. 93. Saleh, T., et al., Cyclophilin A promotes cell migration via the Abl-Crk signaling pathway. Nat Chem Biol, 2016. 12(2): p. 117-23. 94. Cardenas, M.E., D. Zhu, and J. Heitman, Molecular mechanisms of immunosuppression by cyclosporine, FK506, and rapamycin. Curr Opin Nephrol Hypertens, 1995. 4(6): p. 472-7. 95. Chu, C.-H., et al., A Highly Organized Structure Mediating Nuclear Localization of a Myb2 Transcription Factor in the Protozoan Parasite Trichomonas vaginalis. Eukaryotic Cell, 2011. 10(12): p. 1607-1617.
|