|
[1] M. A.Meyers, P. Y.Chen, A. Y. M.Lin, andY.Seki, “Biological materials: Structure and mechanical properties,” Prog. Mater. Sci., vol. 53, no. 1, pp. 1–206, 2008, doi: 10.1016/j.pmatsci.2007.05.002. [2] H. D.Espinosa, J. E.Rim, F.Barthelat, andM. J.Buehler, “Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials,” Prog. Mater. Sci., vol. 54, no. 8, pp. 1059–1100, 2009, doi: 10.1016/j.pmatsci.2009.05.001. [3] S. E.Naleway, M. M.Porter, J.McKittrick, andM. A.Meyers, “Structural Design Elements in Biological Materials: Application to Bioinspiration,” Adv. Mater., vol. 27, no. 37, pp. 5455–5476, 2015, doi: 10.1002/adma.201502403. [4] Y.Bouligand, “Twisted fibrous arrangements in biological materials and cholesteric mesophases,” Tissue Cell, vol. 4, no. 2, pp. 189–217, 1972, doi: 10.1016/S0040-8166(72)80042-9. [5] K.Wu et al., “Discontinuous fibrous Bouligand architecture enabling formidable fracture resistance with crack orientation insensitivity,” Proc. Natl. Acad. Sci. U. S. A., vol. 117, no. 27, pp. 15465–15472, 2020, doi: 10.1073/pnas.2000639117. [6] E.Yamaguchi, “Finite element method,” Bridg. Eng. Handb. Fundam. Second Ed., pp. 225–251, 2014, doi: 10.1201/b15616. [7] J. C.Weaver et al., “The stomatopod dactyl club: A formidable damage-tolerant biological hammer,” Science (80-. )., vol. 336, no. 6086, pp. 1275–1280, 2012, doi: 10.1126/science.1218764. [8] E. A.Zimmermann et al., “Mechanical adaptability of the Bouligand-type structure in natural dermal armour,” Nat. Commun., vol. 4, no. May, pp. 1–7, 2013, doi: 10.1038/ncomms3634. [9] L.Kundanati, S.Signetti, H. S.Gupta, M.Menegon, andN. M.Pugno, “Multilayer stag beetle elytra perform better under external loading via nonsymmetric bending properties,” J. R. Soc. Interface, vol. 15, no. 144, 2018, doi: 10.1098/rsif.2018.0427. [10] H.Quan, W.Yang, E.Schaible, R. O.Ritchie, andM. A.Meyers, “Novel Defense Mechanisms in the Armor of the Scales of the ‘Living Fossil’ Coelacanth Fish,” Adv. Funct. Mater., vol. 28, no. 46, pp. 1–13, 2018, doi: 10.1002/adfm.201804237. [11] J. C.Weaver et al., “Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum,” J. Struct. Biol., vol. 158, no. 1, pp. 93–106, 2007, doi: 10.1016/j.jsb.2006.10.027. [12] M. A.Kasapi andJ. M.Gosline, “Micromechanics of the equine hoof wall: Optimizing crack control and material stiffness through modulation of the properties of keratin,” J. Exp. Biol., vol. 202, no. 4, pp. 337–391, 1999, doi: 10.1242/jeb.202.4.377. [13] W.Huang et al., “A natural energy absorbent polymer composite: The equine hoof wall,” Acta Biomater., vol. 90, pp. 267–277, 2019, doi: 10.1016/j.actbio.2019.04.003. [14] M. A.Kasapi andJ. M.Gosline, “Design complexity and fracture control in the equine hoof wall,” J. Exp. Biol., vol. 200, no. 11, pp. 1639–1659, 1997, doi: 10.1242/jeb.200.11.1639. [15] L.Tombolato, E. E.Novitskaya, P. Y.Chen, F. A.Sheppard, andJ.McKittrick, “Microstructure, elastic properties and deformation mechanisms of horn keratin,” Acta Biomater., vol. 6, no. 2, pp. 319–330, 2010, doi: 10.1016/j.actbio.2009.06.033. [16] N.Suksangpanya, N. A.Yaraghi, R. B.Pipes, D.Kisailus, andP.Zavattieri, “Crack twisting and toughening strategies in Bouligand architectures,” Int. J. Solids Struct., vol. 150, pp. 83–106, 2018, doi: 10.1016/j.ijsolstr.2018.06.004. [17] N. A.Yaraghi et al., “A Sinusoidally Architected Helicoidal Biocomposite,” Adv. Mater., vol. 28, no. 32, pp. 6835–6844, 2016, doi: 10.1002/adma.201600786. [18] Y.Yang et al., “Biomimetic Anisotropic Reinforcement Architectures by Electrically Assisted Nanocomposite 3D Printing,” Adv. Mater., vol. 29, no. 11, 2017, doi: 10.1002/adma.201605750. [19] S. R. G.Bates, I. R.Farrow, andR. S.Trask, “3D printed polyurethane honeycombs for repeated tailored energy absorption,” Mater. Des., vol. 112, pp. 172–183, 2016, doi: 10.1016/j.matdes.2016.08.062. [20] F. N.Habib, P.Iovenitti, S. H.Masood, andM.Nikzad, “In-plane energy absorption evaluation of 3D printed polymeric honeycombs,” Virtual Phys. Prototyp., vol. 12, no. 2, pp. 117–131, 2017, doi: 10.1080/17452759.2017.1291354. [21] S. R. G.Bates, I. R.Farrow, andR. S.Trask, “Compressive behaviour of 3D printed thermoplastic polyurethane honeycombs with graded densities,” Mater. Des., vol. 162, pp. 130–142, 2019, doi: 10.1016/j.matdes.2018.11.019. [22] O.Rahman andB.Koohbor, “Optimization of energy absorption performance of polymer honeycombs by density gradation,” Compos. Part C Open Access, vol. 3, no. August, p. 100052, 2020, doi: 10.1016/j.jcomc.2020.100052. [23] V. A.Lvov, F. S.Senatov, A. M.Korsunsky, andA. I.Salimon, “Design and mechanical properties of 3D-printed auxetic honeycomb structure,” Mater. Today Commun., vol. 24, p. 101173, 2020, doi: 10.1016/j.mtcomm.2020.101173. [24] A.Ingrole, A.Hao, andR.Liang, “Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement,” Mater. Des., vol. 117, pp. 72–83, 2017, doi: 10.1016/j.matdes.2016.12.067. [25] S. K.Maiti, L. J.Gibson, andM. F.Ashby, “Deformation and energy absorption diagrams for cellular solids,” Acta Metall., vol. 32, no. 11, pp. 1963–1975, 1984, doi: 10.1016/0001-6160(84)90177-9. [26] J.Miltz andO. R.Ramon, “Energy absorption characteristics of polymeric foams used as cushioning materials,” vol. 30, no. 2, pp. 129–133. [27] M.Avalle, G.Belingardi, andR.Montanini, “Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram,” Int. J. Impact Eng., vol. 25, no. 5, pp. 455–472, 2001, doi: 10.1016/S0734-743X(00)00060-9. [28] S. F.Fischer et al., “Pummelos as concept generators for biomimetically inspired low weight structures with excellent damping properties,” Adv. Eng. Mater., vol. 12, no. 12, pp. 658–663, 2010, doi: 10.1002/adem.201080065. [29] P. T.Martone et al., “Mechanics without Muscle: Biomechanical inspiration from the plant world,” Integr. Comp. Biol., vol. 50, no. 5, pp. 888–907, 2010, doi: 10.1093/icb/icq122. [30] J.Shen, Y.Min Xie, X.Huang, S.Zhou, andD.Ruan, “Mechanical properties of luffa sponge,” J. Mech. Behav. Biomed. Mater., vol. 15, pp. 141–152, 2012, doi: 10.1016/j.jmbbm.2012.07.004. [31] J.Shen, Y. M.Xie, X.Huang, S.Zhou, andD.Ruan, “Behaviour of luffa sponge material under dynamic loading,” Int. J. Impact Eng., vol. 57, pp. 17–26, 2013, doi: 10.1016/j.ijimpeng.2013.01.004. [32] A.Bührig-Polaczek et al., “Biomimetic cellular metals - Using hierarchical structuring for energy absorption,” Bioinspiration and Biomimetics, vol. 11, no. 4, 2016, doi: 10.1088/1748-3190/11/4/045002. [33] X. T.Nguyen, S.Hou, T.Liu, andX.Han, “A potential natural energy absorption material – Coconut mesocarp: Part A: Experimental investigations on mechanical properties,” Int. J. Mech. Sci., vol. 115–116, pp. 564–573, 2016, doi: 10.1016/j.ijmecsci.2016.07.017. [34] J.Chen andG.Wu, “Beetle forewings: Epitome of the optimal design for lightweight composite materials,” Carbohydr. Polym., vol. 91, no. 2, pp. 659–665, 2013, doi: 10.1016/j.carbpol.2012.08.061. [35] J.Chen, Q. Q.Ni, Y.Xu, andM.Iwamoto, “Lightweight composite structures in the forewings of beetles,” Compos. Struct., vol. 79, no. 3, pp. 331–337, 2007, doi: 10.1016/j.compstruct.2006.01.010. [36] E.Farber, “The Development of Metal Honeycomb Energy-Absorbing Elements,” Chymia, vol. 8, pp. 165–180, 1962, doi: 10.2307/27757223. [37] S. D.Papka andS.Kyriakides, “In-plane biaxial crushing of honeycombs - : Part II: Analysis,” Int. J. Solids Struct., vol. 36, no. 29, pp. 4397–4423, 1999, doi: 10.1016/S0020-7683(98)00225-X. [38] S. D.Papka andS.Kyriakides, “Biaxial crushing of honeycombs Part I : Experiments,” Int. J. Solids Struct., vol. 36, pp. 4367–4396, 1999. [39] H.Fan, Y.Luo, F.Yang, andW.Li, “Approaching perfect energy absorption through structural hierarchy,” Int. J. Eng. Sci., vol. 130, pp. 12–32, 2018, doi: 10.1016/j.ijengsci.2018.05.005. [40] Q.Zhang et al., “Bioinspired engineering of honeycomb structure - Using nature to inspire human innovation,” Prog. Mater. Sci., vol. 74, pp. 332–400, 2015, doi: 10.1016/j.pmatsci.2015.05.001. [41] Z.Li, D.Liu, Y.Qian, Y.Wang, T.Wang, andL.Wang, “Enhanced strength and weakened dynamic sensitivity of honeycombs by parallel design,” Int. J. Mech. Sci., vol. 151, no. December 2018, pp. 672–683, 2019, doi: 10.1016/j.ijmecsci.2018.12.013. [42] W.Zhang, S.Yin, T. X.Yu, andJ.Xu, “Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb,” Int. J. Impact Eng., vol. 125, no. November 2018, pp. 163–172, 2019, doi: 10.1016/j.ijimpeng.2018.11.014. [43] F. N.Habib, P.Iovenitti, S. H.Masood, andM.Nikzad, “Cell geometry effect on in-plane energy absorption of periodic honeycomb structures,” Int. J. Adv. Manuf. Technol., vol. 94, no. 5–8, pp. 2369–2380, 2018, doi: 10.1007/s00170-017-1037-z. [44] J.Xiang andJ.Du, “Energy absorption characteristics of bio-inspired honeycomb structure under axial impact loading,” Mater. Sci. Eng. A, vol. 696, no. March, pp. 283–289, 2017, doi: 10.1016/j.msea.2017.04.044. [45] P.Hao andJ.Du, “Energy absorption characteristics of bio-inspired honeycomb column thin-walled structure under impact loading,” J. Mech. Behav. Biomed. Mater., vol. 79, pp. 301–308, 2018, doi: 10.1016/j.jmbbm.2018.01.001. [46] J.Xiang, J.Du, D.Li, andF.Scarpa, “Numerical analysis of the impact resistance in aluminum alloy bi-tubular thin-walled structures designs inspired by beetle elytra,” J. Mater. Sci., vol. 52, no. 22, pp. 13247–13260, 2017, doi: 10.1007/s10853-017-1420-z. [47] X.Yu, L.Pan, J.Chen, X.Zhang, andP.Wei, “Experimental and numerical study on the energy absorption abilities of trabecular–honeycomb biomimetic structures inspired by beetle elytra,” J. Mater. Sci., vol. 54, no. 3, pp. 2193–2204, 2019, doi: 10.1007/s10853-018-2958-0. [48] L.Zhang, Z.Bai, andF.Bai, “Crashworthiness design for bio-inspired multi-cell tubes with quadrilateral, hexagonal and octagonal sections,” Thin-Walled Struct., vol. 122, no. June 2017, pp. 42–51, 2018, doi: 10.1016/j.tws.2017.10.010. [49] R.Lakes, N.Variability, A.Physcss, W.Meteorolgica, andO.Symposium, “Foam structures with a negative Poisson’s ratio,” Science (80-. )., vol. 235, no. 1987, pp. 1038–1041, 1987. [50] K. E. Evans, “Molecular network design,” vol. 353, no. September, p. 10065, 1991. [51] M.Sanami, N.Ravirala, K.Alderson, andA.Alderson, “Auxetic materials for sports applications,” Procedia Eng., vol. 72, pp. 453–458, 2014, doi: 10.1016/j.proeng.2014.06.079. [52] Y.Wang, W.Zhao, G.Zhou, Q.Gao, andC.Wang, “Optimization of an auxetic jounce bumper based on Gaussian process metamodel and series hybrid GA-SQP algorithm,” Struct. Multidiscip. Optim., vol. 57, no. 6, pp. 2515–2525, 2018, doi: 10.1007/s00158-017-1869-z. [53] Y. C.Wang andR.Lakes, “Analytical parametric analysis of the contact problem of human buttocks and negative Poisson’s ratio foam cushions,” Int. J. Solids Struct., vol. 39, no. 18, pp. 4825–4838, 2002, doi: 10.1016/S0020-7683(02)00379-7. [54] M.Janus-Michalska, D.Jasińska, andJ.Smardzewski, “Comparison of Contact Stress Distribution for Foam Seat and Seat of Auxetic Spring Skeleton,” Ijame, vol. 18, no. 1, pp. 55–72, 2013, doi: 10.2478/ijame-2013-0004. [55] Y. K.Gao, “Auxetic metamaterials and structures,” Cailiao Gongcheng/Journal Mater. Eng., vol. 49, no. 5, pp. 38–47, 2021, doi: 10.11868/j.issn.1001-4381.2019.000391. [56] D. T.Ho, C. T.Nguyen, S. Y.Kwon, andS. Y.Kim, “Auxeticity in Metals and Periodic Metallic Porous Structures Induced by Elastic Instabilities,” Phys. Status Solidi Basic Res., vol. 256, no. 1, pp. 1–7, 2019, doi: 10.1002/pssb.201800122. [57] C.Borcea andI.Streinu, “Geometric auxetics Subject Areas :,” Proc. R. Soc. A, vol. 471, 2015. [58] T.Mullin, S.Deschanel, K.Bertoldi, andM. C.Boyce, “Pattern transformation triggered by deformation,” Phys. Rev. Lett., vol. 99, no. 8, pp. 1–4, 2007, doi: 10.1103/PhysRevLett.99.084301. [59] K.Bertoldi, P. M.Reis, S.Willshaw, andT.Mullin, “Negative poisson’s ratio behavior induced by an elastic instability,” Adv. Mater., vol. 22, no. 3, pp. 361–366, 2010, doi: 10.1002/adma.200901956. [60] K.Bertoldi, M. C.Boyce, S.Deschanel, S. M.Prange, andT.Mullin, “Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures,” J. Mech. Phys. Solids, vol. 56, no. 8, pp. 2642–2668, 2008, doi: 10.1016/j.jmps.2008.03.006. [61] J. T. B.Overvelde, S.Shan, andK.Bertoldi, “Compaction through buckling in 2D periodic, soft and porous structures: Effect of pore shape,” Adv. Mater., vol. 24, no. 17, pp. 2337–2342, 2012, doi: 10.1002/adma.201104395. [62] F.Javid, J.Liu, J.Shim, J. C.Weaver, A.Shanian, andK.Bertoldi, “Mechanics of instability-induced pattern transformations in elastomeric porous cylinders,” J. Mech. Phys. Solids, vol. 96, pp. 1–17, 2016, doi: 10.1016/j.jmps.2016.06.015. [63] X.Ren, J.Shen, A.Ghaedizadeh, H.Tian, andY. M.Xie, “A simple auxetic tubular structure with tuneable mechanical properties,” Smart Mater. Struct., vol. 25, no. 6, pp. 1–9, 2016, doi: 10.1088/0964-1726/25/6/065012. [64] X.Ren, J.Shen, A.Ghaedizadeh, H.Tian, andY.Min Xie, “Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties,” Smart Mater. Struct., vol. 24, no. 9, 2015, doi: 10.1088/0964-1726/24/9/095016. [65] K.Bertoldi, “Harnessing Instabilities to Design Tunable Architected Cellular Materials,” Annu. Rev. Mater. Res., vol. 47, no. February, pp. 51–61, 2017, doi: 10.1146/annurev-matsci-070616-123908. [66] M. K.Ramasubramanian, O. M.Barham, andV.Swaminathan, “Mechanics of a mosquito bite with applications to microneedle design,” Bioinspiration and Biomimetics, vol. 3, no. 4, 2008, doi: 10.1088/1748-3182/3/4/046001. [67] J.Shim, C.Perdigou, E. R.Chen, K.Bertoldi, andP. M.Reis, “Buckling-induced encapsulation of structured elastic shells under pressure,” Proc. Natl. Acad. Sci. U. S. A., vol. 109, no. 16, pp. 5978–5983, 2012, doi: 10.1073/pnas.1115674109. [68] S.Daynes, A.Grisdale, A.Seddon, andR.Trask, “Morphing structures using soft polymers for active deployment,” Smart Mater. Struct., vol. 23, no. 1, 2014, doi: 10.1088/0964-1726/23/1/012001. [69] I.Ivañez, L. M.Fernandez-Cañadas, andS.Sanchez-Saez, “Compressive deformation and energy-absorption capability of aluminium honeycomb core,” Compos. Struct., vol. 174, pp. 123–133, 2017, doi: 10.1016/j.compstruct.2017.04.056. [70] Y.Guo et al., “Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load,” Aerosp. Sci. Technol., vol. 98, p. 105662, 2020, doi: 10.1016/j.ast.2019.105662. [71] S. R. G.Bates, I. R.Farrow, andR. S.Trask, “3D printed elastic honeycombs with graded density for tailorable energy absorption,” Act. Passiv. Smart Struct. Integr. Syst. 2016, vol. 9799, p. 979907, 2016, doi: 10.1117/12.2219322. [72] H. J.Qi andM. C.Boyce, “Stress-strain behavior of thermoplastic polyurethanes,” Mech. Mater., vol. 37, no. 8, pp. 817–839, 2005, doi: 10.1016/j.mechmat.2004.08.001.
|