跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 03:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳晏碩
研究生(外文):Chen, Yen-Shuo
論文名稱:仿生螺旋排列管狀結構之設計、製造、機械性質量測與模擬
論文名稱(外文):Design, Fabrication, Mechanical Testing, and Modeling of Bio-inspired, Helically Oriented Tubular Structures
指導教授:陳柏宇陳柏宇引用關係
指導教授(外文):Chen, Po-Yu
口試委員:陳俊杉游濟華
口試委員(外文):Chen, Chuin-ShanYu, Chi-Hua
口試日期:2021-10-07
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:151
中文關鍵詞:螺旋堆疊管狀結構輕量化仿生材料能量吸收有限元分析
外文關鍵詞:Helicoidal stackingTubular structureLightweightBio-inspired materialsEnergy absorptionFinite element analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
甲殼類和魚類經演化發展出具保護性之外骨骼和鱗片,而這些外骨骼和鱗片由幾丁質/蛋白質或膠原蛋白纖維組成,形成螺旋狀堆疊,被稱為螺旋層板結構。 螺旋層板結構已被廣泛了解與研究,並被認為是一種堅韌、耐衝擊的結構設計。另一方面,牙齒和馬蹄等生物材料為管狀結構所組成,其中有組織性的孔隙通過阻止周圍裂紋的生長提供優秀的抗衝擊性或抗穿刺性。此外,羊角中的小管在壓縮載荷下表現出卓越的能量吸收能力,以承受季節性打鬥中的衝擊力。由於大多數天然材料具有階層性和多功能性,因此不同結構設計的集成是不可避免的。
本研究設計了一種螺旋排列的管狀結構,其靈感來自螺旋層板結構的原纖維間基質,它結合了螺旋和管狀結構元素的特性。利用熔融沈積建模 (FDM) 製造三維實體,通過修改管狀結構相鄰層之間的旋轉角度,我們探討其能量吸收能力和變形行為,包括從負蒲松比性能到屈曲現象的過渡以及某些螺旋排列管狀結構的獨特螺旋狀屈曲機制。不同的旋轉角度造就了不同的機械性質;而繪製能量吸收圖得解釋螺旋排列管狀結構對抗特定能量的能力。在數值模擬上,我們利用有限元分析對螺旋排列管狀結構進行模擬,以闡明其於壓縮載荷下的變形行為和應力分佈。這種受自然啟發的輕量、吸能、可恢復的螺旋排列的管狀結構有望應用於工程領域。
Crustaceans and fishes have developed protective exoskeletons and scales assembled from chitin-protein or collagen fibrils which form helicoidal stacking, named Bouligand structure. The Bouligand structure has been widely recognized and studied and is considered as a tough, impact-resistant structural design. On the other hand, biological materials such as teeth and horse hooves consist of tubular structures where the organized porosities provide incredible impact- or pierce-resistance by arresting the surrounding crack growth. In addition, tubules in sheep horns exhibit great energy absorption ability under compressive loading in order to endure the impact force during seasonal fighting. Since most of the natural materials are hierarchical and multifunctional, integration of different structural designs is inevitable and essential.
In this study, we design a helically oriented tubular (HOT) structure inspired from the inter fibril matrix of the Bouligand structure, which combines the characteristic of helical and tubular structural design elements. Three-dimensional entities are fabricated through fused deposition modeling (FDM). By modifying rotation angles between adjacent layers of the tubular structure, we explore the energy absorption ability and the deformation behavior, including the transition from auxetic performance to buckling phenomenon and a unique helical-like buckling mechanism of certain HOT structures. Various rotation angles result in different mechanical properties; the energy absorption diagram is plotted to explain the ability of HOT structures against specific energy. Numerically, we perform simulation on the HOT structures by finite element analysis to elucidate the deformation behavior and the stress distribution under compressive loading. Such lightweight, energy absorbent, recoverable HOT structures inspired by nature can be applied in engineering fields.
Content I
Figure Caption III
Table Caption XVII
Chapter 1. Introduction 1
Chapter 2. Literature review 3
2.1 Structural Biological Materials 3
2.2 Additive Manufacturing of Bio-inspired Materials 10
2.3 Energy Absorption Ability of Biological and Bio-inspired Structures 13
2.4 Auxeticity & Buckling Induced by Instability 21
2.5 Finite Element Analysis in Energy Absorbers 26
Chapter 3. Experiment Method 30
3.1 Model designs of helically oriented tubular structures 30
3.2 Additive Manufacturing Process 34
3.3 Compression Test 37
3.4 Structural Observation by Laser Confocal Scanning Microscope 39
3.5 Finite Element Analysis 41
Chapter 4. Results & Discussion 45
4.1 Helically Oriented Tubular Structure with Cylindrical Geometry 46
4.1.1 Mechanical Properties and Deformation Behavior of the Helically Oriented Tubular Structures with Different Tubular Geometries 48
4.1.2 Mechanical Properties of the Helically Oriented Tubular Structures 53
4.1.3 Deformation Behavior of the Helically Oriented Tubular Structures 66
4.1.4 Finite Element Analysis on the Helically Oriented Tubular Structures 79
4.2 Helically Oriented Tubular Structure with Cubic Geometry 95
4.2.1 Mechanical Properties of the Cubic Helically Oriented Tubular Structures 96
4.2.2 Deformation Behavior of the Cubic Helically Oriented Tubular Structures 101
4.3 Cyclic tests on the Cylindrical Helically Oriented Tubular Structures 106
4.4 Strain Rate Dependence on the Helically Oriented Tubular Structures 115
4.5 Helically Oriented Tubular Structures with Different Amount of Layers 127
4.6 Summary: Design Principles and Optimization 134
Chapter 5. Conclusions 135
5.1 Helically Oriented Tubular Structure with Cylindrical Geometry 136
5.2 Helically Oriented Tubular Structure with Cubic Geometry 139
Chapter 6. Future Work 141
References 144
[1] M. A.Meyers, P. Y.Chen, A. Y. M.Lin, andY.Seki, “Biological materials: Structure and mechanical properties,” Prog. Mater. Sci., vol. 53, no. 1, pp. 1–206, 2008, doi: 10.1016/j.pmatsci.2007.05.002.
[2] H. D.Espinosa, J. E.Rim, F.Barthelat, andM. J.Buehler, “Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials,” Prog. Mater. Sci., vol. 54, no. 8, pp. 1059–1100, 2009, doi: 10.1016/j.pmatsci.2009.05.001.
[3] S. E.Naleway, M. M.Porter, J.McKittrick, andM. A.Meyers, “Structural Design Elements in Biological Materials: Application to Bioinspiration,” Adv. Mater., vol. 27, no. 37, pp. 5455–5476, 2015, doi: 10.1002/adma.201502403.
[4] Y.Bouligand, “Twisted fibrous arrangements in biological materials and cholesteric mesophases,” Tissue Cell, vol. 4, no. 2, pp. 189–217, 1972, doi: 10.1016/S0040-8166(72)80042-9.
[5] K.Wu et al., “Discontinuous fibrous Bouligand architecture enabling formidable fracture resistance with crack orientation insensitivity,” Proc. Natl. Acad. Sci. U. S. A., vol. 117, no. 27, pp. 15465–15472, 2020, doi: 10.1073/pnas.2000639117.
[6] E.Yamaguchi, “Finite element method,” Bridg. Eng. Handb. Fundam. Second Ed., pp. 225–251, 2014, doi: 10.1201/b15616.
[7] J. C.Weaver et al., “The stomatopod dactyl club: A formidable damage-tolerant biological hammer,” Science (80-. )., vol. 336, no. 6086, pp. 1275–1280, 2012, doi: 10.1126/science.1218764.
[8] E. A.Zimmermann et al., “Mechanical adaptability of the Bouligand-type structure in natural dermal armour,” Nat. Commun., vol. 4, no. May, pp. 1–7, 2013, doi: 10.1038/ncomms3634.
[9] L.Kundanati, S.Signetti, H. S.Gupta, M.Menegon, andN. M.Pugno, “Multilayer stag beetle elytra perform better under external loading via nonsymmetric bending properties,” J. R. Soc. Interface, vol. 15, no. 144, 2018, doi: 10.1098/rsif.2018.0427.
[10] H.Quan, W.Yang, E.Schaible, R. O.Ritchie, andM. A.Meyers, “Novel Defense Mechanisms in the Armor of the Scales of the ‘Living Fossil’ Coelacanth Fish,” Adv. Funct. Mater., vol. 28, no. 46, pp. 1–13, 2018, doi: 10.1002/adfm.201804237.
[11] J. C.Weaver et al., “Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum,” J. Struct. Biol., vol. 158, no. 1, pp. 93–106, 2007, doi: 10.1016/j.jsb.2006.10.027.
[12] M. A.Kasapi andJ. M.Gosline, “Micromechanics of the equine hoof wall: Optimizing crack control and material stiffness through modulation of the properties of keratin,” J. Exp. Biol., vol. 202, no. 4, pp. 337–391, 1999, doi: 10.1242/jeb.202.4.377.
[13] W.Huang et al., “A natural energy absorbent polymer composite: The equine hoof wall,” Acta Biomater., vol. 90, pp. 267–277, 2019, doi: 10.1016/j.actbio.2019.04.003.
[14] M. A.Kasapi andJ. M.Gosline, “Design complexity and fracture control in the equine hoof wall,” J. Exp. Biol., vol. 200, no. 11, pp. 1639–1659, 1997, doi: 10.1242/jeb.200.11.1639.
[15] L.Tombolato, E. E.Novitskaya, P. Y.Chen, F. A.Sheppard, andJ.McKittrick, “Microstructure, elastic properties and deformation mechanisms of horn keratin,” Acta Biomater., vol. 6, no. 2, pp. 319–330, 2010, doi: 10.1016/j.actbio.2009.06.033.
[16] N.Suksangpanya, N. A.Yaraghi, R. B.Pipes, D.Kisailus, andP.Zavattieri, “Crack twisting and toughening strategies in Bouligand architectures,” Int. J. Solids Struct., vol. 150, pp. 83–106, 2018, doi: 10.1016/j.ijsolstr.2018.06.004.
[17] N. A.Yaraghi et al., “A Sinusoidally Architected Helicoidal Biocomposite,” Adv. Mater., vol. 28, no. 32, pp. 6835–6844, 2016, doi: 10.1002/adma.201600786.
[18] Y.Yang et al., “Biomimetic Anisotropic Reinforcement Architectures by Electrically Assisted Nanocomposite 3D Printing,” Adv. Mater., vol. 29, no. 11, 2017, doi: 10.1002/adma.201605750.
[19] S. R. G.Bates, I. R.Farrow, andR. S.Trask, “3D printed polyurethane honeycombs for repeated tailored energy absorption,” Mater. Des., vol. 112, pp. 172–183, 2016, doi: 10.1016/j.matdes.2016.08.062.
[20] F. N.Habib, P.Iovenitti, S. H.Masood, andM.Nikzad, “In-plane energy absorption evaluation of 3D printed polymeric honeycombs,” Virtual Phys. Prototyp., vol. 12, no. 2, pp. 117–131, 2017, doi: 10.1080/17452759.2017.1291354.
[21] S. R. G.Bates, I. R.Farrow, andR. S.Trask, “Compressive behaviour of 3D printed thermoplastic polyurethane honeycombs with graded densities,” Mater. Des., vol. 162, pp. 130–142, 2019, doi: 10.1016/j.matdes.2018.11.019.
[22] O.Rahman andB.Koohbor, “Optimization of energy absorption performance of polymer honeycombs by density gradation,” Compos. Part C Open Access, vol. 3, no. August, p. 100052, 2020, doi: 10.1016/j.jcomc.2020.100052.
[23] V. A.Lvov, F. S.Senatov, A. M.Korsunsky, andA. I.Salimon, “Design and mechanical properties of 3D-printed auxetic honeycomb structure,” Mater. Today Commun., vol. 24, p. 101173, 2020, doi: 10.1016/j.mtcomm.2020.101173.
[24] A.Ingrole, A.Hao, andR.Liang, “Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement,” Mater. Des., vol. 117, pp. 72–83, 2017, doi: 10.1016/j.matdes.2016.12.067.
[25] S. K.Maiti, L. J.Gibson, andM. F.Ashby, “Deformation and energy absorption diagrams for cellular solids,” Acta Metall., vol. 32, no. 11, pp. 1963–1975, 1984, doi: 10.1016/0001-6160(84)90177-9.
[26] J.Miltz andO. R.Ramon, “Energy absorption characteristics of polymeric foams used as cushioning materials,” vol. 30, no. 2, pp. 129–133.
[27] M.Avalle, G.Belingardi, andR.Montanini, “Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram,” Int. J. Impact Eng., vol. 25, no. 5, pp. 455–472, 2001, doi: 10.1016/S0734-743X(00)00060-9.
[28] S. F.Fischer et al., “Pummelos as concept generators for biomimetically inspired low weight structures with excellent damping properties,” Adv. Eng. Mater., vol. 12, no. 12, pp. 658–663, 2010, doi: 10.1002/adem.201080065.
[29] P. T.Martone et al., “Mechanics without Muscle: Biomechanical inspiration from the plant world,” Integr. Comp. Biol., vol. 50, no. 5, pp. 888–907, 2010, doi: 10.1093/icb/icq122.
[30] J.Shen, Y.Min Xie, X.Huang, S.Zhou, andD.Ruan, “Mechanical properties of luffa sponge,” J. Mech. Behav. Biomed. Mater., vol. 15, pp. 141–152, 2012, doi: 10.1016/j.jmbbm.2012.07.004.
[31] J.Shen, Y. M.Xie, X.Huang, S.Zhou, andD.Ruan, “Behaviour of luffa sponge material under dynamic loading,” Int. J. Impact Eng., vol. 57, pp. 17–26, 2013, doi: 10.1016/j.ijimpeng.2013.01.004.
[32] A.Bührig-Polaczek et al., “Biomimetic cellular metals - Using hierarchical structuring for energy absorption,” Bioinspiration and Biomimetics, vol. 11, no. 4, 2016, doi: 10.1088/1748-3190/11/4/045002.
[33] X. T.Nguyen, S.Hou, T.Liu, andX.Han, “A potential natural energy absorption material – Coconut mesocarp: Part A: Experimental investigations on mechanical properties,” Int. J. Mech. Sci., vol. 115–116, pp. 564–573, 2016, doi: 10.1016/j.ijmecsci.2016.07.017.
[34] J.Chen andG.Wu, “Beetle forewings: Epitome of the optimal design for lightweight composite materials,” Carbohydr. Polym., vol. 91, no. 2, pp. 659–665, 2013, doi: 10.1016/j.carbpol.2012.08.061.
[35] J.Chen, Q. Q.Ni, Y.Xu, andM.Iwamoto, “Lightweight composite structures in the forewings of beetles,” Compos. Struct., vol. 79, no. 3, pp. 331–337, 2007, doi: 10.1016/j.compstruct.2006.01.010.
[36] E.Farber, “The Development of Metal Honeycomb Energy-Absorbing Elements,” Chymia, vol. 8, pp. 165–180, 1962, doi: 10.2307/27757223.
[37] S. D.Papka andS.Kyriakides, “In-plane biaxial crushing of honeycombs - : Part II: Analysis,” Int. J. Solids Struct., vol. 36, no. 29, pp. 4397–4423, 1999, doi: 10.1016/S0020-7683(98)00225-X.
[38] S. D.Papka andS.Kyriakides, “Biaxial crushing of honeycombs Part I : Experiments,” Int. J. Solids Struct., vol. 36, pp. 4367–4396, 1999.
[39] H.Fan, Y.Luo, F.Yang, andW.Li, “Approaching perfect energy absorption through structural hierarchy,” Int. J. Eng. Sci., vol. 130, pp. 12–32, 2018, doi: 10.1016/j.ijengsci.2018.05.005.
[40] Q.Zhang et al., “Bioinspired engineering of honeycomb structure - Using nature to inspire human innovation,” Prog. Mater. Sci., vol. 74, pp. 332–400, 2015, doi: 10.1016/j.pmatsci.2015.05.001.
[41] Z.Li, D.Liu, Y.Qian, Y.Wang, T.Wang, andL.Wang, “Enhanced strength and weakened dynamic sensitivity of honeycombs by parallel design,” Int. J. Mech. Sci., vol. 151, no. December 2018, pp. 672–683, 2019, doi: 10.1016/j.ijmecsci.2018.12.013.
[42] W.Zhang, S.Yin, T. X.Yu, andJ.Xu, “Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb,” Int. J. Impact Eng., vol. 125, no. November 2018, pp. 163–172, 2019, doi: 10.1016/j.ijimpeng.2018.11.014.
[43] F. N.Habib, P.Iovenitti, S. H.Masood, andM.Nikzad, “Cell geometry effect on in-plane energy absorption of periodic honeycomb structures,” Int. J. Adv. Manuf. Technol., vol. 94, no. 5–8, pp. 2369–2380, 2018, doi: 10.1007/s00170-017-1037-z.
[44] J.Xiang andJ.Du, “Energy absorption characteristics of bio-inspired honeycomb structure under axial impact loading,” Mater. Sci. Eng. A, vol. 696, no. March, pp. 283–289, 2017, doi: 10.1016/j.msea.2017.04.044.
[45] P.Hao andJ.Du, “Energy absorption characteristics of bio-inspired honeycomb column thin-walled structure under impact loading,” J. Mech. Behav. Biomed. Mater., vol. 79, pp. 301–308, 2018, doi: 10.1016/j.jmbbm.2018.01.001.
[46] J.Xiang, J.Du, D.Li, andF.Scarpa, “Numerical analysis of the impact resistance in aluminum alloy bi-tubular thin-walled structures designs inspired by beetle elytra,” J. Mater. Sci., vol. 52, no. 22, pp. 13247–13260, 2017, doi: 10.1007/s10853-017-1420-z.
[47] X.Yu, L.Pan, J.Chen, X.Zhang, andP.Wei, “Experimental and numerical study on the energy absorption abilities of trabecular–honeycomb biomimetic structures inspired by beetle elytra,” J. Mater. Sci., vol. 54, no. 3, pp. 2193–2204, 2019, doi: 10.1007/s10853-018-2958-0.
[48] L.Zhang, Z.Bai, andF.Bai, “Crashworthiness design for bio-inspired multi-cell tubes with quadrilateral, hexagonal and octagonal sections,” Thin-Walled Struct., vol. 122, no. June 2017, pp. 42–51, 2018, doi: 10.1016/j.tws.2017.10.010.
[49] R.Lakes, N.Variability, A.Physcss, W.Meteorolgica, andO.Symposium, “Foam structures with a negative Poisson’s ratio,” Science (80-. )., vol. 235, no. 1987, pp. 1038–1041, 1987.
[50] K. E. Evans, “Molecular network design,” vol. 353, no. September, p. 10065, 1991.
[51] M.Sanami, N.Ravirala, K.Alderson, andA.Alderson, “Auxetic materials for sports applications,” Procedia Eng., vol. 72, pp. 453–458, 2014, doi: 10.1016/j.proeng.2014.06.079.
[52] Y.Wang, W.Zhao, G.Zhou, Q.Gao, andC.Wang, “Optimization of an auxetic jounce bumper based on Gaussian process metamodel and series hybrid GA-SQP algorithm,” Struct. Multidiscip. Optim., vol. 57, no. 6, pp. 2515–2525, 2018, doi: 10.1007/s00158-017-1869-z.
[53] Y. C.Wang andR.Lakes, “Analytical parametric analysis of the contact problem of human buttocks and negative Poisson’s ratio foam cushions,” Int. J. Solids Struct., vol. 39, no. 18, pp. 4825–4838, 2002, doi: 10.1016/S0020-7683(02)00379-7.
[54] M.Janus-Michalska, D.Jasińska, andJ.Smardzewski, “Comparison of Contact Stress Distribution for Foam Seat and Seat of Auxetic Spring Skeleton,” Ijame, vol. 18, no. 1, pp. 55–72, 2013, doi: 10.2478/ijame-2013-0004.
[55] Y. K.Gao, “Auxetic metamaterials and structures,” Cailiao Gongcheng/Journal Mater. Eng., vol. 49, no. 5, pp. 38–47, 2021, doi: 10.11868/j.issn.1001-4381.2019.000391.
[56] D. T.Ho, C. T.Nguyen, S. Y.Kwon, andS. Y.Kim, “Auxeticity in Metals and Periodic Metallic Porous Structures Induced by Elastic Instabilities,” Phys. Status Solidi Basic Res., vol. 256, no. 1, pp. 1–7, 2019, doi: 10.1002/pssb.201800122.
[57] C.Borcea andI.Streinu, “Geometric auxetics Subject Areas :,” Proc. R. Soc. A, vol. 471, 2015.
[58] T.Mullin, S.Deschanel, K.Bertoldi, andM. C.Boyce, “Pattern transformation triggered by deformation,” Phys. Rev. Lett., vol. 99, no. 8, pp. 1–4, 2007, doi: 10.1103/PhysRevLett.99.084301.
[59] K.Bertoldi, P. M.Reis, S.Willshaw, andT.Mullin, “Negative poisson’s ratio behavior induced by an elastic instability,” Adv. Mater., vol. 22, no. 3, pp. 361–366, 2010, doi: 10.1002/adma.200901956.
[60] K.Bertoldi, M. C.Boyce, S.Deschanel, S. M.Prange, andT.Mullin, “Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures,” J. Mech. Phys. Solids, vol. 56, no. 8, pp. 2642–2668, 2008, doi: 10.1016/j.jmps.2008.03.006.
[61] J. T. B.Overvelde, S.Shan, andK.Bertoldi, “Compaction through buckling in 2D periodic, soft and porous structures: Effect of pore shape,” Adv. Mater., vol. 24, no. 17, pp. 2337–2342, 2012, doi: 10.1002/adma.201104395.
[62] F.Javid, J.Liu, J.Shim, J. C.Weaver, A.Shanian, andK.Bertoldi, “Mechanics of instability-induced pattern transformations in elastomeric porous cylinders,” J. Mech. Phys. Solids, vol. 96, pp. 1–17, 2016, doi: 10.1016/j.jmps.2016.06.015.
[63] X.Ren, J.Shen, A.Ghaedizadeh, H.Tian, andY. M.Xie, “A simple auxetic tubular structure with tuneable mechanical properties,” Smart Mater. Struct., vol. 25, no. 6, pp. 1–9, 2016, doi: 10.1088/0964-1726/25/6/065012.
[64] X.Ren, J.Shen, A.Ghaedizadeh, H.Tian, andY.Min Xie, “Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties,” Smart Mater. Struct., vol. 24, no. 9, 2015, doi: 10.1088/0964-1726/24/9/095016.
[65] K.Bertoldi, “Harnessing Instabilities to Design Tunable Architected Cellular Materials,” Annu. Rev. Mater. Res., vol. 47, no. February, pp. 51–61, 2017, doi: 10.1146/annurev-matsci-070616-123908.
[66] M. K.Ramasubramanian, O. M.Barham, andV.Swaminathan, “Mechanics of a mosquito bite with applications to microneedle design,” Bioinspiration and Biomimetics, vol. 3, no. 4, 2008, doi: 10.1088/1748-3182/3/4/046001.
[67] J.Shim, C.Perdigou, E. R.Chen, K.Bertoldi, andP. M.Reis, “Buckling-induced encapsulation of structured elastic shells under pressure,” Proc. Natl. Acad. Sci. U. S. A., vol. 109, no. 16, pp. 5978–5983, 2012, doi: 10.1073/pnas.1115674109.
[68] S.Daynes, A.Grisdale, A.Seddon, andR.Trask, “Morphing structures using soft polymers for active deployment,” Smart Mater. Struct., vol. 23, no. 1, 2014, doi: 10.1088/0964-1726/23/1/012001.
[69] I.Ivañez, L. M.Fernandez-Cañadas, andS.Sanchez-Saez, “Compressive deformation and energy-absorption capability of aluminium honeycomb core,” Compos. Struct., vol. 174, pp. 123–133, 2017, doi: 10.1016/j.compstruct.2017.04.056.
[70] Y.Guo et al., “Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load,” Aerosp. Sci. Technol., vol. 98, p. 105662, 2020, doi: 10.1016/j.ast.2019.105662.
[71] S. R. G.Bates, I. R.Farrow, andR. S.Trask, “3D printed elastic honeycombs with graded density for tailorable energy absorption,” Act. Passiv. Smart Struct. Integr. Syst. 2016, vol. 9799, p. 979907, 2016, doi: 10.1117/12.2219322.
[72] H. J.Qi andM. C.Boyce, “Stress-strain behavior of thermoplastic polyurethanes,” Mech. Mater., vol. 37, no. 8, pp. 817–839, 2005, doi: 10.1016/j.mechmat.2004.08.001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊