|
[1] G. Indiveri and S.-C. Liu, “Memory and Information Processing in Neuromorphic Systems,” Proc. IEEE, vol. 103, no. 8, pp. 1379–1397, Aug. 2015, doi: 10.1109/JPROC.2015.2444094. [2] W. Maass, “Networks of spiking neurons: The third generation of neural network models,” Neural Netw., vol. 10, no. 9, pp. 1659–1671, Dec. 1997, doi: 10.1016/S0893-6080(97)00011-7. [3] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification,” Front. Neurosci., vol. 11, 2017, doi: 10.3389/fnins.2017.00682. [4] S. B. Shrestha and G. Orchard, “SLAYER: Spike Layer Error Reassignment in Time,” Adv. Neural Inf. Process. Syst., vol. 31, 2018, Accessed: Jun. 05, 2021. [Online]. Available: https://papers.nips.cc/paper/2018/hash/82f2b308c3b01637c607ce05f52a2fed-Abstract.html [5] F. Ponulak and J. J. Hopfield, “Rapid, parallel path planning by propagating wavefronts of spiking neural activity,” Front. Comput. Neurosci., vol. 7, p. 98, Jul. 2013, doi: 10.3389/fncom.2013.00098. [6] G. Gallego et al., “Event-based Vision: A Survey,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 1–1, 2020, doi: 10.1109/TPAMI.2020.3008413. [7] Y. Sandamirskaya, “Dynamic neural fields as a step toward cognitive neuromorphic architectures,” Front. Neurosci., vol. 7, 2014, doi: 10.3389/fnins.2013.00276. [8] E. T. Rolls, “Attractor networks,” WIREs Cogn. Sci., vol. 1, no. 1, pp. 119–134, 2010, doi: 10.1002/wcs.1. [9] C. D. Brody, R. Romo, and A. Kepecs, “Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations,” Curr. Opin. Neurobiol., vol. 13, no. 2, pp. 204–211, Apr. 2003, doi: 10.1016/S0959-4388(03)00050-3. [10] D. Durstewitz, J. K. Seamans, and T. J. Sejnowski, “Neurocomputational models of working memory,” Nat. Neurosci., vol. 3, no. 11, pp. 1184–1191, Nov. 2000, doi: 10.1038/81460. [11] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proc. Natl. Acad. Sci., vol. 79, no. 8, pp. 2554–2558, Apr. 1982, doi: 10.1073/pnas.79.8.2554. [12] M. Davies et al., “Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook,” Proc. IEEE, vol. 109, no. 5, pp. 911–934, May 2021, doi: 10.1109/JPROC.2021.3067593. [13] O. Krestinskaya, A. P. James, and L. O. Chua, “Neuromemristive Circuits for Edge Computing: A Review,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 1, pp. 4–23, Jan. 2020, doi: 10.1109/TNNLS.2019.2899262. [14] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping (SLAM): part II,” IEEE Robot. Autom. Mag., vol. 13, no. 3, pp. 108–117, Sep. 2006, doi: 10.1109/MRA.2006.1678144. [15] E. I. Moser, E. Kropff, and M.-B. Moser, “Place Cells, Grid Cells, and the Brain’s Spatial Representation System,” Annu. Rev. Neurosci., vol. 31, no. 1, pp. 69–89, 2008, doi: 10.1146/annurev.neuro.31.061307.090723. [16] A. Honkanen, A. Adden, J. da Silva Freitas, and S. Heinze, “The insect central complex and the neural basis of navigational strategies,” J. Exp. Biol., vol. 222, no. Suppl_1, Feb. 2019, doi: 10.1242/jeb.188854. [17] N. Burgess, C. Barry, and J. O’Keefe, “An oscillatory interference model of grid cell firing,” Hippocampus, vol. 17, no. 9, pp. 801–812, 2007, doi: 10.1002/hipo.20327. [18] T.-S. Su, W.-J. Lee, Y.-C. Huang, C.-T. Wang, and C.-C. Lo, “Coupled symmetric and asymmetric circuits underlying spatial orientation in fruit flies,” Nat. Commun., vol. 8, no. 1, p. 139, Jul. 2017, doi: 10.1038/s41467-017-00191-6. [19] Y. Sandamirskaya and G. Schoner, “Dynamic field theory of sequential action: A model and its implementation on an embodied agent,” in 2008 7th IEEE International Conference on Development and Learning, Aug. 2008, pp. 133–138. doi: 10.1109/DEVLRN.2008.4640818. [20] E. Neftci, J. Binas, U. Rutishauser, E. Chicca, G. Indiveri, and R. J. Douglas, “Synthesizing cognition in neuromorphic electronic systems,” Proc. Natl. Acad. Sci., vol. 110, no. 37, pp. E3468–E3476, Sep. 2013. [21] G. Tang and K. P. Michmizos, “Gridbot: An Autonomous Robot Controlled by a Spiking Neural Network Mimicking the Brain’s Navigational System,” in Proceedings of the International Conference on Neuromorphic Systems, New York, NY, USA, 2018, p. 4:1-4:8. doi: 10.1145/3229884.3229888. [22] E. Nichols, L. J. McDaid, and N. Siddique, “Biologically Inspired SNN for Robot Control,” IEEE Trans. Cybern., vol. 43, no. 1, pp. 115–128, Feb. 2013, doi: 10.1109/TSMCB.2012.2200674. [23] M. B. Milde et al., “Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System,” Front. Neurorobotics, vol. 11, 2017, doi: 10.3389/fnbot.2017.00028. [24] J. P. Mitchell, G. Bruer, M. E. Dean, J. S. Plank, G. S. Rose, and C. D. Schuman, “NeoN: Neuromorphic control for autonomous robotic navigation,” in 2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), Oct. 2017, pp. 136–142. doi: 10.1109/IRIS.2017.8250111. [25] C. Jimenez-Romero and J. Johnson, “SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo,” Neural Comput. Appl., vol. 28, no. 1, pp. 755–764, Dec. 2017, doi: 10.1007/s00521-016-2398-1. [26] A. Cyr, F. Thériault, M. Ross, N. Berberian, and S. Chartier, “Spiking Neurons Integrating Visual Stimuli Orientation and Direction Selectivity in a Robotic Context,” Front. Neurorobotics, vol. 12, 2018, doi: 10.3389/fnbot.2018.00075. [27] Z. Bing, C. Meschede, F. Röhrbein, K. Huang, and A. C. Knoll, “A Survey of Robotics Control Based on Learning-Inspired Spiking Neural Networks,” Front. Neurorobotics, vol. 12, Jul. 2018, doi: 10.3389/fnbot.2018.00035. [28] S. A. Lobov, A. N. Mikhaylov, M. Shamshin, V. A. Makarov, and V. B. Kazantsev, “Spatial Properties of STDP in a Self-Learning Spiking Neural Network Enable Controlling a Mobile Robot,” Front. Neurosci., vol. 14, 2020, doi: 10.3389/fnins.2020.00088. [29] J. S. Taube, R. U. Muller, and J. B. Ranck, “Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis,” J. Neurosci., vol. 10, no. 2, pp. 420–435, Feb. 1990, doi: 10.1523/JNEUROSCI.10-02-00420.1990. [30] S. M. Stringer, T. P. Trappenberg, E. T. Rolls, and I. E. T. d Araujo, “Self-organizing continuous attractor networks and path integration: one-dimensional models of head direction cells,” Netw. Comput. Neural Syst., vol. 13, no. 2, pp. 217–242, Jan. 2002, doi: 10.1080/net.13.2.217.242. [31] A. Arleo and W. Gerstner, “Modeling Rodent Head-direction Cells and Place Cells for Spatial Learning in Bio-mimetic Robotics,” in In, pp. 236–245. [32] M. J. Milford, G. F. Wyeth, and D. Prasser, “RatSLAM: a hippocampal model for simultaneous localization and mapping,” in IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004, Apr. 2004, vol. 1, pp. 403-408 Vol.1. doi: 10.1109/ROBOT.2004.1307183. [33] T. Kyriacou, “An Implementation of a Biologically Inspired Model of Head Direction Cells on a Robot,” in Towards Autonomous Robotic Systems, Berlin, Heidelberg, 2011, pp. 66–77. doi: 10.1007/978-3-642-23232-9_7. [34] Y. Zhou and D. Wu, “Biologically inspired model of path integration based on head direction cells and grid cells,” Front. Inf. Technol. Electron. Eng., vol. 17, no. 5, pp. 435–448, May 2016, doi: 10.1631/FITEE.1500364. [35] T. Degris, L. Lacheze, C. Boucheny, and A. Arleo, “A Spiking Neuron Model of Head-Direction Cells for Robot Orientation”. [36] P. Stratton, M. Milford, J. Wiles, and G. Wyeth, “Automatic calibration of a spiking head-direction network for representing robot orientation,” in Proceedings of the 2009 Australasian Conference on Robotics and Automation, S. Scheding, Ed. Australia: Australian Robotics & Automation Association, 2009, pp. 1–8. Accessed: Jul. 14, 2021. [Online]. Available: http://www.araa.asn.au/acra/acra2009/ [37] R. Kreiser, M. Cartiglia, J. N. P. Martel, J. Conradt, and Y. Sandamirskaya, “A Neuromorphic Approach to Path Integration: A Head-Direction Spiking Neural Network with Vision-driven Reset,” in 2018 IEEE International Symposium on Circuits and Systems (ISCAS), May 2018, pp. 1–5. doi: 10.1109/ISCAS.2018.8351509. [38] N. Qiao et al., “A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses,” Front. Neurosci., vol. 9, 2015, doi: 10.3389/fnins.2015.00141. [39] Y. Sandamirskaya and G. Schöner, “An embodied account of serial order: How instabilities drive sequence generation,” Neural Netw., vol. 23, no. 10, pp. 1164–1179, Dec. 2010, doi: 10.1016/j.neunet.2010.07.012. [40] S. Amari, “Dynamics of pattern formation in lateral-inhibition type neural fields,” Biol. Cybern., vol. 27, no. 2, pp. 77–87, Jun. 1977, doi: 10.1007/BF00337259. [41] R. Kreiser, D. Aathmani, N. Qiao, G. Indiveri, and Y. Sandamirskaya, “Organizing Sequential Memory in a Neuromorphic Device Using Dynamic Neural Fields,” Front. Neurosci., vol. 12, 2018, doi: 10.3389/fnins.2018.00717. [42] Y. Huang-Yu, H.-P. Huang, Y.-C. Huang, and C.-C. Lo, “Flyintel – a Platform for Robot Navigation based on a Brain-Inspired Spiking Neural Network,” in 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Mar. 2019, pp. 219–220. doi: 10.1109/AICAS.2019.8771614. [43] Y.-C. Huang et al., “A Single-Cell Level and Connectome-Derived Computational Model of the Drosophila Brain,” Front. Neuroinformatics, vol. 12, 2019, doi: 10.3389/fninf.2018.00099. [44] F. K. Hsieh, “Computational neuroethology - Developing a virtual worm system and its energy homeostasis mechanism,” Master Thesis, National Tsing Hua University, 2016. [Online]. Available: https://etd.lib.nctu.edu.tw/cgi-bin/gs32/hugsweb.cgi?o=dnthucdr&s=id=%22GH02102080510%22.&searchmode=basic [45] R. Han, T.-M. Wei, S.-C. Tseng, and C.-C. Lo, “Characterizing approach behavior of Drosophila melanogaster in Buridan’s paradigm,” PLOS ONE, vol. 16, no. 1, p. e0245990, Jan. 2021, doi: 10.1371/journal.pone.0245990. [46] L. Meier, D. Honegger, and M. Pollefeys, “PX4: A node-based multithreaded open source robotics framework for deeply embedded platforms,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), May 2015, pp. 6235–6240. doi: 10.1109/ICRA.2015.7140074. [47] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “RotorS—A Modular Gazebo MAV Simulator Framework,” in Robot Operating System (ROS): The Complete Reference (Volume 1), A. Koubaa, Ed. Cham: Springer International Publishing, 2016, pp. 595–625. doi: 10.1007/978-3-319-26054-9_23. [48] M. Quigley et al., “ROS: an open-source Robot Operating System,” p. 6. [49] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-source multi-robot simulator,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sep. 2004, vol. 3, pp. 2149–2154 vol.3. doi: 10.1109/IROS.2004.1389727. [50] S. Heinze, “Unraveling the neural basis of insect navigation,” Curr. Opin. Insect Sci., vol. 24, pp. 58–67, Dec. 2017, doi: 10.1016/j.cois.2017.09.001. [51] K. Pfeiffer and U. Homberg, “Organization and Functional Roles of the Central Complex in the Insect Brain,” Annu. Rev. Entomol., vol. 59, no. 1, pp. 165–184, 2014, doi: 10.1146/annurev-ento-011613-162031. [52] B. Webb and A. Wystrach, “Neural mechanisms of insect navigation,” Curr. Opin. Insect Sci., vol. 15, pp. 27–39, Jun. 2016, doi: 10.1016/j.cois.2016.02.011. [53] J. D. Seelig and V. Jayaraman, “Feature detection and orientation tuning in the Drosophila central complex,” Nature, vol. 503, no. 7475, Art. no. 7475, Nov. 2013, doi: 10.1038/nature12601. [54] J. D. Seelig and V. Jayaraman, “Neural dynamics for landmark orientation and angular path integration,” Nature, vol. 521, no. 7551, Art. no. 7551, May 2015, doi: 10.1038/nature14446. [55] M. Collett, L. Chittka, and T. S. Collett, “Spatial Memory in Insect Navigation,” Curr. Biol., vol. 23, no. 17, pp. R789–R800, Sep. 2013, doi: 10.1016/j.cub.2013.07.020. [56] B. Liu, A. J. White, and C.-C. Lo, “Augmenting Flexibility: Mutual Inhibition Between Inhibitory Neurons Expands Functional Diversity,” bioRxiv, p. 2020.11.08.371179, Apr. 2021, doi: 10.1101/2020.11.08.371179.
|