|
[1] R. L. Siegel, K. D. Miller, A. Jemal, “Cancer statistics, 2019”, A Cancer Journal for Clinicians, vol. 69, pp. 7-34, 2019. [2] K. K. Gupta, V. K. Gupta, R. W. Naumann, “Ovarian cancer: screening and future directions”, International Journal of Gynecological Cancer 2019, vol. 29, pp. 195-200, 2019. [3] P. M. Das, R. C. Bast Jr., “Early detection of ovarian cancer”, Biomarkers in Medicine, vol. 2, pp. 291-303, 2008. [4] J. R. van Nagell Jr., J. T. Hoff, “Transvaginal ultrasonography in ovarian cancer screening: current perspectives”, International Journal of Women’s Health 2014, vol. 6, pp. 25-33, 2014. [5] R. L. Milne, A. Osorio, T. Ramón Y Cajal, A. Vega, G. Llort, M. Hoya, O. Diez, M. Alonso, C. Lázaro, I. Blanco, A. Sánchez-de-Abajo, T. Caldés, A. Blanco, B. Graña, M. Durán, E. Velasco, I. Chirivella, E. Cardeñosa, M. Tejada, J. Benítez, “The average cumulative risks of breast and ovarian cancer for carriers of mutations in BRCA1 and BRCA2 attending genetic counseling units in Spain”, Clinical Cancer Research, vol. 14, pp. 2861-2869, 2008. [6] R. T. Neff, L. Senter, R. Salani, “BRCA mutation in ovarian cancer: testing, implications and treatment considerations”, Therapeutic Advances in Medical Oncology, vol. 9, pp. 519-531, 2017. [7] K. B. Kuchenbaecker, J. L. Hopper, D. R. Barnes, K. A. Phillips, T. M. Mooij, M. M. B. Terry, M. A. Rookus, D. F. Easton, A. C. Antoniou, “Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers”, Journal of the American Medical Association, vol. 317, pp. 2402-2416, 2017. [8] M. Ratajska, M. Koczkowska, M. Żuk, A. Gorczyński, A. Kuźniacka, M. Stukan, W. Biernat, J. Limon, B. Wasąg, “Detection of BRAC1/BRCA2 mutations in circulating tumor DNA from patients with ovarian cancer”, Oncotarget, vol. 8, pp. 101325-101332, 2017. [9] Douvdevani, R. B. Molho, K. Asraf, R. Doolman, Y. Laitman, E. Friedman, “Circulating cell-free DNA (cfDNA) levels in BRCA1 and BRCA2 mutation carriers: a preliminary study”, Cancer Biomarkers, vol. 28, pp. 269-273, 2020. [10] M. Elazezy, S. A. Joosse, “Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management”, Computational and Structural Biotechnology Journal, vol. 16, pp. 370-378, 2018. [11] S. A. Joosse, K. Pantel, “Tumor-educated platelets as liquid biopsy in cancer patients”, Cancer Cell, vol. 28, pp. 552-554, 2015. [12] G. Barbany, C. Arthur, A. Liedén, M. Nordenskjöld, R. Rosenquist, B. Tesi, K. Wallander, E. Tham, “Cell-free tumor DNA testing for early detection of cancer – a potential future tool”, Journal of Internal Medicine, vol. 286, pp. 118-136, 2019. [13] A. Kamat, A. K. Sood, D. Dang, D. M. Gershenson, J. L. Simpson, F. Z. Bischoff, “Quantification of total plasma cell-free DNA in ovarian cancer using real-time PCR”, Annals of the New York Academy of Sciences, vol. 1075, pp. 230-234, 2006. [14] R. Mari, E. Mamessier, E. Lambaudie, M. Provansal, D. Birnbaum, F. Bertucci, R. Sabatier, “Liquid biopsies for ovarian carcinoma: how blood tests may improve the clinical management of a deadly disease”, Cancers, vol. 11, pp. 774, 2019. [15] W. Gai, K. Sun, “Epigenetic biomarkers in cell-free DNA and applications in liquid biopsy”, Genes, vol. 10, pp. 32, 2019. [16] Z. Xu, Y. Qiao, J. Tu, “Microfluidic technologies for cfDNA isolation and analysis”, Micromachines, vol. 10, pp. 672, 2019. [17] K. Perez-Toralla, I. Pereiro, S. Garrigou, F. D. Federico, C. Proudhon, F. C. Bidard, J. L. Viovy, V. Taly, S. Descroix, “Microfluidic extraction and digital quantification of circulating cell-free DNA from serum”, Sensors and Actuators B: Chemical, vol. 286, pp. 533-539, 2019. [18] C. Campos, S. Gamage, J. M. Jackson, M. Witek, D. S. Park, M. C. Murphy, A. K. Godwin, S. A. Soper, “Microfluidic-based solid phase extraction of cell free DNA”, Lab on a Chip, vol. 18, pp. 3459-3470, 2018. [19] C. E. Jin, B. Koo, T. Y. Lee, K. Han, S. B. Lim, I. J. Park, Y. Shin, “Simple and low-cost sampling of cell-free nucleic acids from blood plasma for rapid and sensitive detection of circulating tumor DNA”, Advanced Science, vol. 5, pp. 1800614, 2018. [20] L. Ugozzoli, R. B. Wallace, “Allele-specific polymerase chain reaction”, Methods, vol. 2, pp. 42-48, 1991. [21] K. B. Mathieu, D. G. Bedi, S. L. Thrower, A. Qayyum, R. C. B. Jr., “Screening for ovarian cancer: imaging challenges and opportunities for improvement”, Ultrasound in Obstetrics and Gynecology, vol. 51, pp. 293-303, 2018. [22] Ş. Ari, M. Arikan, “Next-generation sequencing: advantages, disadvantages, and future”, Plant Omics: Trends and Applications, vol. 1, pp. 109-135, 2016. [23] C. Y. Chao, C. H. Wang, Y. J. Che, C. Y. Kao, J. J. Wu, G. B. Lee, “An integrated microfluidic system for diagnosis of the resistance of Helicobacter pylori to quinolone-based antibiotics”, Biosensors and Bioelectronics, vol. 78, pp. 281-289, 2016. [24] W. H. Kuo, P. H. Lin, A. C. Huang, Y. H. Chien, T. P. Liu, Y. S. Lu, L. Y. Bai, A. M. Sargeant, C. H. Lin, A. L. Cheng, F. J. Hsieh, W. L. Hwu, K. J. Chang, “Multimodel assessment of BRCA1 mutations in Taiwanese (ethnic Chinese) women with early-onset, bilateral of familial breast cancer”, Journal of Human Genetics, vol. 57, pp. 130-138, 2012. [25] N. Umetani, J. Kim, S. Hiramatsu, H. A. Reber, O. J. Hines, A. J. Bilchik, D. S. B. Hoon, “Increased integrity of free circulating DNA in sera of patients with colorectal or periampullary cancer: direct quantitative PCR for ALU repeats”, Clinical Chemistry, vol. 52, pp. 1062-1069, 2006. [26] S. Y. Yang, J. L. Lin, G. B. Lee, “A vortex-type micromixer utilizing pneumatically driven membranes”, Journal of Micromechanics and Microengineering, vol. 19, pp. 035020, 2009. [27] C. H. Weng, K. Y. Lien, S. Y. Yang, G. B. Lee, “A suction-type, pneumatic microfluidic device for liquid transport and mixing”, Microfluid Nanofluid, vol. 10, pp. 301-310, 2011. [28] K. M. Shen, N. M. Sabbavarapu, C. Y. Fu, J. T. Jan, J. R. Wang, S. C. Hung, G. B. Lee, “An integrated microfluidic system for rapid detection and multiple subtyping of influenza A viruses by using glycan-coated magnetic beads and RT-PCR”, Lab on a Chip, vol. 19, pp. 1277-1286, 2019. [29] G. Schwarz, S. Bäumler, A. Block, F. Felsenstein, G. Wenzel, “Determination of detection and quantification limits for SNP allele frequency estimation in DNA pools using real time PCR”, Nucleic Acids Research, vol. 32, pp. e24, 2004. [30] A. A. Kamat, M. Baldwin, D. Urbauer, D. Dang, L. Y. Han, A. Godwin, B. Y. Karlan, J. L. Simpson, D. M. Gershenson, R. L. Coleman, F. Z. Bischoff, A. K. Sood, “Plasma cell-free DNA in ovarian cancer: an independent prognostic biomarker”, Cancer, vol. 116, pp. 1918-1925, 2010. [31] R. R. Zachariah, S. Schmid, N. Buerki, R. Radpour, W. Holzgreve, X. Y. Zhong, “Levels of circulating cell-free nuclear and mitochondrial DNA in benign and malignant ovarian tumors”, Obstetrics and Gynecology, vol. 112, pp. 4, 2008. [32] C. Kohler, R. Radpour, Z. Barekati, R. Asadollahi, J. Bitzer, E. Wight, N. Bürki, C. Diesch, W. Holzgreve, X. Y. Zhong, “Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors”, Molecular Cancer, vol. 8, pp. 105, 2009. [33] M. Okkonen, P. Lakkisto, A. M. Korhonen, I. Parviai-nen, M. Reinikainen, T. Varpula, V. Pettilä, “Plasma cell-free DNA in patients needing mechanical ventilation”, Critical Care, vol. 15, pp. 196, 2011. [34] Q. Zhou, W. Li, B. Leng, W. Zheng, Z. He, M. Zuo, A. Chen, “Circulating cell free DNA as the diagnostic marker for ovarian cancer: a systematic review and meta-analysis”, PLoS ONE, vol. 11, pp. 6, 2016. [35] X. Y. Zhong, I. Mu¨ hlenen, Y. Li, A. Kang, A. K. Gupta, A. Tyndall, W. Holzgreve, S. Hahn, P. Hasler, “Increased concentrations of antibody-bound circulatory cell-free DNA in rheumatoid arthritis”, Molecular Diagnostics and Genetics, vol. 53, pp. 1609-1614, 2007. [36] Streubel, A. Stenzinger, S. Stephan-Falkenau, J. Kollmeier, D. Misch, T. G. Blum, T. Bauer, O. Landt, A. A. Ende, P. Schirmacher, T. Mairinger, V. Endris, “Comparison of different semi-automated cfDNA extraction methods in combination with UMI-based targeted sequencing”, Oncotarget, vol. 10, pp. 5690-5702, 2019. [37] S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan, M. W. Pfaffl, G. L. Shipley, J. Vandesompele, C. T. Wittwer, “The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments”, Clinical Chemistry, vol. 55, pp. 611-622, 2009. [38] L. Dong, S. Wang, B. Fu, J. Wang, “Evaluation of droplet digital PCR and next generation sequencing for characterizing DNA reference material for KRAS mutation detection”, Scientific Reports, vol. 8, pp. 9650, 2018. [39] Thierry, F. Mouliere, S. EL Messaoudi, C. Mollevi, E. Lopez-Crapez, F. Rolet, B. Gillet, C. Gongora, P. Déchelotte, B. Robert, M. Del Rio, P. J. Lamy, F. Bibeau, M. Nouaille, V. Loriot, A. S. Jarrousse, F. Molina, M. Mathonnet, D. Pezet, M. Ychou, “Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA”, Nature Medicine, vol. 20, pp. 430-435, 2014. [40] H. Wang, J. Jiang, B. Mostert, A. Sieuwerts, J. Martens, S. Sleijfer, J. Foekens, Y. Wang, “Allele-specific, non-extendable primer blocker PCR (AS-NEPB-PCR) for DNA mutation detection in cancer”, The Journal of Molecular Diagnostics, vol. 15, pp. 62-69, 2013. [41] K. L. Bolton , G. C. Trench, C. Goh, S. Sadetzki, S. J. Ramus, B. Y. Karlan, D. Lambrechts, E. Despierre, D. Barrowdale, L. McGuffog, S. Healey, D. F. Easton, O. Sinilnikova, J. Benitez, M. J. García, S. Neuhausen, M. H. Gail, P. Hartge, EMBRACE study team, S. Peock, D. Frost, D. G. Evans, R. Eeles, A. K. Godwin, M. B. Daly, Ava Kwong, Ed. SK. Ma, C. Lázaro, I. Blanco, M. Montagna, E. D’Andrea, O. Nicoletto, kConFab Investigators, S. E. Johnatty, S. Krüger Kjær, A. Jensen, E. Høgdall, E. L. Goode, B. L. Fridley, J. T. Loud, M. H. Greene, P. L. Mai, A. Chetrit, F. Lubin, G. H. Yechezkel, G. Glendon, I. L. Andrulis, A. E. Toland, L. Senter, M. E. Gore, C. Gourley, C. O Michie, H. Song, J. Tyrer, A. S. Whittemore, V. McGuire, W. Sieh, U. Kristoffersson, H. Olsson, Å. Borg, D. A. Levine, Cancer Genome Atlas Research Network, L. Steele, M. S. Beattie, S. Chan, R. Nussbaum, K. B. Moysich, J. Gross, I. Cass, C. Walsh, A. J. Li, R. Leuchter, O. Gordon, M. G. Closas, S. A. Gayther, S. J. Chanock, A. C. Antoniou, P. D.P. Pharoah, “Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer”, JAMA, vol. 307, pp. 382 – 390, 2012. [42] J. Boyd, Y. Sonoda, M. G. Federici, F. Bogomolniy, E. Rhei, D. L. Maresco, P. E. Saigo, L. A. Almadrones, R. R. Barakat, C. L. Brown, D. S. Chi, J. P. Curtin, E. A. Poynor, W. J. Hoskins, “Clinicopathologic features of BRCA-linked and sporadic ovarian cancer”, JAMA, vol. 283, pp. 17, 2000.
|