|
[1] S. Parkvall, E. Dahlman, A. Furuskar, and M. Frenne, “NR: The new 5G radio access technology,” IEEE Commun. Standards Mag., vol. 1, no. 4, pp. 24–30, 2017. [2] G. M. D. T. Forecast, “Cisco visual networking index: Global mobile data traffic forecast update, 2018–2023,” Cisco, White Paper, Feb. 2020. [3] M. Agiwal, H. Kwon, S. Park, and H. Jin, “A survey on 4G-5G dual connectivity: Road to 5G implementation,” IEEE Access, vol. 9, pp. 16 193–16 210, 2021. [4] L. Wan, Z. Guo, and X. Chen, “Enabling efficient 5G NR and 4G LTE coexistence,” IEEE Wireless Commun., vol. 26, no. 1, pp. 6–8, 2019. [5] I. Da Silva, G. Mildh, J. Rune, P. Wallentin, J. Vikberg, P. Schliwa-Bertling, and R. Fan, “Tight integration of new 5G air interface and LTE to fulfill 5G requirements,” in Proc. IEEE 81st Veh. Technol. Conf., 2015, pp. 1–5. [6] 3GPP, “Universal mobile telecommunications system (UMTS); LTE; 5G; NR; multi- connectivity; overall description; stage-2,” 3GPP, Technical Specification (TS) 37.34, Apr. 2021. [7] C. Li, H. Wang, and R. Song, “Intelligent offloading for NOMA-assisted MEC via dual connectivity,” IEEE Internet of Things J., vol. 8, no. 4, pp. 2802–2813, 2021. [8] Y. Wu, Y. He, L. P. Qian, J. Huang, and X. Shen, “Optimal resource allocations for mobile data offloading via dual-connectivity,” IEEE Trans. Mobile Comput., vol. 17, no. 10, pp. 2349–2365, 2018. [9] Y. Shi, H. Qu, and J. Zhao, “Dual-connectivity enabled resource allocation approach with eICIC for throughput maximization in hetnets with backhaul constraint,” IEEE Wireless Commun. Lett., vol. 8, no. 4, pp. 1297–1300, 2019. [10] Y. Arjoune and N. Kaabouch, “A comprehensive survey on spectrum sensing in cog- nitive radio networks: Recent advances, new challenges, and future research direc- tions,” Sensors, vol. 19, no. 1, 2019. [Online]. Available: https://www.mdpi.com/ 1424-8220/19/1/126. [11] L. C. Alexandre, A. L. De Souza Filho, and A. C. Sodré, “Indoor coexistence analysis among 5G new radio, LTE-A and NB-IoT in the 700 MHz band,” IEEE Access, vol. 8, pp. 135 000–135 010, 2020. [12] B. Liu and M. Peng, “Joint resource block-power allocation for NOMA-enabled fog radio access networks,” in Proc. IEEE Int. Conf. Commun. (ICC), 2019, pp. 1–6. [13] S. McWade, M. F. Flanagan, L. Zhang, and A. Farhang, “Interference and rate anal- ysis of multinumerology NOMA,” in Proc. IEEE Int. Conf. Commun. (ICC), 2020, pp. 1–6. [14] P. K. Korrai, E. Lagunas, A. Bandi, S. K. Sharma, and S. Chatzinotas, “Joint power and resource block allocation for mixed-numerology-based 5G downlink under im- perfect CSI,” IEEE Open J. Commun. Soc., vol. 1, pp. 1583–1601, 2020. [15] J. Choi, B. Kim, K. Lee, and D. Hong, “A transceiver design for spectrum sharing in mixed numerology environments,” IEEE Trans. Wireless Commun., vol. 18, no. 5, pp. 2707–2721, 2019. [16] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva, F. Tufves- son, A. Benjebbour, and G. Wunder, “5G: A tutorial overview of standards, trials, challenges, deployment, and practice,” IEEE J. Sel. Areas Commun., vol. 35, no. 6, pp. 1201–1221, 2017. [17] 3GPP, “NR; physical channels and modulation,” 3GPP, Technical Specification (TS) 38.211, Jan. 2020. [18] X. Zhang, L. Zhang, P. Xiao, D. Ma, J. Wei, and Y. Xin, “Mixed numerologies interference analysis and inter-numerology interference cancellation for windowed OFDM systems,” IEEE Trans. Veh. Technol., vol. 67, no. 8, pp. 7047–7061, 2018. [19] S. McWade, M. F. Flanagan, J. Mao, L. Zhang, and A. Farhang, “Resource allocation for mixed numerology NOMA,” 2021. [Online]. Available: arXiv:2102.01005. [20] R.-J. Wang, C.-H. Wang, G.-S. Lee, D.-N. Yang, W.-T. Chen, and J.-P. Sheu, “Re- source allocation in 5G with NOMA-based mixed numerology systems,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2020, pp. 1–6. [21] J. Zeng, T. Lv, R. P. Liu, X. Su, M. Peng, C. Wang, and J. Mei, “Investigation on evolving single-carrier NOMA into multi-carrier NOMA in 5G,” IEEE Access, vol. 6, pp. 48 268–48 288, 2018. [22] Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K. Bhargava, “A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends,” IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2181–2195, 2017. [23] B. Liu, C. Liu, and M. Peng, “Resource allocation for energy-efficient MEC in NOMA-enabled massive IoT networks,” IEEE J. Sel. Areas Commun., vol. 39, no. 4, pp. 1015–1027, 2021. [24] W. Ni, X. Liu, Y. Liu, H. Tian, and Y. Chen, “Resource allocation for multi-cell IRS- aided NOMA networks,” IEEE Trans. Wireless Commun., vol. 20, no. 7, pp. 4253– 4268, 2021. [25] Y. Wu and L. P. Qian, “Energy-efficient NOMA-enabled traffic offloading via dual- connectivity in small-cell networks,” IEEE Commun. Lett., vol. 21, no. 7, pp. 1605– 1608, 2017. [26] C. Yu, L. Yu, Y. Wu, and Y. He, “Transmit-power minimization for NOMA-enabled traffic offloading with security provisioning,” IEEE Commun. Lett., vol. 22, no. 5, pp. 986–989, 2018. [27] Y. Tian, G. Pan, and M.-S. Alouini, “On NOMA-based mmWave communications,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 15 398–15 411, 2020. [28] L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-lin, and Z. Wang, “Non-orthogonal mul- tiple access for 5G: Solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag., vol. 53, no. 9, pp. 74–81, 2015. [29] M. Alsenwi, N. H. Tran, M. Bennis, S. R. Pandey, A. K. Bairagi, and C. S. Hong, “Intelligent resource slicing for eMBB and URLLC coexistence in 5G and beyond: A deep reinforcement learning based approach,” IEEE Trans. Wireless Commun., vol. 20, no. 7, pp. 4585–4600, 2021. [30] L. Marijanovic, S. Schwarz, and M. Rupp, “A novel optimization method for re- source allocation based on mixed numerology,” in Proc. IEEE Int. Conf. Commun. (ICC), 2019, pp. 1–6. [31] M. Yi, Y. Zhang, X. Wang, C. Xu, and X. Ma, “Deep reinforcement learning for user association in heterogeneous networks with dual connectivity,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 2021, pp. 1–5. [32] P. K. Taksande, P. Chaporkar, P. Jha, and A. Karandikar, “Proportional fairness through dual connectivity in heterogeneous networks,” in Proc. IEEE Wireless Com- mun. Netw. Conf. (WCNC), 2020, pp. 1–6. [33] G. S. Park and H. Song, “Video quality-aware traffic offloading system for video streaming services over 5G networks with dual connectivity,” IEEE Trans. Veh. Tech- nol., vol. 68, no. 6, pp. 5928–5943, 2019. [34] W. Yin, L. Xu, P. Wang, Y. Wang, Y. Yang, and T. Chai, “Joint device assignment and power allocation in multihoming heterogeneous multicarrier NOMA networks,” IEEE Syst. J., pp. 1–12, 2020. [35] Y. Huang, M. Zhang, and Y. Shang, “A user access method based on game theory in UDN considering PLS and NOMA,” in Proc. IEEE 93rd Veh. Technol. Conf., 2021, pp. 1–5. [36] L. Wan, Z. Guo, Y. Wu, W. Bi, J. Yuan, M. Elkashlan, and L. Hanzo, “4G/5G spec- trum sharing: Efficient 5G deployment to serve enhanced mobile broadband and in- ternet of things applications,” IEEE Veh. Technol. Mag., vol. 13, no. 4, pp. 28–39, 2018. [37] 3GPP, “LTE; evolved universal terrestrial radio access (E-UTRA); physical channels and modulation,” 3GPP, Technical Specification (TS) 36.211, Apr. 2020. [38] L. You, Q. Liao, N. Pappas, and D. Yuan, “Resource optimization with flexible nu- merology and frame structure for heterogeneous services,” IEEE Commun. Lett., vol. 22, no. 12, pp. 2579–2582, 2018. [39] A. Khalili, E. M. Monfard, S. Zargari, M. R. Javan, N. Mokari, and E. A. Jor- swieck, “Resource management for transmit power minimization in UAV-assisted RIS hetnets supported by dual connectivity,” 2021. [Online]. Available: arXiv : 2106.13174. [40] P.-J. Hsieh, W.-S. Lin, K.-H. Lin, and H.-Y. Wei, “Dual-connectivity prevenient handover scheme in control/user-plane split networks,” IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3545–3560, 2018. [41] N.-T. Le, L.-N. Tran, Q.-D. Vu, and D. Jayalath, “Energy-efficient resource alloca- tion for OFDMA heterogeneous networks,” IEEE Trans. Commun., vol. 67, no. 10, pp. 7043–7057, 2019. [42] D. T. Ngo, S. Khakurel, and T. Le-Ngoc, “Joint subchannel assignment and power allocation for OFDMA femtocell networks,” IEEE Trans. Wireless Commun., vol. 13, no. 1, pp. 342–355, 2013.
[43] K. Arshad and S. Rostami, “Resource allocation for multi-carrier cellular networks,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 2018, pp. 1–6. [44] L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A survey of non- orthogonal multiple access for 5G,” IEEE Commun. Surv. Tutorials, vol. 20, no. 3, pp. 2294–2323, 2018. [45] 3GPP, “LTE; evolved universal terrestrial radio access (E-UTRA); physical layer procedures,” 3GPP, Technical Specification (TS) 36.213, May 2021. [46] ——, “5G; NR; physical layer procedures for data,” 3GPP, Technical Specification (TS) 38.214, Apr. 2021. [47] J. Rao and S. Vrzic, “Packet duplication for URLLC in 5G dual connectivity archi- tecture,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 2018, pp. 1–6. [48] T. T. Nguyen, V. N. Ha, and L. B. Le, “Wireless scheduling for heterogeneous services with mixed numerology in 5G wireless networks,” IEEE Commun. Lett., vol. 24, no. 2, pp. 410–413, 2020. [49] Q. Han, B. Yang, C. Chen, and X. Guan, “Matching-based cell selection for pro- portional fair throughput boosting via dual-connectivity,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 2017, pp. 1–6. [50] 3GPP, “5G; NR; NR and NG-RAN overall description; stage-2,” 3GPP, Technical Specification (TS) 38.300, Apr. 2021. [51] ——, “5G; study on channel model for frequencies from 0.5 to 100 GHz,” 3GPP, Technical Report (TR) 38.901, Nov. 2020. [52] N. Jinaporn, S. Armour, and A. Doufexi, “Performance evaluation on resource allo- cation with carrier aggregation in LTE cellular networks,” in Proc. IEEE 90th Veh. Technol. Conf., 2019, pp. 1–5. [53] Z. Zhao, J. Shi, Z. Li, L. Yang, Y. Zhao, and W. Liang, “Matching theory assisted resource allocation in millimeter wave ultra dense small cell networks,” in Proc. IEEE Int. Conf. Commun. (ICC), 2019, pp. 1–6. [54] 3GPP, “LTE; evolved universal terrestrial radio access (E-UTRA); user equipment (UE) radio transmission and reception,” 3GPP, Technical Specification (TS) 36.101, May 2021. [55] ——, “5G; NR; user equipment (UE) radio transmission and reception; part 1: Range 1 standalone,” 3GPP, Technical Specification (TS) 38.101-1, May 2021. [56] L. Du, N. Zheng, H. Zhou, J. Chen, T. Yu, X. Liu, Y. Liu, Z. Zhao, X. Qian, J. Chi, et al., “C/U split multi-connectivity in the next generation new radio system,” in Proc. IEEE 85th Veh. Technol. Conf., 2017, pp. 1–5. [57] C. She, Z. Chen, C. Yang, T. Q. Quek, Y. Li, and B. Vucetic, “Improving network availability of ultra-reliable and low-latency communications with multi-connectivity,” IEEE Trans. Commun., vol. 66, no. 11, pp. 5482–5496, 2018. [58] 3GPP, “Evolved universal terrestrial radio access (E-UTRA); radio frequency (RF) requirements for LTE pico node B,” 3GPP, Technical Report (TR) 36.931, Jan. 2016. [59] ——, “5G; NR; user equipment (UE) radio access capabilities,” 3GPP, Technical Specification (TS) 38.306, Apr. 2021. [60] G. Simsek, H. Alemdar, and E. Onur, “Multi-connectivity enabled user association,” in Proc. IEEE 30th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC), 2019, pp. 1–6.
|