[1] M. Bhuiyan, I. Choudhury. 13.22—Review of sensor applications in tool condition monitoring in machining. Comprehensive Materials Processing 13: 539-569,2014.
[2] Y.Lei, B.Yang, X.Jiang , F. Jia, N.Li & A. K.Nandi. Applications of machine learning to machine fault diagnosis: A review and roadmap. Mechanical Systems and Signal Processing, 138, 106587.L,2020.
[3] I. Inasaki & K. Okamura. Monitoring of dressing and grinding processes with acoustic emission signals. CIRP Annals,34(1), 277-280,1985.
[4] P. O. Junior, P. R. Aguiar, C. R. Foschini, T. V. França, D. M. Ribeiro, F. I. Ferreira, & E.C. Bianchi. Feature extraction using frequency spectrum and time domain analysis of vibration signals to monitoring advanced ceramic in grinding process. IET Science, Measurement & Technology,13(1), 1-8, 2019.
[5] K.Kannan, N. Arunachalam. Grinding wheel redress life estimation using force and surface texture analysis. Procedia CIRP 72: 1439-1444,2018.
[6] 黃詩涵,主軸振動與聲音訊號於晶圓磨削之應用研究,國立清華大學奈米工程與微系統所,碩士論文,2019。[7] S.Cho , S.Binsaeid, & S. Asfour. Design of multisensor fusion-based tool condition monitoring system in end milling.The International Journal of Advanced Manufacturing Technology,46(5), 681-694, 2010.
[8] M.Hamadache, J. H.Jung, J.Park, & B. D.Youn. A comprehensive review of artificial intelligence-based approaches for rolling element bearing PHM: shallow and deep learning. JMST Advances,1(1), 125-151, 2019.
[9] X.Li and Y. Zhejun. Tool wear monitoring with wavelet packet transform—fuzzy clustering method. Wear 219(2): 145-154,1998.
[10] D.G.Manolakis, V.K. Ingle .Applied Digital Signal Processing ,Cambridge, New York, 2011.
[11] F.Al-Badour, M.Sunar, & L.Cheded. Vibration analysis of rotating machinery using time–frequency analysis and wavelet techniques.Mechanical Systems and Signal Processing,25(6), 2083-2101, 2011.
[12] Y.Yabin, & Z.Liqiang. Process Research Based on Wavelet Analysis in Chatter Monitoring. In 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE)(pp. 708-711)IEEE, 2019.
[13] E.Kolman, & M. Margaliot. Are artificial neural networks white boxes?. IEEE Transactions on Neural Networks, 16(4), 844-852, 2005.
[14] L.Breiman. Random forests. Machine learning, 45(1), 5-32,2001.
[15] X.Xue, C.Li, S.Cao, J.Sun, & L.Liu. Fault diagnosis of rolling element bearings with a two-step scheme based on permutation entropy and random forests. Entropy, 21(1), 96,2019.
[16] S.V.Dahe, G. S.Manikandan, R. Jegadeeshwaran, , G.Sakthivel, & J.Lakshmipathi. Tool condition monitoring using Random forest and FURIA through statistical learning. Materials Today: Proceedings, 2021.
[17] B. S.Yang, X.Di, & T.Han. Random forests classifier for machine fault diagnosis. Journal of mechanical science and technology,22(9), 1716-1725, 2008.
[18] J.Bergstra, & Y.Bengio. Random search for hyper-parameter optimization. Journal of machine learning research, 13(2),2012.
[19] A.V.Oppenheim, A.S.Willsky, S. H.Nawab. Signals and systems, PRENTICE HALL, NEW JERSEY,1997.
[20] H.T.Lin.Machine Learning Techniques, Blending and Bagging,2018.
[21] T.Han, D.Jiang, Q.Zhao, L.Wang, &K.Yin. Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery.Transactions of the Institute of Measurement and Control,40(8), 2681-2693,2018.
[22] G.Xu, M.Liu, Z.Jiang, D.Söffker, & W. Shen. Bearing fault diagnosis method based on deep convolutional neural network and random forest ensemble learning.Sensors,19(5), 1088,2019.
[23] M.Hamadache, J. H.Jung, J.Park, & B. D.Youn. A comprehensive review of artificial intelligence-based approaches for rolling element bearing PHM: shallow and deep learning. JMST Advances,1(1), 125-151,2019.
[24] J.Chen, H.Chen, J.Xu, J.Wang, X.Zhang, & X.Chen. Acoustic signal-based tool condition monitoring in belt grinding of nickel-based superalloys using RF classifier and MLR algorithm.The International Journal of Advanced Manufacturing Technology,98(1), 859-872,2018.
[25] M.Cerrada, G.Zurita, D.Cabrera, R. V.Sánchez, M.Artés, & C.Li. Fault diagnosis in spur gears based on genetic algorithm and random forest. Mechanical Systems and Signal Processing, 70, 87-103,2016.
[26] M.Same, G.Gandubert, G.Gleeton, P.Ivanov, & R. Landry. Simplified welch algorithm for spectrum monitoring. Applied Sciences, 11(1), 86,2021.
[27] Walpole, Ronald E., et al. Probability and statistics for engineers and scientists. Vol. 5. New York: Macmillan, 1993.