跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/07 13:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱信承
研究生(外文):Chu, Hsin-Cheng
論文名稱:應用深度學習演算法於伺服器PCIE之溫度解耦合控制系統
論文名稱(外文):Server PCIE Temperature Decoupling Control System Applied on Deep Learning Algorithm
指導教授:陳榮順陳榮順引用關係
指導教授(外文):Chen, Rong-Shun
口試委員:李明蒼童凱煬李建明
口試委員(外文):Lee, Ming-TsangTung, Kai-YangLee, Cheng-Ming
口試日期:2021-08-27
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資通訊科技產品智慧設計與控制產業碩士專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:79
中文關鍵詞:伺服器散熱控制風扇分組控制多特徵時序預測模型貪婪探索演算法預先散熱控制解耦合散熱控制
外文關鍵詞:Server Heat Dissipation ControlGrouped Fan ControlMulti-feature Time Series Predict ModelGreedy Explore AlgorithmPreactive Heat Dissipation ControlDe-coupled Heat Dissipation Control
相關次數:
  • 被引用被引用:2
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
由於萬物聯網的蓬勃發展,伺服器因此被大量使用,也因為耗能的考量,其散熱問題受到很大的重視。伺服器散熱的指標端看其內部的PCIE匯流排擴充卡(以下簡稱擴充卡)之溫度控制,而擴充卡種類繁多,發熱表現不盡相同,經常受到伺服器內部發熱元件佈局影響,產生不均勻的溫度分布,甚至會出現熱耦合現象。有別於傳統將所有風扇統一控制在相同轉速,本研究藉由深度學習預測模型、貪婪探索演算法以及費用方程式得到預先控制器,取得風扇分組之最佳組合,分別操作不同風扇組於不同轉速,可將擴充卡核心的溫度收斂至設定點之下,且能降低部份風扇轉速,有效地減少伺服器散熱的功耗。本研究開發自動化資料擷取系統,能大量自動蒐集資料;提出實時控制系統,可以即時控制PCIE擴充卡溫度;並設計友善的圖形化介面,以利系統的操作。實驗結果顯示,本研究所提的分組風扇的預先控制器與統一風扇的PID控制器皆可使目標擴充卡核心溫度達到設定點,但比起PID控制器,預先控制器可節省20%至30%左右的風扇轉速。
Due to rapidly growing of AI Internet of Things (AIoT), a huge amount of servers have been used to process the signals of AIoT recently. As a result, the ability of removing heat from servers becomes very crucial. In a server, the most critical heat performance index is the temperature control of its PCIE riser cards. However, there are various types of PCIE riser cards, and their heat generation will be different according to their specifications. The temperatures of PCIE riser cards tend to be unevenly distributed and sometimes heat-coupling may occur. Different from using the same loading for all cooling fans, this thesis proposes a preactive controller, combining deep learning, greedy algorithm, and cost function, which has the capability to obtain optimal grouped fans combination that can achieve the temperature control for PCIE cards. The results of experiments show that the server can run with two less loaded fans, compared to the PID control, resulting in effective reduction of power consumption. Also, an auto-data-acquiring system and a real-time control system, alone with their GUI, are developed by integrating server, PCIE riser cards, fans, and temperature acquiring device. These two systems are made for collecting massive data and for real-time controlling the PCIE temperatures. The results demonstrate that the proposed preactive grouped fan-control can control the temperature of target riser card around the set point, while the fanspeeds are reduced by around 20% to 30%, compared to the conventional unified PID fan-control.
摘要 ------------------------------------------ II
Abstract ------------------------------------- III
目錄 ------------------------------------------ IV
圖目錄 -------------------------------------- VIII
表目錄 ---------------------------------------- XI

第一章 緒論------------------------------------- 1

1.1 前言 ----------------------------------- 1

1.2 研究動機及目標 ------------------------- 3

1.3 文獻回顧 ------------------------------- 4

1.4 本文架構 ------------------------------ 10

第二章 伺服器系統與軟硬體介紹 ------------------ 11

2.1 伺服器系統 -------------------------------- 11

2.2 硬體設備 ---------------------------------- 13
2.2.1 熱電偶 ------------------------------ 14
2.2.2 數據擷取器 -------------------------- 15
2.2.3 PWM 訊號控制器 ---------------------- 16
2.2.4 Arduino Mega 2560 ------------------ 16
2.2.5 繼電器模組 -------------------------- 17

2.3 軟體及套件 -------------------------------- 18
2.3.1 pySerial --------------------------- 19
2.3.2 PyVISA ----------------------------- 19
2.3.3 pyQt5 ------------------------------ 20
2.3.4 asyncio ---------------------------- 20
2.3.5 PTU -------------------------------- 22
2.3.6 socket ----------------------------- 22
2.3.7 Tensorflow ------------------------- 22

第三章 系統設計與實踐 ------------------------- 25

3.1 自動化資料擷取系統 ------------------------ 25
3.1.1 系統架構 ---------------------------- 25
3.1.2 I/O 阻塞問題解決 -------------------- 27
3.1.3 實時監控圖形化介面 ------------------ 27

3.2 特徵資料蒐集 ------------------------------ 29
3.2.1 風扇分組控制 ------------------------ 29
3.2.2 元件組態檔位 ------------------------ 30
3.2.3 資料蒐集種類與排程 ------------------ 31
3.2.4 測試數據資料蒐集 -------------------- 32
3.3 預測模型簡介 ------------------------------ 33
3.3.1 DARNN ------------------------------ 33
3.3.2 MTSMFF ----------------------------- 35
3.3.3 MsA -------------------------------- 36

3.4 預測模型比較實驗設計 ---------------------- 38
3.4.1 輸入特徵刪減 ------------------------ 38
3.4.2 DARNN ------------------------------ 39
3.4.3 MTSMFF 與MsA ----------------------- 39

3.5 預先控制器設計 ---------------------------- 40
3.5.1 貪婪探索演算法 ---------------------- 41
3.5.2 費用方程式 ------------------------- 42
3.5.3 兩步驟貪婪探索演算法 ---------------- 43
3.5.4 探索範圍限制 ----------------------- 44
3
.6 PID 控制器設計 ---------------------------- 45

3.7 實時控制介面 ----------------------------- 46

第四章 實驗結果 ------------------------------ 49

4.1 CPU 與PCIE 實際功率量測 ------------------ 49
4.1.1 CPU 功率量測結果 ------------------- 49
4.1.2 PCIE 擴充卡功率量測結果 ------------ 52

4.2 風扇分組溫度表現 ------------------------- 53

4.3 資料集蒐集 ------------------------------- 57
4.3.1 室溫影響 --------------------------- 57
4.3.2 已蒐集資料集 ----------------------- 58

4.4 預測模型實驗結果比較 ---------------------- 59
4.4.1 MTSMFF 測試結果演示 ---------------- 59
4.4.2 MsA 測試結果演示 ------------------- 62
4.4.3 兩者比較與預測模型選用 -------------- 67

4.5 預先控制器與 PID 控制器結果比較 ----------- 69
4.5.1 控制器實驗結果比較 ------------------ 69
4.5.2 控制器暫態響應比較 ------------------ 70
4.5.3 風扇統一控制的極限與分組控制的優點 --- 72
4.5.4 控制器比較結論 ---------------------- 73

第五章 結論與未來工作 ------------------------- 75

參考文獻 ------------------------------------- 78
[1] A. Holst, "Public cloud services end-user spending worldwide from 2009 to 2022(in billion U.S. dollars)," 2020.
[2] R. Hintemann and S. Hinterholzer, "Energy Consumption of Data Centers Worldwide - How will the Internet become Green?," 2019.
[3] D. Li, R. Ge, and K. Cameron, "System-Level, Unified In-band and Out-of-band Dynamic Thermal Control," in 2010 39th International Conference on Parallel Processing, 12-16 Sept. 2010, pp. 131-140,
[4] B. Acun, E. K. Lee, Y. Park, and L. V. Kale, "Support for Power Efficient Proactive Cooling Mechanisms," in 2017 IEEE 24th International Conference on High Performance Computing (HiPC), 18-21 Dec. 2017, pp. 94-103,
[5] K. Zhang, A. Guliani, S. Ogrenci-Memik, G. Memik, K. Yoshii, R. Sankaran, and P. Beckman, "Machine Learning-Based Temperature Prediction for Runtime Thermal Management Across System Components," IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 2, pp. 405-419, 2018.
[6] R. Lucchese, J. Olsson, A.-L. Ljung, W. Garcia-Gabin, and D. Varagnolo, "Energy savings in data centers: A framework for modelling and control of servers’ cooling," IFAC-PapersOnLine, vol. 50, no. 1, pp. 9050-9057, 2017.
[7] C. Lee and R. Chen, "Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System," Sensors, vol. 15, no. 5, pp. 11685-11700, 2015.
[8] 何宗翰, "以類神經網路設計與實現伺服器散熱系統溫度控制器," 碩士, 動力機械工程學系, 國立清華大學, 新竹市, 2014.
[9] 林炘泓, "GRU實現伺服器PCIE溫度估測器及散熱控制系統," 碩士, 動力機械工程學系, 國立清華大學, 新竹市, 2020.
[10] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical evaluation of gated recurrent neural networks on sequence modeling," arXiv preprint arXiv:1412.3555, 2014.
[11] Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. Cottrell, "A dual-stage attention-based recurrent neural network for time series prediction," arXiv preprint arXiv:1704.02971, 2017.
[12] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, "Learning phrase representations using RNN encoder-decoder for statistical machine translation," arXiv preprint arXiv:1406.1078, 2014.
[13] R. Hübner, M. Steinhauser, and C. Lehle, "A dual-stage two-phase model of selective attention," (in eng), Psychol Rev, vol. 117, no. 3, pp. 759-84, 2010.
[14] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.
[15] S. Du, T. Li, Y. Yang, and S.-J. Horng, "Multivariate time series forecasting via attention-based encoder–decoder framework," Neurocomputing, vol. 388, pp. 269-279, 2020.
[16] M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks," IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673-2681, 1997.
[17] J. Hu and W. Zheng, "Multistage attention network for multivariate time series prediction," Neurocomputing, vol. 383, pp. 122-137, 2020.
[18] Y. Liang, S. Ke, J. Zhang, X. Yi, and Y. Zheng, "Geoman: Multi-level attention networks for geo-sensory time series prediction," in IJCAI, vol. 2018, pp. 3428-3434,
[19] J. Hu and W. Zheng, "Transformation-gated LSTM: efficient capture of short-term mutation dependencies for multivariate time series prediction tasks," in 2019 International Joint Conference on Neural Networks (IJCNN), 14-19 July 2019, pp. 1-8,
[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, "Attention is all you need," in Advances in neural information processing systems, pp. 5998-6008,
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top