跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 13:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何秉維
研究生(外文):HO, PING-WEI
論文名稱:水熱法成長氧化鋅奈米線於氧化鎵鋅薄膜及硒化鉍拓樸絕緣體於紫外光發光材料研究
論文名稱(外文):Investigation of Hydrothermal Synthesis of ZnO Nanowires on GaZnO Thin Film and Bi2Se3 Topological Insulator on Ultraviolet Luminescent Materials
指導教授:鄭永楨
指導教授(外文):CHENG, YUNG-CHEN
口試委員:鄭永楨林光儀許志維
口試委員(外文):CHENG, YUNG-CHENLIN, KUANG-IHSU, CHIH-WEI
口試日期:2020-11-27
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:材料科學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:52
中文關鍵詞:氧化鋅氧化鎵鋅硒化鉍水熱合成法機械式剝離法激發螢光光譜
外文關鍵詞:ZnOGaZnOBi2Se3Hydrothermal synthesisMechanical exfoliationPhotoluminescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究主題分為兩部分,第一部份以水熱法在氧化鎵鋅薄膜上合成氧化鋅奈米線,探討材料微結構與光學特性。氧化鋅奈米線用硝酸鋅和六亞甲基四胺的水溶液合成,其濃度分別為0.02、0.04、0.06 M對應樣品A、B、C,掃描式電子顯微鏡影像顯示當合成溶液濃度提升時奈米線的直徑由約100奈米增加到300奈米,由於奈米線變粗而出現相鄰奈米線相互聚集現象。微光激發螢光光譜顯示濃度0.04 M所合成奈米線具有最強的近帶邊放光,並無明顯缺陷放光增強現象。
第二部分研究以機械式剝離法製備二維的硒化鉍薄片,探討其表面電漿共振對紫外光發光材料性質影響。紫外光發光材料有放光波長在350~360 nm的氧化鎵鋅薄膜與放光強度更強的六週期氮化鎵/氮化鋁鎵量子井發光二極體,掃描式電子顯微鏡影像呈現不同薄片形狀,原子力顯微鏡影像顯示剝離的硒化鉍薄片厚度在50至200 nm範圍,微光激發螢光光譜顯示並沒有觀察到硒化鉍薄片表面電漿具有增強紫外發光強度的性質。

There are two research topics in this thesis. The first is the study of variation of nanostructures and optical characteristics of zinc oxide nanowires (ZnO NWs) synthesized in aqueous-solution on gallium zinc oxide (GaZnO) thin films by hydrothermal method. The aqueous solution containing 1:1 ratio of various molar concentrations of zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMTA, C6H12N4). The molar concentration are 0.02, 0.04, and 0.06 M named sample A, B, and C, respectively. Scanning electron microscopic (SEM) images show that the diameter of the ZnO NWs is increased from about 100 to 300 nm when the concentration of synthetic solution is increased. The ZnO NWs with larger diameter tends to gather together. In micro-photoluminescence (micro-PL) spectra, the strongest near energy bandgap emission is observed in the sample with ZnO NWs having synthesized concentration of 0.04 M and without enhancement of defect-related light emission.
The second research topic is the study of preparing two-dimensional bismuth selenide (Bi2Se3) thin flakes having surface plasmonic behaviors by mechanical exfoliation techniques on ultraviolet (UV) light emitting materials. UV light-emitting materials with luminescence wavelength 350~360 nm include gallium zinc oxide (GaZnO) films and six periods GaN/AlGaN quantum well light-emitting diode have stronger UV emission intensity than GaZnO films. Scanning electron microscope images demonstrate the variety of shape of thin flakes. The thickness of thin flakes range from 50 to 200 nm estimated from atomic force microscope measurements. There is no observation of UV light emission intensity enhancement of UV light-emitting materials capped with Bi2Se3 thin flakes in micro-PL spectra.
致謝 I
摘要 II
ABSTRACT III
目錄 IV
圖次 VI
表次 VIII
第一章 緒論 1
1-1 氧化鋅 1
1-2 氧化鎵鋅 2
1-3 硒化鉍 4
1-4 水熱合成法 6
1-5 機械式剝離法 7
1-6 研究動機 8
第二章 儀器介紹 9
2-1 掃描式電子顯微鏡 9
2-2 微光激發螢光光譜 11
2-3 微拉曼散射光譜 12
2-4 原子力顯微鏡 14
第三章 水熱法成長氧化鋅奈米線於氧化鎵鋅薄膜研究 15
3-1 樣品製備 15
3-2 結果與討論 17
3-2-1 掃描式電子顯微鏡 17
3-2-2 微光激發螢光光譜 21
3-2-3 微拉曼散射光譜 23
3-3 結論 24
第四章 硒化鉍拓樸絕緣體於紫外光發光材料 25
4-1 樣品製備 25
4-2 結果與討論 27
4-2-1 掃描式電子顯微鏡 27
4-2-2 原子力顯微鏡 29
4-2-3 微光激發螢光光譜 35
4-3 結論 38
第五章 總結 39
參考文獻 40


[1]Yangyang Zhang, Manoj K. Ram, Elias K. Stefanakos, and D. Yogi Goswami,, “Synthesis, Characterization, and Applications of ZnO Nanowires”, Journal of Nanomaterials, Volume 2012, Article ID 624520, 22 pages
[2]D.C. Look, “Recent advances in ZnO materials and devices”, Materials Science and Engineering: B, Volume 80, Issues 1–3, 22 March 2001, Pages 383-387
[3]A. Boltasseva, H. A. Atwater, ”Low-Loss Plasmonic Metamaterials”, Science 331, 6015 (2011)
[4]李采蓓, “臭氧成長源與退火對原子層沉積氧化鋅薄膜影響及橢圓偏振光譜分析氧化鎵鋅薄膜電性”
[5]M. Zahid Hasan, Joel E. Moore, “Three-Dimensional Topological Insulators”, Annual Review of Condensed Matter Physics Vol. 2:55-78 (Volume publication date March 2011)
[6]Desheng Kong, Wenhui Dang, Judy J. Cha, Hui Li, Stefan Meister, Hailin Peng, Zhongfan Liu, and Yi Cui, “Few-Layer Nanoplates of Bi2Se3 and Bi2Te3 with Highly Tunable Chemical Potential”, Nano Lett. 2010, 10, 6, 2245–2250
[7]Jun Yin, Harish NS Krishnamoorthy, Giorgio Adamo, Alexander M Dubrovkin, Yidong Chong, Nikolay I Zheludev, Cesare Soci, “Plasmonics of topological insulators at optical frequencies”, NPG Asia Mater 9, e425 (2017)
[8]Mingsheng Fang, Zhengyu Wang, Honggang Gu, Mingyu Tong, Baokun Song, Xiangnan Xie, Tong Zhou, Xiuguo Chen, Hao Jiang, Tian Jiang, Shiyuan Liu, “Layer-dependent dielectric permittivity of topological insulator Bi2Se3 thin films”, Applied Surface Science, Volume 509, 15 April 2020, 144822
[9]Shouhua Feng, Li Guanghua, “Modern Inorganic Synthetic Chemistry 2011, Pages 63-95, Chapter 4 - Hydrothermal and Solvothermal Syntheses”
[10]K. Byrappa, Masahiro Yoshimura, “Handbook of Hydrothermal Technology, Pages 53-81, Chapter2:History of Hydrothermal Technology”
[11]A. A. B. R. A. Laudise, "Hydrothermal Synthesis of Zinc Oxide and Zinc Sulfide", The Journal of Physical Chemistry 64, 688-691 (1960)
[12]Wen-Jun Li, Er-Wei Shi, Wei-Zhuo Zhong, Zhi-Wen Yin, “Growth mechanism and growth habit of oxide crystals”, Journal of Crystal Growth 203 (1999) 186-196
[13]Venkateswarlu Gaddam, R. Rakesh Kumar, Mitesh Parmar, M. M. Nayak, K. Rajanna, “Synthesis of ZnO nanorods on a flexible Phynox alloy substrate: influence of growth temperature on their properties”, RSC Adv., 2015, 5, 89985
[14]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva, A.A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science 22 Oct 2004:Vol. 306, Issue 5696, pp. 666-669
[15]Hai Li, Jumiati Wu, Zongyou Yin, Hua Zhang, “Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets”, Acc. Chem. Res. 2014, 47, 1067−1075
[16]Zhi-Min Liao, Bing-Hong Han, Han-Chun Wu, L. V. Yashina, Yuan Yan, Yang-Bo Zhou, Ya-Qing Bie, S. I. Bozhko, K. Fleischer, I. V. Shvets, Qing Zhao, and Da-Peng Yu, “Surface plasmon on topological insulator/dielectric interface enhanced ZnO ultraviolet photoluminescence”, AIP ADVANCES 2, 022105 (2012)
[17]全部儀器列表 - UCKU, 成功大學-維奈米科技研究中心, 成功大學, Available: http://cmnst.ncku.edu.tw/p/412-1006-13238.php?Lang=zh-tw
[18]K. Ismail, Fabrication and characterization of SERS substrates throug hphoto-depositionof Gold Nanoparticles (2015)
[19]“Introduction to Raman Spectroscopy”, B&W Tek, Available: http://bwtek.com/raman-introduction-to-raman-spectroscopy/
[20]"Atomic Force Microscopy", New York: Oxford University Press (2010)
[21]李其紘, "原子力顯微鏡的基本介紹", 科學研習, 52-5, 18 (2013)
[22]W. Zhu, S. Kitamura, M. Boffelli, E. Marin, E. D. Gaspera, M. Sturaro, A. Martucci, G. Pezzotti, “Analysis of defect luminescence in Ga-doped ZnO nanoparticles”, Phys. Chem. Chem. Phys., 18, 14, 9586 (2016)
[23]Ching-Hwa Ho, Chiao-Yeh Tseng, and Li-Chia Tien, “Thermoreflectance characterization of β-Ga2O3 thin-film nanostrips”, Optics Express Vol. 18, Issue 16, pp. 16360-16369 (2010)
[24]Rui Zhang, Peng-Gang Yin, Ning Wang, Lin Guo, “Photoluminescence and Raman scattering of ZnO nanorods”, Solid State Sciences Volume 11, Issue 4, April 2009, Pages 865-869

電子全文 電子全文(網際網路公開日期:20251216)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊