跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 06:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范黃秋娜
研究生(外文):PHAM HOANG THU-NA
論文名稱:台灣南部三個亞熱帶湖泊浮游藻生長限制因子的季節性變化
論文名稱(外文):Seasonal change of light and nutrient limitation for phytoplankton growth in three subtropical lakes of Southern Taiwan
指導教授:黃家勤黃家勤引用關係
指導教授(外文):HWANG, CHI-CHIN
口試委員:翁誌煌王一匡
口試委員(外文):WENG, CHIH-HUANGWANG, YI-KUANG
口試日期:2021-01-27
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:生態暨環境資源學系碩士班
學門:環境保護學門
學類:環境資源學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:116
中文關鍵詞:營養限制光限制優養化浮游藻類
外文關鍵詞:nutrient limitationlight limitationeutrophicationphytoplankton
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:1
本研究於2017年2月至2019年12月分析台灣南部謬思湖(Muse Lake ),舊巴克禮(Old Barclay Lake)和新巴克禮(New Barclay Lake)等三處亞熱帶湖泊優養化限制因子的季節性變化。研究使用Spearman correlation跟growth limitation functions (生長限制方程式)來判斷營養鹽和光線對浮游植物生長的影響。在沒有光限制的情況下,使用溶解性無機氮(dissolved inorganic nitrogen)與總磷(total phorsphours)比例 DIN/TP =2.6來決定是氮或磷限制。由於生長限制方程式中的常數存在不確定性,故本研究以Spearman correlation作為首要判斷生長限制的方法,並以growth limitation functions跟DIN/TP比作為補充。在謬思湖,磷限制發生的頻率最高(91.67%),另外8.33% 為光限制,而氮限制並未出現。磷限制穩定地在各個季節發生;春季的光限制主要是因太陽輻射不足與湖水濁度高所造成。在舊巴克禮湖,58.33% 的時間為氮限制,33.34% 時間為磷限制,而8.33% 時間為光限制。氮限制發生的頻繁高,特別是秋天的整個季節;磷為夏季的主要限制因子,春季則偶爾會發生光限制。在新巴克禮湖,54.54% 的時間為光限制,27.28% 時間為磷限制,18.18% 時間為氮限制。由於新巴克禮湖的高濁度,光線在春、秋和冬季是主要的限制因子,磷則是次要的限制因子。夏天則是氮和磷交互限制該湖泊浮游植物的生長。在光照充足的情況下,磷是整體三個湖泊主要的限制因子。本研究結果顯示湖泊中限制因子的季節性變化為常態性發生。在這種情況下,湖泊優養化需要多重的管理措施來加以控制。
In this study, the seasonal variation of limiting factors in three subtropical lakes: Muse Lake, Old Barclay Lake, and New Barclay Lake of Southern Taiwan were analyzed in a period from Feb, 2017 to Dec, 2019. The roles of nutrients and light on phytoplankton growth were examined using Spearman correlation and growth limitation functions. In the condition of no light limitation, a DIN/TP ratio of 2.6 was used to determine nitrogen and phosphorus limitation. Because of the uncertainty on the constants used in the growth limitation functions, the Spearman correlation was used as the primary determinant of growth limitation. For Muse Lake, 91.67% of the time was found to be phosphorus limitation, with 8.33% chance of light limitation. No nitrogen limitation occurred during the study period. Phosphorus limitation occurred steadily throughout the seasons of these years. Light limitation in spring was caused mainly by high turbidity. For Old Barclay Lake, 58.33% of the time was found to be nitrogen limitation, with another 33.34% of phosphorus limitation, and 8.33% of light limitation. Nitrogen limitation dominated fall and winter seasons. Phosphorus was the primary limiting factor in summer, while light limitation occasionally occurred in spring. For New Barclay Lake, 54.54% of the time was light limitation, with 27.28% chance of phosphorus limitation and 18.18% nitrogen limitation. Due to its high turbidity, light was found to be the primary limiting factor in spring, fall, and winter. Phosphorus was the second limiting factor. In summer, nitrogen and phosphorus were shown to be the limiting factors for phytoplankton growth in the New Barclay Lake. Under adequate light, phosphorus was found to be the primary limiting factor in all of the three lakes. The results obtained from this study indicate that seasonal change of limiting factors occures commonly in lakes. Therefore, multiple management practices are required in the control of eutrophication in lakes.
CONTENTS

Abstract i
摘要 iii
PREFACE iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES ix
CHAPTER 1 INTRODUCTION 1
1.1 Background of the study 1
1.2 Purpose of the study 2
CHAPTER 2 LITERATURE REVIEW 4
2.1 Eutrophication 4
2.2 The growth of phytoplankton 6
2.2.1 The growth of phytoplankton 6
2.2.2 The dominant algal species 9
2.3 Limiting factors for phytoplankton growth 10
2.3.1 Phosphorus limitation 11
2.3.2 Nitrogen limitation 12
2.3.3 Light limitation 14
2.4 Seasonal change of limiting factors 17
2.5 Spearman correlation 18
2.6 The growth limitation functions for nutrient and light 19
2.6.1 For nutrient: 19
2.6.2 For light 20
2.7 DIN/TP ratio 21
2.8 Model parameters 24
2.8.1 Light attenuation coefficient 24
2.8.2 Michaelis-Menten half-saturation constants 27
2.8.3 Saturating light 30
CHAPTER 3 MATERIAL AND METHODOLOGY 32
3.1 Study sites description 32
3.2 Monitoring and sample collection 33
3.3 Determination of limiting factors 34
3.3.1 Using Spearman correlation 34
3.3.2 Using growth limitation functions 35
3.3.3 Using DIN/TP ratio 36
3.4 Statistic tools 36
CHAPTER 4 RESULTS AND DISCUSSION 40
4.1 Lake water quality data 40
4.2 Factors controlling growth limitation 42
4.3 Determining limiting factors 54
4.4 Seasonal change of light and nutrients limitation 58
4.5 Seasonal change of N and P limitation 64
CHAPTER 5 CONCLUSION AND SUGGESSION 67
5.1 Conclusion 67
5.2 Suggestion 68
REFERENCE 69
APPENDIX I 83
APPENDIX II 86


Axler, C. R. & Tikkanen, C. A. (1994). Phytoplankton nutrient deficiency as related to atmospheric nitrogen deposition in northern minnesota acid-sensitive lakes. Can J Fish Aquat Sci, 51, 1-16.
Antoniou, M. G., Kagalou, I., Hadjıouraniou, G., Daskalakis, E., Tsiarta, N. & Chamoglou, M. & Polykarpou, P. (2019). Managing the risk of cyanobacteria through water quality characteristics analysis: a case study of two warm mediterranean reservoirs. 16th International Conference on Environmental Science and Technology, 1-2.
Baca, G. R. & Arnett, R. C. (1976). A limmological model for eutrophic lakes and impoundments. Battele, Pacific Northwest laboratories. Richland, Washington.
Baldia, T. N. & Hata, Y. (1991). Growth characteristics of a blue-green alga Spirulina platensis for nitrogen utilization. Nippon Suisan Gakkaishi 57(4), 645-654.
Baldia, K. F., Nishijima, T. & Hata, Y. (1995). Growth responses of Spirulina kinetics of phosphorus platensis utilization. Fisheries Science, 61(2), 331-335.
Barbieri, A. & Simona, M. (2001). Trophic evolution of Lake Lugano related to external load reduction: Changes in phosphorus and nitrogen as well as oxygen balance and biological parameters. Lakes & Reservoirs: Research and Management, 6, 37–47.
Beardall, J., Young, E. & Robert, S. (2001). Approaches for determining phytoplankton nutrient limitation. Aquatic Sciences, 63, 44-69.
Bekheet, I. A. & Syrett, P. J.(1979). The uptake of urea by Chlorella. New Phytol, 82, 179-186.
Bergström, A. K. (2010). The use of TN:TP and DIN:TP ratios as indicators for phytoplankton nutrient limitation in oligotrophic lakes affected by N deposition. Aquatic Sciences, 72(3), 277-281. doi:10.1007/s00027-010-0132-0.
Bergström, A. K., Jonsson, A., Isles, P. D. F., Creed, I. F. & Lau, D. C. P. (2020). Changes in nutritional quality and nutrient limitation regimes of phytoplankton in response to declining N deposition in mountain lakes. Aquatic Sciences. 82 (31), 1-16. https://doi.org/10.1007/s00027-020-0697-1.
Blomqvist, S., Gunnars, A. & Elmgren, R. (2004). Why the limiting nutrient differs between temperate coastal seas and freshwater lakes: A matter of salt. Limnol. Oceanogr, 49(6), 2236–2241.
Bonnet, M. P. & Poulin, M. (2004). DyLEM-1D: a 1D physical and biochemical model for planktonic succession, nutrients and dissolved oxygen cycling. Ecological Modelling, 180(2-3), 317-344. doi:10.1016/j.ecolmodel.2004.04.037.
Bowie, W. B. M., Porcella, D. B., Campbell, C. L., Pagenkopf, J. R., Rupp, G. L., Johnson, K. M., Chan, P. W. H. & Gherini, S. A. (1985). Rates, Constants, and Kinetics Formulations in Suface Water Quality Modeling (Second Edition). Research and Development, EPA/600/3-85/040.
Boynton, W.R., Garber, J. H., Summers, R. & Kemp, W. M. (1995). Inputs, transformations and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Estuaries, 18, 285-314.
Brett, M. T. & Benjamin, M. M. (2008). A reassessment of lake phosphorus residence and the nutrient loading concept in limnology. Freshwater Biology, 53, 194–211.
Broekhuizen, N., Park, J.B.K., McBride, G. B. & Craggs, R. J. (2012). Modification, calibration and verification of the IWA River Water Quality Model to simulate a pilot-scale high rate algal pond. Water Res, 46(9), 2911-2926. doi:10.1016/j.watres.2012.03.011.
Bruesewitz, D. A., Tank, J. L. & Hamilton, S. K. (2012). Incorporating spatial variation of nitrification and denitrification rates into whole-lake nitrogen dynamics. Journal of Geophysical Research: Biogeosciences, 117(G3), n/a-n/a. doi:10.1029/2012jg002006.
Carlson, R. E.(1977). A trophic state index for lakes. Limnogoly and Oceanography, 22, 362-269.
Corder, G. W. & Foreman, D. I. (2014). Nonparametric Statistics: A Step-by-Step Approach, Wiley. ISBN 978-1118840313.
Chaffin, J. D., Mishra, S., Kuhaneck, R. M., Heckathorn, S. A. & Bridgeman, T.B. (2011). Environmental controls on growth and lipid content for the freshwater diatom, Fragilaria capucina: A candidate for biofuel production. Journal of Applied Phycology, 24(5), 1045-1051. doi:10.1007/s10811-011-9732-x.
Chen, C.W. & Orlob, C.T. (1975). Ecologic simulation for aquatic environments. In: B.C. Pattern (Editor), Systems Analysis and Simulation in Ecology. Academic Press, New York, 3, 476-587.
Chellappa, NT., Borba, J. M. & Rocha, O. (2007). Phytoplankton community and physical-chemical characteristics of water in the public reservoir of Cruzeta, RN, Brazil. Braz. J. Biol, 68(3): 477-494, 2008.
Chuang, SP. (2001). Eutrophication study of twenty reservoirs in Taiwan. Water Science and Technology, 44 (66), 19-26.
Cunha, D. G. F. & Calijuri, M. D. C. (2011). Limiting factors for phytoplankton growth in subtropical reservoirs: the effect of light and nutrient availability in different longitudinal compartments. Lake and Reservoir Management, 27(2), 162-172. doi:10.1080/07438141.2011.574974.
Dahlgren, K., Andersson, A., Larsson, U., Hajdu, S. & Bamstedt, U. (2010). Planktonic production and carbon transfer efficiency along a north-south gradient in the Baltic Sea. Mar. Ecol. Prog. Ser, 409, 77–94.
Di Toro, D. M., O'Connor, D. J. & Thomann, R. V. (1971). A Dynamic Model of the Phytoplankton Population in the Sacramento—San Joaquin Delta. In Nonequilibrium Systems in Natural Water Chemistry, 131-180.
Di Toro, J. P. C. (1980). Mathematical Models Of Water Quality In Large Lakes Part 2: Lake Erie. EPA-600/3-80-065.
Diehl. (2002). Phytoplankton, Light, And Nutrients In A Gradient Of Mixing Depths: Theory. Ecology, 83(2), 386–398.
Duarte, C. M. & Kalff, J. (1987). Latitudinal influences on the depths of maximum colonization and maximum biomass of submerged angiosperms in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 44(10),1759-1764.
Dolman, A. M., Mischke, U. & Wiedner, C. (2016). Lake-type-specific seasonal patterns of nutrient limitation in German lakes, with target nitrogen and phosphorus concentrations for good ecological status. Freshwater Biology, 61(4), 444-456. doi:10.1111/fwb.12718.
Dortch, Q. & Whitledge, T. E. (1992). Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Continental Shelf Research, 12 (11), 1293-1309.
Droop. (1974). The Nutrient Status of algal cells in continuous culture. J. mar. biol. Ass. U.K, 54, 825-855.
Elser, E. R. M. & C.R. Goldrnan. (1990). Phosphorus and Nitrogen Limitation of Phytop ankton Growth in the Freshwaters of North America: A Review and Critique of Experiments Enrichments. Can. J. Fish. Aquat. Sci., 47, 1468-1477.
El-Sheekh, MM., Haroon, A. M. & Sabaw, S. (2017). Seasonal and spatial variation of aquatic macrophytes and phytoplankton community at El-Quanater El-Khayria River Nile, Egypt. Beni-Suef University Journal of Basic and Applied Sciences, 7 (3), 344-352.
Eppley, R.W., Rogers, J. N. & McCarthy, J. J. (1969). Half-saturation constants for uptake of nitrate and ammonia by marine phytoplankton. Limmol and Oceanog, 14, 912-920.
Esteves, F. A. (1998) Foundations of limnology (in Portuguese). Interciencia, Rio de Janeiro.
Ferro, L. (2019). Wastewater treatment and biomass generation by Nordic microalgae. Ph.D thesis, Umea University.
Fisher, T. R., Sellner, K., Lacouture, R., Haas, L.W., Wetzel, R.L., Magnien, R., Everitt, D., Michaels, B. & Karrh, R. (1999). Spatial and temporal variation of resource limitation in Chesapeake Bay. Marine Biology, 133, 763-778.
Gao, Z. G. & Zhang, L.Q. (2006). Multi-seasonal spectral characteristics analysis of coastal salt marsh vegetation in Shanghai, China. Estuarine, Coastal and Shelf Science, 69(1-2), 217-224. doi:10.1016/j.ecss.2006.04.016.
Gotham, I. J & Rhee, G. Y. (1981). Comparative kinetic sutudies of phosphate-limited growth and phosphate uptake in phytoplankton in continuous cuture. J. Phycol, 17, 257-265.
Guildford, S. J., Healey, F. P. & Hecky, R. E. (1987). Depression of primary production by humic matter and suspended sediment in limnocorra experiments at Southern Indian Lake, Northern Manitoba. Can. J. Fish. Aquat. Sci., 44, 1408-1417.
Guildford, S. J., & Hecky, R. E. (2000). Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnol. Oceanogr., 45(6), 1213–1223.
Graham. R. M., Kathleen, R. L., Biplob, D., Brittany. H., Peter R. L.,. Kenneth, A. S., Gavin, L. S., Bjorn, W., Jared, D. W. & Brian, F. C. (2017). Regional climate changes drive increased scaledchrysophyte abundance in lakes downwind of Athabasca Oil Sands nitrogen emissions. J Paleolimnol. 58:419–435. DOI 10.1007/s10933-017-9987-6.
Halterman, S. G., & Toetz, D.W. (1984). Kinetics of nitrate uptake by freshwater algae. Hydrobiologia, 114, , 209-214.
Haberman, J., Jaani, A., Kangur, A., Kangur, K., Laugaste, R., Milius, A., Maemets, H. & Pihu, E,. (2000). Lake Peipsi and its ecosystem. Proc. Estonian Acad. Sci. Biol. Ecol., 2000, 49 (1), 3-18.
Havens, K. E. & Walker, W.W. (2002). Development of a total phosphorus concentration goal in the TMDL process for Lake Okeechobee, Florida (USA). J. Lake Reserv. Manage., 18, 227–238.
Harris, C. M. (1986). Phytoplankton Ecology Structure, Function And Fluctuation. Published in the USA by Chapman and Hall, SBN-13: 978-970-412-30690-30697 : e-ISBN-30613: 30978-30694-30009-33165-30697; Doi: 30610.31007/30978-30694-30009-33165-30697.
Hartig, J. H. & Wallen, D. G. (1984). Seasonal variation of nutrient limitation in Western Lake Erie. Great Lakes Res, 10(4), 449-460.
Hartig, J. H. & Wallen, D. G. (1986). The influence of light and temperature on growth and photosynthesis of Fragilaria crotonensis Kitton. Journal of Freshwater Ecology, 3 (3), 371-382. doi:10.1080/02705060.1986.9665128.
Hecky, R. E. & Kilham, P. (1988). Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr, 33(4), 196-822.
Hecky, R. E. (1993). The eutrophication of Lake Victoria. SIL Proceedings, 1922-2010, 25(1), 39-48. doi:10.1080/03680770.1992.11900057.
Higgins, T. & Raine, E. R. (2006). Transition from P- to N-limited phytoplankton growth in an artificial lake on flooded cutaway peatland in Ireland. pplied Vegetation Science, 9, 223-230.
Howarth, R. W. & Cole, J. J. (1985). Molybdenum availability, nitrogen limitation, and phytoplankton growth in natural waters. Science, 229 (4714), 653-655.
Huang, Y., Li, Y., Ji, D., Nwankwegu, A. S., Lai, Q., Yang, Z., Wang, K., Wei, J. & Norgbey, E. (2020). Study on nutrient limitation of phytoplankton growth in Xiangxi Bay of the Three Gorges Reservoir, China. Sci Total Environ, 723, 138062.
Hwang, Y., Havens, K. & Steinman, A. (1998). Phosphorus kinetics of planktonic and benthic assemblages in a shallow subtropical lake. Freshwater Biology, 40, 729-745.
Hwang, C. C., Chen, W. T. & Guo, Z.Y. (2016). Light limitation and phytoplankton biomass in the coastal wetlands of Southern Taiwan. TW J. of Biodivers. 18 (4): 295-309.
Islam, M. A. & J. Beardall. (2017). Growth and photosynthetic characteristics of toxic and non-toxic strains of the Cyanobacteria Microcystis aeruginosa and Anabaena circinalis in Relation to Light. Microorganisms, 5(3). doi:10.3390/microorganisms5030045
Isles, P. D. F., Creed, I. F. & Bergström, A. K. (2018). Recent synchronous declines in DIN:TP in Swedish Lakes. Global Biogeochemical Cycles, 32(2), 208-225. doi:10.1002/2017gb005722.
Jorgensen, S. E. (1975). A eutrophication model for a lake. Ecological Modelling, 2, 147-165.
Jamu, D. M., Lu, Z. & Piedrahita, R. H. (1999). Relationship between Secchi disk visibility and Chlorophyll a in aquaculture ponds. Aquaculture., 170:205-214.
Kolzau, S., Wiedner, C. Rucker, J., Kohler, J. & Dolman, A. M. (2014). Seasonal patterns of nitrogen and phosphorus limitation in four German lakes and the predictability of limitation status from ambient nutrient concentrations. PLoS One, 9(4), e96065. doi:10.1371/journal.pone.0096065.
Kirk, J. T. O. (1994). Light and Photosynthesis in Aquatic Ecosystem. Cambrige University.
Kuhl, M. & Revsbech, N. P. (1997). A simple light meter for measurements of PAR (400 to 700 nm) with fiber-optic microprobes: application for P vs Eo(PAR) measurements in a microbial mat. Aquatic Microbial Ecology, 13, 197-207.
Kuwata, A. (2000). Effects of ammonium supply rates on competition between Microcystis noTacekii (Cyanobacteria) and Scenedesmus quadricauda (Chlorophyta): simulation study. Ecological Modelling, 135, 81–87.
Larsen, D. P., Mercier, H.T. & Malueg, K.W. (1973). Modeling algal growth dynamics in shagawa lake, minnesota, with comments concerning projected restoration of the lake. Modeling the Eutrophication Process: Workshop Proceeding, Reports. Paper 205.
Liu, W. C. (2005). Water column light attenuation estimation to simulate phytoplankton population in tidal estuary. Environmental Geology, 49(2), 280-292. doi:10.1007/s00254-005-0087-y.
Liao, M. T. & Hwang, C. C. (2018). Light limitation on phytoplankton growth of reservoirs in Taiwan. National University of Tainan, Master thesis, 10-25.
Loiselle, S. A., Azza, N., CoZar, A., Bracchini, L., Tognazzi, A., Dattilo, A. & Rossi, C. (2008). Variability in factors causing light attenuation in Lake Victoria. Freshwater Biology, 53(3), 535-545.
Malone, T. C. (1992). Effects of water column processes on dissolved oxygen, nutrients, phytoplankton, and zooplankton. In: Smith DE, Leffler M, Mackiernan G (eds) Oxygen dynamics in the Chesapeake Bay, a synthesis of recent research. MD Sea Grant UM-SG-TS-02-01, College Park, Maryland, 61-112.
Matthews, R., Hilles, M. & Pelletier, G. (2002). Determining trophic state in Lake Whatcom, Washington (USA), a soft water lake exhibiting seasonal nitrogen limitation. Hydrobiologia, 468, 107–121.
Mayberly, S. C., King, L., Dent, M. M., Jones, R. I. & Gibson, C. E. (2002). Nutrient limitation of phytoplankton and periphyton growth in upland lakes. Freshwater Biology, 47, 2136–2152.
McMaster, N. L. & Schindler, D. W. (2005). Planktonic and epipelic algal communities and their relationship to physical and chemical variables in alpine ponds in Banff National Park, Canada. Arctic, Antarctic, and Alpine Research, 37(3), 337-347.
Miranda, J. & Krishnakumar, G. (2015). Microalgal diversity in relation to the physicochemical parameters of some Industrial sites in Mangalore, South India. Environ Monit Assess, 187,11, 664. doi:10.1007/s10661-015-4871-1.
Middleboe, A. L. & Markager, S. (1997). Depth limits and minimum light requirements of freshwater macrophytes. Freshwater Biology, 37, 553-568.
Michaelis, L. & Menten, M. L. (1913). Biochemische Zeitschrift, 49 (333).
Morris, D. P. & Lewis, W. M. (1988). Phytoplankton nutrient limitation in Colorado mountain lakes. Freshwater Biology, 20, 315-327.
Muhetaer, G., Asaeda, T., Jayasanke, S. M. D. H., Baniya, M. B., Abeynayaka, H.D.L. & Yan, H. Y. (2020). Effects of light intensity and exposure period on the growth and stress responses of two Cyanobacteria Species: Pseudanabaena galeata and Microcystis aeruginosa. Water 2020, 12, 407; doi:10.3390/w12020407.
Mulder, C. & Hendriks, A. J. (2014). Half-saturation constants in functional responses. Global Ecology and Conservation, 2, 161-169. doi:10.1016/j.gecco.2014.09.006.
Odum, E.P. (1975). Fundamentals of Ecology, 2nd edition. Holt Rinehardt and Winston, New York.
Padial, A. A. & Thomaz, S. M. (2008). Prediction of the light attenuation coefficient through the Secchi disk depth: empirical modeling in two large Neotropical ecosystems. Limnology, 9(2), 143-151. doi:10.1007/s10201-008-0246-4
Papaioannou, G., Papanikolaou, N. & Retalis, D. (1993). Relationships of photosynthetically active radiation and shortwave irradiance. Theor. Appl. Climatol., 48, 23-27.
Parsons, T. R., Maita, Y. & Lalli, C. M. (1984). A manual of chemical and biological methods for seawater analysis. N.Y., Pergamon Press, 173.
Pennock. (1985). Chlorophyll Estuary: Distributions regulation in the delaware by light-limitation. Estuarine, Coastal and Shelf Science, 21, 711-725.
Pennock, J. R. & Sharp, J. H. (1994). Temporal alternation between light and nutrient limitation of phytoplankton production in a coastal plain estuary. Marine Ecology Progress Series, 111, 275-288.
Pilkaitytė, R. & Razinkovas, A. (2007). Seasonal changes in phytoplankton composition and nutrient limitation in a shallow Baltic lagoon. Boreal environment research, 12, 551–559.
Polisini, J. M., Boud, C. E. & Didgeon, B. (1970). Nutrient limiting factors in an oligotrophic South Carolina Pond. Oikos, 21(2), 344-347.
Poole, H. H & Atkins, W. R. G. (1929). Photo-electric measurements of submarine illumination throughout the year. Journal of the Marine Biological Association, 297-324.
Ptacnik, R., Anderse, T. & Tamminen, T. (2010) Performance of the Redfield Ratio and a family of nutrient limitation indicators as thresholds for phytoplankton N vs. P limitation. Ecosystems, 13, 1201–1214. doi:10.1007/s10021-010-9380-z.
Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46(3), 205-221.
Reynolds, C. S., Reynolds, S.N., Munawar, I.F. & Munawar, M. (2000). The regulation of phytoplankton population dynamics in the world's largest lakes. Aquatic Ecosystem Health & Management, 3(1), 1-21. doi:10.1080/14634980008656987.
Rhee, G. Y. (1973). A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. J. Phycol, 9, 495-506.
Salas, H. J & Thomann., R.V. (1978). A steady-state phytoplankton model of Chesapeake Bay. Journal Water Pollution Control Federation, 50 (12), 2572-2770.
Sancho, M. E. M., Castillo, J. M. J. & Yousfi, F. E. (1997). Influence of phosphorus concentration on the growth kinetics and stoichiometry of the microalga Scenedesmus obliquus. Process Biochemistry, 32 (8) , 657-664.
Scavia, D. & Park, R. A. (1976). Documentation of selected constructs and parameter values in the aquatic model cleaner. Ecological Modelling, 2, 33-58.
Scheffer, M., Breukelaar, A., Breukers, C., Coops, H., Doef, R. & Meijer, M. L. (1994). Short communication vegetated areas with clear water in turbid shallow lakes. Aquatic Botany, 49, 193-196.
Schindler, D. W. (1978). Factors regulating phytoplankton production and standing crop in the world's freshwaters. Limnol. Oceunoyr, 23(3), 478-486.
Schindler, D. W. (2006). Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr, 51(1), 356–363.
Shaoying, Lin., Tao, Zou., Huiwang, Gao. & Xinyu, Guo. (2009). The vertical attenuation of irradiance as a function of turbidity: a case of the Huanghai (Yellow) Sea in spring. Acta Oceanologica Sinica, 28(5), 66-75.
Sickman, J.O., Melack, J. M., Clow, D. W. (2003). Evidence for nutrient enrichment of high-elevation lakes in the Sierra Nevada, California. Limnol. Oceanogr, 48(5), 1885–1892.
Smith, V. H. & Bennett, S. J. (1999): Nitrogen, phosphorus supply ratios and phytoplankton community structure in lakes. Arch Hydrobiol, 146, 37-53.
Smith, V. H. (2001): Blue-green algae in eutrophic fresh waters. Lake Line, 21(1), 34-37.
Søndergaard, M., Larsen, S. E., Jørgensen, T. B. & Jeppesen, E. (2011). Using Chlorophyll a and Cyanobacteria in the ecological classification of lakes. Ecological Indicators, 11, 1403–1412.
Søndergaard, M., Bjerring, R. & Jeppesen, E. (2013). Persistent internal phosphorus loading during summer in shallow eutrophic lakes. Hydrobiologia, 710, 95–107.
Sorokin, C. & Krauss, R.W. (1961). Effects of temperature & illuminance on Chlorella growth uncoupled from cell division. Scientific Article, A910(3249), 37-43.
Sudhakar, K., Satpathy, G. & Premalatha, M. (2013). Modelling and estimation of photosynthetically active incident radiation based on global irradiance in Indian latitudes. International Journal of Energy and Environmental Engineering, 4 (21), 2-8.
Steele, J. H. (1965). Notes on some theoretical problems in production ecology, "Primary production in aquatic environments," C. R. Goldman, Ed., Mem. Inst. Idrobiol, 18 Suppl., University of California Press, Berkeley, 383-398.
Thebault, J. M. & Qotbi, A. (1999). A model of phytoplankton development in the lot river (France). Simulations Of Scenarios. Wat. Res., 33(4), 1065-1079.
Tilzer, M. M. (1988). Secchi disk - chlorophyll relationships in a lake with highly variable phytoplankton biomass. Hydrobiologia, 162, 163-171.
Torremorell, A., Bustigorry, J., Escaray, R. & Zagarese, H. E. (2007). Seasonal dynamics of a large, shallow lake, laguna Chascomús: The role of light limitation and other physical variables. Limnologica, 37(1), 100-108. doi:10.1016/j.limno.2006.09.002.
Torzillo, G. (1994). Effect of light and temperature on the photosynthetic activity of the cyanobacterium spirulina platensis. Biomass and Bioenergy, 6 (5), 399-403.
Tredici, M. R. (2010). Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels, 1, 143–162. doi:10.4155/bfs.09.10.
Varol, M. (2019). Phytoplankton functional groups in a monomictic reservoir: seasonal succession, ecological preferences, and relationships with environmental variables. Environmental Science and Pollution Research. 26:20439–20453 https://doi.org/10.1007/s11356-019-05354-0
Vitousek, P. M. & Howarth, R.W. (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87-115.
Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications, 20, 5-15.
Wang, W., Wang, Y., Liu, L., Shu, J., Zhu, Y,. & Zhou, J. (2013). Phytoplankton and eutrophication degree assessment of Baiyangdian Lake wetland, China. ScientificWorldJournal, 2013, 436965. doi:10.1155/2013/436965.
Wang, W., Wang, D. & Wu, J. (2015). Assessing the impact of Danjiangkou reservoir on ecohydrological conditions in Hanjiang river, China. Ecological Engineering, 81, 41-52. doi:10.1016/j.ecoleng.2015.04.006.
Walker, W. W. (1975). Description of the Charles River Basin Model. Chapter 6 of the Final Report on the Storrow Lagoon Demonstration Plant. Process Research, Inc., Cambridge, Massachusetts. For Commowealth of Massachusetts, Metropolitan District Commission.
Wetzel, R. G. (2001). Limnology: Lake and River Ecosystems. Academic press, An Imprint of Elsevier.
Levine, M. A. & Whalen, S. C. (2001). Nutrient limitation of phytoplankton production in Alaskan Arctic foothill lakes. Hydrobiologia (455), 189–201.
Wofsy, S. C. (1983). A simple model to predict extinction coefficient and phytoplankton biomass in eutrophic waters. Limnol. Oceanogr., 28(G), 1144-1155.
Wiedner, C., Rucker, J., Bruggemann, R. & Nixdorf, B. (2007). Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia 152: 473–484. doi:10.1007/s00442-007-0683-5.
William, M. R.(2019). Nitrogen and phosphorus biomass-kinetic model for chlorella vulgaris in a biofuel production scheme. Theses and Dissertations. 2128.
Xu, H., Paerl, H. W., Qin, B., Zhu, G. & Gao, G. (2010). Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol. Oceanogr, 55(1), 420–432.
Yang, J., Li, X., Hu, H., Zhang, X., Yu, Y. & Chen, Y. (2011). Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. Applied Energy, 88(10), 3295-3299. doi:10.1016/j.apenergy.2010.11.029.
Yang, J., Yu. X., Liu, L., Zhang, W. & Guo, P. (2012). Algae community and trophic state of subtropical reservoirs in southeast Fujian, China. Environ Sci Pollut Res Int, 19(5), 1432-1442. doi:10.1007/s11356-011-0683-1.
Zhang, Y., Liu, X., Yin, Y., Wang, M. & Qin, B. (2012). Predicting the light attenuation coefficient through Secchi disk depth and beam attenuation coefficient in a large, shallow, freshwater lake. Hydrobiologia, 693(1), 29-37. doi:10.1007/s10750-012.
Zhao, X., Shaojun, P., Feng, L., Tifeng, S. & Jing, L. (2014). Biological identification and determination of optimum growth conditions for four species of Navicula. Acta Oceanol. Sin., 33 (8), 111–118.
Zhao, X., Xia, Y., Ti, C., Shan, J., Li, B., Xia, L. & Yan, X. (2015). Nitrogen removal capacity of the river network in a high nitrogen loading region. Environ Sci Technol, 49(3), 1427-1435. doi:10.1021/es504316b.
Zhao, X., Wang, J., Wang, J. & Wang, J.X.L. (2019). Seasonal dependency of controlling factors on the phytoplankton production in Taihu Lake, China. J Environ Sci (China), 76, 278-288. doi:10.1016/j.jes.2018.05.010.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊