跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 07:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳信廷
研究生(外文):Wu, Sin-Ting
論文名稱:磷鎢酸添加於二氧化鈦奈米管應用於染料敏化太陽能電池之研究
論文名稱(外文):Titanium Dioxide Nanotubes Added with Phosphotungstic Acid Applied to Dye-Sensitized Solar Cells
指導教授:郭金國郭金國引用關係
指導教授(外文):Kuo, Chin-Guo
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:工業教育學系
學門:教育學門
學類:專業科目教育學類
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:80
中文關鍵詞:染料敏化太陽能電池二氧化鈦奈米管磷鎢酸
外文關鍵詞:DSSCPhosphotungstic acidTitanium dioxide nanotubes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技日新月異、工業發展的擴張,世界用電量大幅度提高,太陽能電池的發展也更加重要,也成為未來永續發展的能源趨勢之一。而在太陽能電池中,染料敏化太陽能電池具備發電門檻低、環保、低成本及可撓輕量化等四大優勢,為一具有潛力之太陽能電池。染料敏化太陽能電池之光電轉換效率與光電極息息相關,光電極的材料、形貌、厚度等皆會影響到整體效率。本研究係利用二氧化鈦奈米管作為光電極,製備之二氧化鈦奈米管,觀察其形貌、管長、晶體結構等性質,並添加磷鎢酸探討添加不同濃度之磷鎢酸對二氧化鈦奈米管所造成的影響。其各項性質分析使用掃描式電子顯微鏡(Scanning Electron Microscope,簡稱SEM)、X-Ray繞射分析(X-ray Diffractometer,簡稱XRD)進行檢測,再以紫外-可見分光光度計(Ultraviolet–visible spectroscopy,簡稱UV-Vis)量測其吸附效果,封裝完成之染料敏化太陽能電池元件性質以電壓-電流特性曲線(I-V curve)分析、單波長光電轉換的(Monochromatic Incident Photon-to-electron Conversion Efficiency, 簡稱IPCE)進行量測。研究結果顯示,添加磷鎢酸能夠讓銳鈦礦相峰值更加明顯,且染料之吸附能力較未添加磷鎢酸時佳,光電轉換效率亦有提升。
As the expansion of industry and technology, the use of electricity has enormously increased, so does the importance of solar cell, which has become an important energy source for sustainable development in the future. Among all solar cell, dye-sensitized solar cell has lots of advantages such as, low threshold for power generation, environmental friendly, low cost, and pliability, which makes it becomes a promising solar cell.The photoelectric conversion efficiency of the dye-sensitized solar cell is closely related to photoelectrode, also, the material, shape, and the thickness of the photoelectrode will affect the overall efficiency. This paper uses TiO2 nanotubes as the photoelectrode, observing its characteristic such as, shape, length of tube, and crystal structure et cetera, and then add different concentration of phosphotungstic acid to the tube, which will cause different influences on the TiO2 nanotubes, and study for the relations. Using SEM, XRD to analyze each characteristics, UV-Vis for measuring adsorption effect, and then uses I-V curve, IPEC for the final measurement. The research shows that adding phosphotungstic acid can make the phase peak of anatase more obvious, the adsorption ability becomes better, and also enhance the photoelectric conversion efficiency.
目 次

第 一 章 緒論 1
1.1 前言 1
1.2 太陽能電池發展沿革 3
1.3 研究動機與目的 5
第 二 章 文獻探討 7
2.1 太陽能電池原理 7
2.1.1 光電效應 7
2.1.2 光生伏打效應 8
2.2 太陽能電池之種類 9
2.2.1 矽晶半導體太陽能電池 9
2.2.2 化合物半導體太陽能電池 11
2.2.3 有機物、奈米結構太陽能電池 12
2.2.4 多層結構太陽能電池 13
2.3 染料敏化太陽能電池 14
2.3.1 透明導電玻璃 16
2.3.2 光電極 18
2.3.3 染料光敏化劑 20
2.3.4 電解質 22
2.3.5 對電極 23
2.4 二氧化鈦 25
2.4.1 晶體結構 25
2.4.2 陽極氧化製備二氧化鈦奈米管 27
2.5 磷鎢酸 31
2.5.1 磷鎢酸應用於二氧化鈦光電極之染料敏化太陽能電池 33
2.5.2 磷鎢酸應用於二氧化鈦光催化 35
第 三 章 實驗方法與步驟 37
3.1 實驗流程圖 38
3.2 實驗材料 39
3.3 實驗步驟 40
3.3.1 試片前處理 40
3.3.2 第一次陽極氧化 41
3.3.3 熱處理 41
3.3.4 第二次陽極氧化 42
3.3.5 奈米管脫膜 42
3.3.6 奈米管轉移至FTO 43
3.3.7 塗佈磷鎢酸溶液 44
3.3.8 染料浸泡 45
3.3.9 封裝 45
3.4 實驗儀器 46
3.4.1 X光繞射分析 47
3.4.2 掃描式電子顯微鏡 48
3.4.3 紫外 - 可見分光光度計 49
3.4.4 電壓 - 電流特性曲線分析 50
3.4.5 單波長光電轉化效率儀 52
3.4.6 ImageJ 分析軟體 53
第 四 章 實驗結果與討論 55
4.1 二氧化鈦奈米管之微結構分析 55
4.1.1 陽極處理製備之二氧化鈦奈米管 55
4.1.2 不同反應電壓製備之二氧化鈦奈米管 56
4.1.3 不同反應時間製備之二氧化鈦奈米管 58
4.2 磷鎢酸添加於二氧化鈦奈米管之分析 61
4.2.1 二氧化鈦奈米管之XRD分析 61
4.2.2 添加不同濃度磷鎢酸之染料吸收光學特性分析 63
4.2.3 添加不同濃度磷鎢酸對染敏電池元件效率之分析 64
4.3 添加磷鎢酸對染料敏化電池元件效率之改善 66
4.3.1 增加管長對添加磷鎢酸之染敏電池元件效率影響 66
4.3.2 不同濃度磷鎢酸對染敏電池元件IPCE之影響 68
第 五 章 結論與未來展望 71
5.1 結論 71
5.2 未來展望 72
參考文獻 73
參考文獻
[1] Arthouros Zervos, “ RENEWABLES 2019 GLOBAL STATUS REPORT ” , April. 2020.
[2] A. Louwen, W.G.J.H.M. van Sark, A.P.C. Faaij ,and R.E.I. Schropp, “ Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development Nat. Commun, ” Nature Communications., vol. 7, pp. 13728, 2016.
[3] 陳緯庭(2012),“核能的優點和缺點”,取自https://goo.gl/v4UWp3
[4] Gevorkian, P., “Sustainable Energy System Engineering: The Complete Green Building Design Resource, ” New York, 2007.
[5] Tsokos, K. A., Physics for the IB Diploma Full Colour., Cambridge, 1998.
[6] 工業技術研究院,“染料敏化太陽能電池”。取自:https://reurl.cc/qd6dqD
[7] 工業技術研究院,“電動窗簾綠經濟工研院台塑聯手突破瓶頸打造新一代染敏電池產線”,取自:https://reurl.cc/GVOVvD
[8] 姚惠茹(2019),“單靠環境光就能自主發電!工研院攜手台塑打造染敏電動窗簾”,取自:https://www.ettoday.net/news/20190926/1543716.htm
[9] 台灣太陽光電產業協會,“矽晶太陽電池技術、成本與性能”,TPVIA2012年報告,pp.1-7,2012年。
[10] 吳育任,“淺談太陽能電池的原理與應用 臺大電機系科普系列”,1-7頁,2014年4月號。
[11] 物理雙月刊,“1921年諾貝爾物理獎:阿爾伯特.愛因斯坦”,2017年8月。
[12] 物理雙月刊,“關於光產生和轉變的一個啟發性觀點”,653-659頁,27卷,第5期,2005年10月。
[13] 陳政營,“大地豐富的金屬硫族化合物光伏電池:銅鋅錫硫(CZTS)”,化學,頁213-220,77卷,3期,2019 年 09 月
[14] 台灣太陽光電產業協會,“矽晶太陽電池技術、成本與性能”,TPVIA 2012年報,17頁,2012年。
[15] 綠色能量有限公司,“單晶矽、多晶矽及非晶矽的分別”,取自:http://greenergy-tw.com/info1.html
[16] 科技台灣,“基礎電子材料”,2012年。
[17] L. Kazmerski, “Best Research-Cell Efficiencies”, USA, 2016.
[18] 陳士偉,“淺談矽晶太陽能電池”,國家奈米元件實驗室奈米通訊,40-42頁,24卷,1期,2017年3月。
[19] 王珽玉(2017),“太陽能多晶矽生長技術與晶片製造技術之演進”,取自:https://www.materialsnet.com.tw/DocView.aspx?id=25413
[20] Hovel H J, Woodall J M. Journal of the Electrochemical Society : Solid State Science and Technology, vol. 120, No. 9, pp.1246, 1973.
[21] 亞布鲁諾維契,“砷化鎵薄膜太陽能電池效率提升至 28.4%”,勞倫斯伯克利國家實驗室,美國,2011年。
[22] Philip Jackson, et al. “New world record efficiency for Cu(In,Ga)Se 2 thin‐film solar cells beyond 20%,” Progress in Photovoltaics: Research and Applications, vol. 19, No. 7, 2010.
[23] Kearns D., Calvin M. J., “Photovoltaic Effect and Photoconductivity in Laminated Organic Systems, ” Chem. Phys., vol. 29, pp.950-951, 1958.
[24] DIGITIMES,“各類太陽能電池材料發展趨勢與比較”,2014年。取自:https://reurl.cc/E7e7vA
[25] 黃建榮,“有機太陽能電池技術發展”,光連雙月刊, No.111,55-60頁,2014年5月。
[26] Brian O'Regan, Michael Grätzel,“A low cost, high efficiency solar cellbased on dye sensitized colloidal TiO2 films ,” Nature, vol. 353, No. 6346, pp.737-740 , 1991.
[27] D. C. Law et al., “Future Technology Pathways of Terrestrial III-V Multijunction Solar Cells For Concentrator Photovoltaic Systems, ” Solar Energy Mat. Solar Cells, vol. 94, pp.1314-1318, 2010.
[28] 山口真史,“超高効率型太陽電池の研究動向”, 月刊デイスプレイ ,2011年3月,37頁,2011年3月。
[29] 太陽光電產業協會,“超高效率太陽能電池研究動向”,TPVIA產業報告,2012年。
[30] H. TSUBOMURA, M. MATSUMURA, Y. NOMURA and T. AMAMIYA, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell,” Nature, vol. 261, pp. 402-403, 1976.
[31] Brian O'Regan and Michael Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, pp. 737-740, 1991.
[32] Md. K.Nazeeruddin et al., “A high molar extinction coefficient charge transfer sensitizer and its application in dye-sensitized solar cell,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 185, no. 2-3, pp. 331-337, 2007.
[33] Mohammad K Nazeeruddin et al., “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells,” Journal of the American Chemical Society, vol. 123, pp. 1613-1624, 2001.
[34] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer and M. Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature, vol. 395, pp. 583-585, 1998.
[35] Gong, J., Liang, J., & Sumathy, K., “Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials”. Renewable and Sustainable Energy Reviews, vol. 16, no. 8, pp.5848–5860. 2012.
[36] 楊明輝(2009),“太陽電池用透明導電膜材料”,取自:https://reurl.cc/8G8GAo
[37] Sima, C., Grigoriu, C., & Antohe, S. “Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO,” Thin Solid Films, vol.519, no. 2, pp.595–597. 2010.
[38] Kawashima, T., Matsui, H., & Tanabe, N. (2003). “New transparent conductive films: FTO coated ITO,” Thin Solid Films, vol. 445, no. 2, pp.241–244, 2003.
[39] Shakeel Ahmad, M., Pandey, A. K., & Abd Rahim, N. “Advancements in the development of TiO 2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications, ” Renewable and Sustainable Energy Reviews, vol.77, pp.89–108, 2017.
[40] Hosenuzzaman, M., Rahim, N. A., Selvaraj, J., Hasanuzzaman, M., Malek, A. B. M. A., & Nahar, A. “ Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation,” Renewable and Sustainable Energy Reviews, vol.41, pp. 284–297, 2015.
[41] D. J. Yang, S. C. Yang, J. M. Hong, H. Lee, I. D. Kim, J. Electroceram, 2008.
[42] M.S. Akhtar, “ A facile synthesis of ZnO nanoparticles and its application as photoanode for dye sensitized solar cells, ” Science of Advanced Materials, vol.7 , pp.1137-1142. 2015.
[43] Chen, Y.-C., Li, Y.-J., & Hsu, Y.-K, “ Enhanced performance of ZnO-based dye-sensitized solar cells by glucose treatment, ” Journal of Alloys and Compounds, vol.748, pp.382–389, 2018.
[44] Birkel, A., Lee, Y.-G., Koll, D., Meerbeek, X. V., Frank, S., Choi, M. J., Tremel, W, “ Highly efficient and stable dye-sensitized solar cells based on SnO2nanocrystals prepared by microwave-assisted synthesis, ” Energy Environ, vol.05, no. 1, pp.5392–5400, 2012.
[45] Wanninayake, W. M. N. M. B., Premaratne, K and Rajapakse, R. M. G, “High Efficient Dye-Sensitized Solar Cells Based on Synthesized SnO2 Nanoparticles, ” Journal of Nanomaterials, pp.1 – 8, 2016.
[46] H. Elbohy, K.M. Reza, S. Abdulkarim, Q. Qiao, “Creation of oxygen vacancies to activate WO3 for higher efficiency dye-sensitized solar cells.Sustain, ” Energy Fuels, vol. 2 , pp.403 - 412, 2018.
[47] Yong, S.-M., Nikolay, T., Ahn, B. T., & Kim, D. K, “ One-dimensional WO3 nanorods as photoelectrodes for dye-sensitized solar cells, ” Journal of Alloys and Compounds, vol. 547, pp.113–117, 2013.
[48] Ozawa, H., Sugiura, T., Kuroda, T., Nozawa, K., & Arakawa, H,“Highly efficient dye-sensitized solar cells based on a ruthenium sensitizer bearing a hexylthiophene modified terpyridine ligand, ” Journal of Materials Chemistry A, vol. 4, no. 5, pp.1762–1770, 2016.
[49] 黃嘉聖,“二氧化鈦奈米管應用於染料敏化太陽能電池之研究”,國立臺灣師範大學,碩士論文,2009年08月
[50] 林威諭,“螢光散射層應用於二氧化鈦奈米管染料敏化太陽能電池之研究”,國立臺灣師範大學,碩士論文,2018年08月
[51] Sun, L., Zhang, S., Sun, X. and He, X,“ Effect of the Geometry of the Anodized Titania Nanotube Array on the Performance of Dye-Sensitized Solar Cells, ” Journal of Nanoscience and Nanotechnology, vol.10, no. 7, pp.4551–4561, 2010.
[52] Roy, P., Kim, D., Lee, K., Spiecker, E. and Schmuki,“ TiO2 nanotubes and their application in dye-sensitized solar cells, ” Nanoscale, vol. 2, no. 1, pp.45–59, 2010.
[53] M. Ryan, “PGM HIGHLIGHTS: Progress in Ruthenium Complexes for Dye Sensitised Solar Cells,” Platinum Metals Rev., vol. 53, no. 4, pp. 216, 2009.
[54] Helena Greijer Agrell, Jan Lindgren, “ Degradation mechanisms in a dye-sensitized solar cell studied by UV–VIS and IR spectroscopy, ”Solar Energy, vol. 75, pp. 169, 2003.
[55] C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, J.Phys. Chem.B, vol. 106, pp. 12693, 2002.
[56] H.Arakawa, K.Sayama, K.Hara, H.Sugihara, T.Yamaguchi, M.Yanagida, H.Kawauchi, T.Kashima, G.Fujihashi, S.Takano.“ Improvement of efficiency of dye-sensitized solar cell-optimization of titanium oxide photoelectrode, ” 3rd World Conference on Photovoltaic Energy Conversion, pp.11-18, 2003.
[57] 崔孟晉(2008),“染料敏化太陽能電池電解質概述”,取自:http://www.materialsnet.com.tw/DocView.aspx?id=7482
[58] 李明威,“固體半導體敏化太陽電池-太陽能的明日之星”,物理雙月刊,37卷,2,2005年。
[59] Thomas, S., Deepak, T. G., Anjusree, G. S., Arun, T. A., Nair, S. V. and Nair, A. S ,“A review on counter electrode materials in dye-sensitized solar cells, ”J. Mater. Chem. A, vol. 2, no. 13, pp.4474 – 4490, 2014.
[60] Kim, S.-S., Nah, Y.-C., Noh, Y.-Y., Jo, J., & Kim, D.Y ,“ Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells, ”Electrochimica Acta, vol.51, no. 18, pp.3814 – 3819, 2006.
[61] K. S. Lee, H. K. Lee, D. H. Wang, N. G. Park, J. Y. Lee, O. O. Park and J. H. Park, Chem. Commun., 46, pp. 4505-4507, 2010.
[62] Clifford A. Hampel, The Encyclopedia of the Chemical Elements, New York, 1968.
[63] 張昭賢,“鈦電極工學”,北京,冶金工業出版社,2003。
[64] Nie Xiliang, Zhuo Shuping, Maeng Gloria and Karl Sohlberg, “Doping of TiO2 Polymorphs for Altered Optical and Photocatalytic Properties,” International Journal of Photoenergy, vol. 3, pp. 1248, 2009.
[65] 徐維佑,“銳鈦礦型二氧化鈦系透明導電薄膜之製備”,國立臺北科技大學,碩士,2011。
[66] Ho Chang, Chin-Guo Kuo, and Cheng-Yi Chou, Highly-Ordered Arrays of TiO2 Thin Film for Dye-Sensitized Solar Cells Fabricated by Anodic Oxidation Process, International Journal of Precision Engineering and Manufacturing, Vol. 16, No. 7, pp.1-5, 2015.
[67] Lu-Lin Li et al., Morphologic Characterization of Anodic Titania Nanotube Arrays forDye-Sensitized Solar Cells, Journal of the Chinese Chemical Society, vol. 57, pp.1147-1150, 2010.
[68] Maggie Paulose et al., Backside illuminated dye-sensitized solarcells based on titania nanotube array electrodes, Nanotechnology, vol. 17, pp.1446-1448, 2006.
[69] Gopal K., MorOomman K. Varghese, Maggie Paulose, Karthik Shankar, Craig A. Grimes, “A review on highly ordered, vertically oriented TiO2nanotube arrays: Fabrication, material properties, and solar energy applications”. Solar Energy Materials & Solar Cells, vol. 90, pp. 2011-2075, 2006.
[70] Gege Li, Xuemin Yan, Ping Mei, Yu Jiang, Yan Zhang, Fei Deng, Yan Xiong & Haolin Tang,“Enhanced performance of dye-sensitized solar cells based on meso/macroporous phosphotungstic acid/TiO2 photoanodes”, Journal of Materials Science: Materials in Electronics ,vol. 29 , pp.7718–7724,2018.Wenzhang Li, Jin, G., Hu, H., Li, J., Yang, Y. and Chen, Q, “Phosphotungstic acid and WO3 incorporated TiO2 thin films as novel photoanodes in dye-sensitized solar cells, ” Electrochimica Acta, vol. 153, pp.499–507, 2015.
[71] 彭嘉德,“二氧化鈦奈米晶體之合成與鑑定:染料敏化太陽電池應用”,國立臺灣大學,碩士,2016。
[72] Lakkanna S.,Jagadish S.,Atulkumar A., “Spectroscopic investigations of interaction between TiO2 and newly synthesized phenothiazine derivative - PTA dye and its role as photo-sensitizer, ” Journal of Luminescence, vol. 198, pp. 117 – 123, 2018.
[73] Li, W., Jin, G., Hu, H., Li, J., Yang, Y., & Chen, Q. , “ Phosphotungstic acid and WO3 incorporated TiO2 thin films as novel photoanodes in dye-sensitized solar cells, ” Electrochimica Acta, vol. 153, pp.499–507, 2015.
[74] Parayil, S. K., Lee, Y. M., & Yoon, M. (2009). Photoelectrochemical solar cell properties of heteropolytungstic acid-incorporated TiO2 nanodisc thin films, ” Electrochemistry Communications, vol. 11, no.6, pp.1211–1216, 2009.
[75] Petrović, S., Rožić, L., Vuković, Z., Grbić, B., Radić, N., Stojadinović, S. and Vasilić ,“Structural and fractal characterization of tungstophosphoric acid modified titanium dioxide photocatalyst. ” Journal of Physics and Chemistry of Solids, vol. 103, pp.95–102, 2017.
電子全文 電子全文(網際網路公開日期:20260110)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top