( 您好!臺灣時間:2021/08/06 12:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Liu, Shu-Hao
論文名稱(外文):Explore the Respiratory Quotient in Various States of Human Body by Self-Assembled Portable Human Breath Sensing Device
指導教授(外文):Lin, Cheng-Huang
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用氣體感測器為基礎,結合LabVIEW(Laboratory Virtual Instrumentation Engineering Workbench)電腦語言程式及獨創的氣哨聲波技術,成功開發出一款新型的攜帶式人體呼氣感測裝置,此裝置不只能對環境的氧氣及二氧化碳進行即時監測,還能對人體呼氣進行分析,本研究突破了以往大多數氣體分析實驗中須使用龐大且昂貴的氣象層析質譜儀的限制,人體呼氣感測裝置不只具有體積小且價格合理的優點,同時具備測量精準、操作簡單、不受環境限制及非侵入式設計等優勢,讓人體呼氣感測裝置在未來有相當大的發展空間。
在人體呼氣實驗中對受試者各種狀態下的呼吸商(respiratory quotient,RQ)進行探討,其中包含正常狀態、睡眠狀態(正常睡眠、午睡、失眠與賴床)及運動狀態(有氧運動與無氧運動),發現人體在睡眠狀態時,呼吸商大幅降低且隨著睡眠深度改變呈現三階段變化,而人體在有氧運動狀態時呼吸商呈S形線性下降,在無氧運動狀態時則小幅度上升,這些趨勢證明呼吸商與身體狀態具備高度關連性,使用人體呼氣感測裝置檢測呼吸商能作為判斷身體狀況的依據。
In this study, we used a gas sensor as the basis, in conjunction with the LabVIEW(Laboratory Virtual Instrumentation Engineering Workbench)computer language program and the original whistle sound wave technology, successfully developed a portable human breath sensing device. This device is not only used in the concentration measurement of the environment, but also used to analyze human breath. We break through the limitation of using large and expensive gas chromatography mass spectrometry in most gas analysis experiments. The advantage of human breath sensing device is small size, reasonable price, accurate measurement, simple operation and without the limitation of environment.
In the human breath experiment, the respiratory quotient of the subject under various states was explored. It was found that when human is in sleep state, the respiratory quotient is greatly reduced and presents a three-stage change according to sleep depth. We also found that the respiratory quotient decreases as an S-shape during aerobic exercise and increases slightly during anaerobic exercise.
摘要 i
Abstract ii
目次 iii
表次 vii
圖次 viii
第一章 緒論 1
1-1研究目的 1
1-2人體呼氣介紹 3
1-3呼吸商簡介 4
1-3-1呼吸商計算 5
1-3-2呼吸商應用 6
第二章 分析原理及方法 7
2-1市售氣體感測器 7
2-2光學式氣體感測器 7
2-2-1紅外線吸收介紹 7
2-2-2非散射性紅外線吸收氣體感測器 8
2-3電化學式氣體感測器 10
2-3-1電化學式氣體感測器開發簡介 10
2-3-2電化學式氧氣感測器 11
2-4氣哨音波感測器 12
2-4-1氣哨音波技術的應用 12
2-4-2氣哨發聲原理 13
2-4-3氣哨的設計與製作 13
2-5人體呼氣係數 15
2-6睡眠 16
2-7有氧運動及無氧運動 17
第三章 儀器與實驗方法 18
3-1 LabVIEW程式 18
3-2 123D Design軟體 20
3-3人體呼氣感測裝置 21
3-3-1 ULN2003微型驅動電路 24
3-3-2驅動器ULN2003 25
3-3-3繼電器LU-5H 26
3-3-4資料擷取裝置myDAQ 27
3-3-5氧氣感測器KE-50 28
3-3-6二氧化碳感測器CDM7160 29
3-4編寫LabVIEW程式 31
3-4-1即時監測LabVIEW程式 31
3-4-2人體呼氣LabVIEW程式 33
3-4-3資料處理LabVIEW程式 41
3-5儀器及周遭設備列表 43
3-6氣體樣品列表 46
3-7裝置商品化 47
第四章 結果與討論 49
4-1人體呼器裝置的校正 49
4-1-1未組裝感測器的多點校正 49
4-1-2氧氣校正 51
4-1-3二氧化碳校正 53
4-2正常狀態呼吸商的測量 55
4-3睡眠狀態呼吸商的測量 60
4-3-1正常睡眠的呼吸商 61
4-3-2特殊睡眠的呼吸商 68
4-3-3午睡的呼吸商 72
4-4運動狀態呼吸商的測量 76
4-4-1有氧運動的呼吸商 77
4-4-2無氧運動的呼吸商 92
第五章 結論 97
參考文獻 98
附錄 104
1. Schulz, S., et al., SNOMED reaching its adolescence: Ontologists’ and logicians’ health check. International journal of medical informatics, 2009. 78: p. S86-S94.
2. Artac, M., et al., Uptake of the NHS Health Check programme in an urban setting. Family practice, 2013. 30(4): p. 426-435.
3. Ferket, B.S., et al., Systematic review of guidelines on cardiovascular risk assessment: which recommendations should clinicians follow for a cardiovascular health check? Archives of internal medicine, 2010. 170(1): p. 27-40.
4. Laaksonen, M., et al., Register-based study among employees showed small nonparticipation bias in health surveys and check-ups. Journal of clinical epidemiology, 2008. 61(9): p. 900-906.
5. Thorogood, M., et al., Factors affecting response to an invitation to attend for a health check. Journal of Epidemiology & Community Health, 1993. 47(3): p. 224-228.
6. Robson, J., et al., The NHS Health Check in England: an evaluation of the first 4 years. BMJ open, 2016. 6(1).
7. Bugaev, A., et al. Through wall sensing of human breathing and heart beating by monochromatic radar. in Proceedings of the Tenth International Conference on Grounds Penetrating Radar, 2004. GPR 2004. 2004. IEEE.
8. Cooke, W.H., et al., Controlled breathing protocols probe human autonomic cardiovascular rhythms. American Journal of Physiology-Heart and Circulatory Physiology, 1998. 274(2): p. H709-H718.
9. MacLarnon, A.M. and G.P. Hewitt, The evolution of human speech: The role of enhanced breathing control. American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists, 1999. 109(3): p. 341-363.
10. De Troyer, A. and M.G. Sampson, Activation of the parasternal intercostals during breathing efforts in human subjects. Journal of Applied Physiology, 1982. 52(3): p. 524-529.
11. Russo, M.A., D.M. Santarelli, and D. O’Rourke, The physiological effects of slow breathing in the healthy human. Breathe, 2017. 13(4): p. 298-309.
12. Pal, G.K. and S. Velkumary, Effect of short-term practice of breathing exercises on autonomic functions in normal human volunteers. Indian Journal of Medical Research, 2004. 120(2): p. 115.
13. Hirsch, J. and B. Bishop, Human breathing patterns on mouthpiece or face mask during air, CO2, or low O2. Journal of Applied Physiology, 1982. 53(5): p. 1281-1290.
14. Kutty, M., Respiratory quotient and ammonia excretion in Tilapia mossambica. Marine biology, 1972. 16(2): p. 126-133.
15. Walsberg, G. and B. Wolf, Variation in the respiratory quotient of birds and implications for indirect calorimetry using measurements of carbon dioxide production. Journal of Experimental Biology, 1995. 198(1): p. 213-219.
16. Gorostiaga, E., C. Maurer, and J. Eclache, Decrease in respiratory quotient during exercise following L-carnitine supplementation. International journal of sports medicine, 1989. 10(03): p. 169-174.
17. Feurer, I. and J.L. Mullen, Bedside measurement of resting energy expenditure and respiratory quotient via indirect calorimetry. Nutrition in clinical practice: official publication of the American Society for Parenteral and Enteral Nutrition (USA), 1986.
18. Buck, C.L. and B.M. Barnes, Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2000. 279(1): p. R255-R262.
19. Krogh, A. and J. Lindhard, The relative value of fat and carbohydrate as sources of muscular energy: with appendices on the correlation between standard metabolism and the respiratory quotient during rest and work. Biochemical Journal, 1920. 14(3-4): p. 290-363.
20. Himwich, H. and L. Nahum, The respiratory quotient of the brain. American Journal of Physiology-Legacy Content, 1932. 101(3): p. 446-453.
21. Flatt, J., Body composition, respiratory quotient, and weight maintenance. The American journal of clinical nutrition, 1995. 62(5): p. 1107S-1117S.
22. Richardson, H.B., The respiratory quotient. Physiological Reviews, 1929. 9(1): p. 61-125.
23. Issekutz Jr, B. and K. Rodahl, Respiratory quotient during exercise. Journal of applied physiology, 1961. 16(4): p. 606-610.
24. Westerterp, K., Food quotient, respiratory quotient, and energy balance. The American journal of clinical nutrition, 1993. 57(5): p. 759S-765S.
25. McClave, S.A., et al., Clinical use of the respiratory quotient obtained from indirect calorimetry. Journal of Parenteral and enteral Nutrition, 2003. 27(1): p. 21-26.
26. Peronnet, F. and D. Massicotte, Table of nonprotein respiratory quotient: an update. Can J Sport Sci, 1991. 16(1): p. 23-29.
27. Marcil, M., et al., Exercise training induces respiratory substrate-specific decrease in Ca2+-induced permeability transition pore opening in heart mitochondria. American Journal of Physiology-Heart and Circulatory Physiology, 2006. 290(4): p. H1549-H1557.
28. Atlante, A., et al., Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. Journal of Biological Chemistry, 2000. 275(47): p. 37159-37166.
29. Liu, H.S., et al., Respiratory substrate availability plays a crucial role in the response of soil respiration to environmental factors. Applied Soil Ecology, 2006. 32(3): p. 284-292.
30. Araújo, W.L., et al., Protein degradation–an alternative respiratory substrate for stressed plants. Trends in plant science, 2011. 16(9): p. 489-498.
31. Siirila, E.R., et al., A quantitative methodology to assess the risks to human health from CO2 leakage into groundwater. Advances in Water Resources, 2012. 36: p. 146-164.
32. Affek, H.P. and J.M. Eiler, Abundance of mass 47 CO2 in urban air, car exhaust, and human breath. Geochimica et Cosmochimica Acta, 2006. 70(1): p. 1-12.
33. Nagelkerken, I. and S.D. Connell, Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proceedings of the National Academy of Sciences, 2015. 112(43): p. 13272-13277.
34. Li, Q., et al., Properties of char particles obtained under O2/N2 and O2/CO2 combustion environments. Chemical Engineering and Processing: Process Intensification, 2010. 49(5): p. 449-459.
35. Chen, J., et al., Control of PM1 by kaolin or limestone during O2/CO2 pulverized coal combustion. Proceedings of the Combustion Institute, 2011. 33(2): p. 2837-2843.
36. Beran, A.V., et al., Investigation of transcutaneous O2-CO2 sensors and their application on human adults and newborns. Original Article Series, 1979. 15: p. 421.
37. Valtuena, S., J. Salas-Salvado, and P. Lorda, The respiratory quotient as a prognostic factor in weight-loss rebound. International journal of obesity, 1997. 21(9): p. 811-817.
38. Beaudry, R.M., Effect of carbon dioxide partial pressure on blueberry fruit respiration and respiratory quotient. Postharvest Biology and Technology, 1993. 3(3): p. 249-258.
39. Gnaiger, E., Calculation of energetic and biochemical equivalents of respiratory oxygen consumption, in Polarographic oxygen sensors. 1983, Springer. p. 337-345.
40. Cathcart, E. and J. Markowitz, The influence of various sugars on the respiratory quotient: A contribution to the significance of the RQ. The Journal of physiology, 1927. 63(4): p. 309.
41. Nishikawa, H., et al., Serum Zinc Level and non-Protein Respiratory Quotient in Patients with Chronic Liver Diseases. Journal of Clinical Medicine, 2020. 9(1): p. 255.
42. Saito, M., et al., Short-term reductions in non-protein respiratory quotient and prealbumin can be associated with the long-term deterioration of liver function after transcatheter arterial chemoembolization in patients with hepatocellular carcinoma. Journal of gastroenterology, 2012. 47(6): p. 704-714.
43. Higgins, J.A., et al., Resistant starch consumption promotes lipid oxidation. Nutrition & Metabolism, 2004. 1(1): p. 8.
44. Saito, S., et al., Effects of diacylglycerol on postprandial energy expenditure and respiratory quotient in healthy subjects. Nutrition, 2006. 22(1): p. 30-35.
45. Elia, M. and G. Livesey, Theory and validity of indirect calorimetry during net lipid synthesis. The American Journal of Clinical Nutrition, 1988. 47(4): p. 591-607.
46. Lahaije, A., et al., Physiologic limitations during daily life activities in COPD patients. Respiratory medicine, 2010. 104(8): p. 1152-1159.
47. Ramires, B.R., et al., Resting energy expenditure and carbohydrate oxidation are higher in elderly patients with COPD: a case control study. Nutrition journal, 2012. 11(1): p. 37.
48. Cai, B., et al., Effect of supplementing a high-fat, low-carbohydrate enteral formula in COPD patients. Nutrition, 2003. 19(3): p. 229-232.
49. Carlson, T.N., R.R. Gillies, and T.J. Schmugge, An interpretation of methodologies for indirect measurement of soil water content. Agricultural and forest meteorology, 1995. 77(3-4): p. 191-205.
50. Dauncey, M., P. Murgatroyd, and T. Cole, A human calorimeter for the direct and indirect measurement of 24 h energy expenditure. British Journal of Nutrition, 1978. 39(3): p. 557-566.
51. Dixit, M.K., et al., Identification of parameters for embodied energy measurement: A literature review. Energy and buildings, 2010. 42(8): p. 1238-1247.
52. Berggren, M., J.-F. Lapierre, and P.A. Del Giorgio, Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. The ISME journal, 2012. 6(5): p. 984-993.
53. Nakamura, M., Y. Nagai, and T. Sekiguchi, Gas sensor and gas sensor system. 2002, Google Patents.
54. Yamazoe, N. and K. Shimanoe, New perspectives of gas sensor technology. Sensors and Actuators B: Chemical, 2009. 138(1): p. 100-107.
55. Crighton, D., The jet edge-tone feedback cycle; linear theory for the operating stages. Journal of Fluid Mechanics, 1992. 234: p. 361-391.
56. Hobson, J.A., R. Lydic, and H. Baghdoyan, Evolving concepts of sleep cycle generation: from brain centers to neuronal populations. Behavioral and Brain Sciences, 1986. 9(3): p. 371-400.
57. Babloyantz, A., J. Salazar, and C. Nicolis, Evidence of chaotic dynamics of brain activity during the sleep cycle. Physics letters A, 1985. 111(3): p. 152-156.
58. Feinberg, I., Changes in sleep cycle patterns with age. Journal of psychiatric research, 1974. 10(3-4): p. 283-306.
59. Sutherland, K., et al., Effect of weight loss on upper airway size and facial fat in men with obstructive sleep apnoea. Thorax, 2011. 66(9): p. 797-803.
60. Nilsson, B.M., et al., Physical capacity, respiratory quotient and energy expenditure during exercise in male patients with schizophrenia compared with healthy controls. European psychiatry, 2012. 27(3): p. 206-212.
61. Kadish, A.H., R.L. Litle, and J.C. Sternberg, A new and rapid method for the determination of glucose by measurement of rate of oxygen consumption. Clinical Chemistry, 1968. 14(2): p. 116-131.
62. Abeln, V., et al., Brainwave entrainment for better sleep and post-sleep state of young elite soccer players–A pilot study. European journal of sport science, 2014. 14(5): p. 393-402.
63. Stein, P.K. and Y. Pu, Heart rate variability, sleep and sleep disorders. Sleep medicine reviews, 2012. 16(1): p. 47-66.
64. Campos, H. and X. Siles, Siesta and the risk of coronary heart disease: results from a population-based, case-control study in Costa Rica. International journal of epidemiology, 2000. 29(3): p. 429-437.
65. Tanaka, H., K.D. Monahan, and D.R. Seals, Age-predicted maximal heart rate revisited. Journal of the american college of cardiology, 2001. 37(1): p. 153-156.
66. Issekutz Jr, B., N. Birkhead, and K. Rodahl, Use of respiratory quotients in assessment of aerobic work capacity. Journal of Applied Physiology, 1962. 17(1): p. 47-50.
67. Himwich, H.E. and M.I. Rose, The respiratory quotient of exercising muscle. Proceedings of the Society for Experimental Biology and Medicine, 1926. 24(2): p. 169-170.
68. Treuth, M.S., G.R. Hunter, and M. Williams, Effects of exercise intensity on 24-h energy expenditure and substrate oxidation. Medicine and science in sports and exercise, 1996. 28(9): p. 1138-1143.
電子全文 電子全文(網際網路公開日期:20260118)
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top