跳到主要內容

臺灣博碩士論文加值系統

(34.236.36.94) 您好!臺灣時間:2021/07/24 22:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:隋奇融
研究生(外文):Sui, Chi-Jung
論文名稱:以Go-Lab平台發展與實施科學探究實作評量
論文名稱(外文):Development and Implementation of a Scientific Inquiry Performance Assessment Using Go-Lab Platform
指導教授:張俊彥
指導教授(外文):Chang, Chun-Yen
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:科學教育研究所
學門:教育學門
學類:普通科目教育學類
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:111
中文關鍵詞:Go-Lab科學探究實作評量科技接受模式
外文關鍵詞:Go-Labscientific inquiryperformance assessmenttechnology acceptance model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:20
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
十二年國民基本教育新課綱將素養導向教與學和探究與實作列為自然科學領綱的重點。本研究旨在以Go-Lab平台提供之應用程式和線上實驗室建置探究式學習空間(Inquiry Learning Space, ILS),發展與實施科學探究實作評量,融入學術探究的情境脈絡,並整合學生單性狀遺傳法則的先備知識和探究能力,透過實作經驗建構證據為本的科學模型,促進學生對雙性狀遺傳法則的學習。本研究應用科學探究實作評量標準檢驗國中數理資優生之建構反應之探究能力表現水準,以及對應的表現水準描述檢視探究能力,發現學生在本實作評量所呈現的探究能力高低依序為推理論證、分析與發現、執行與計畫和建立模型,整體水準落在基礎到精熟之間,且ILS中之模擬式實驗能幫助學生建立雙性狀遺傳法則之模型,提升學生模型導向的探究能力。遺傳法則成就測驗前測和後測結果顯示學生經科學探究實作能有效幫助學生以既有的單性狀遺傳法則概念經探究式學習遷移至雙性狀遺傳法則。有關資訊科技應用於學習,本研究以李克特五點量表進行問卷調查學生使用Go-Lab進行科學探究實作評量的科技使用度,研究結果為學生對此系統的認知有用性、認知易用性、使用態度、使用意向的評分高,顯示學生認同以Go-Lab進行科學探究實作評量。
The 12-Year Basic Education Curriculum lists literacy-oriented teaching and learning and inquiry and practice as the key points of the natural sciences’ domain. The purpose of this research is to build an Inquiry Learning Space (ILS) through applications and online laboratories provided by the Go-Lab platform, develop and implement scientific inquiry performance assessment in an inquiry-based context, and integrates students’ prior knowledge and inquiry capabilities to constructs evidence-based scientific models through practices, and promotes middle school students’ conceptual understanding of the Mendelian genetic laws. This research applies the rubric of scientific inquiry to evaluate the performance level of the inquiry competency of the mathematics and science gifted students in junior high schools, and the corresponding performance level describes the inquiry competency. It is found that the inquiry competency’s level of the students in this performance assessment is in order reasoning, analyzing and discovering, executing and planning, and modeling. Otherwise, the simulation-based experiment in ILS can promote students’ modeling of Mendelian genetics laws. The pre-test and post-test results of the Mendelian genetics laws achievement test show that the inquiry-based performance assessment is able to help students learn Mendelian genetics law. The Technology Acceptance Model (TAM) questionnaire indicated students agree with a scientific inquiry performance asssessment using the Go-Lab platform.
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與問題 3
第三節 名詞解釋 4
第四節 研究範圍與限制 5

第貳章 文獻探討 6
第一節 Go-Lab系統與科技接受模式 6
一、Go-Lab系統 6
二、科技接受模式 9
第二節 科學探究 12
一、科學探究的意涵 12
二、探討在課綱中的科學探究 12
三、探究式學習架構與探究能力 15
四、科學探究與模擬式實驗 17
第三節 實作評量 19
一、實作評量的意涵 19
二、評量科學探究實作 21
第四節 遺傳法則教學探討 23

第參章 研究方法 26
第一節 實作評量設計與實施流程 26
一、科學探究實作評量設計 27
二、實作評量實施流程 34
第二節 研究對象 37
第三節 研究架構 38
第四節 研究工具 39
一、科學探究實作評量標準 39
三、遺傳法則成就測驗 43
三、Go-Lab系統科技接受問卷 43
第五節 應用科學探究實作評量標準 47
第六節 資料分析 57

第肆章 研究結果與討論 58
第一節 學生於Go-Lab科學探究實作評量之探究能力表現 58
一、學生的探究能力表現結果分析 58
二、學生探究能力綜合討論 65
第二節 學生藉探究實作將單性狀遺傳法則概念遷移至雙性狀遺傳法則之成效 69
一、成就測驗結果分析 69
二、成就測驗與科學實作呈現的探究能力關聯分析 70
三、實作評量對遺傳法則學習成效綜合討論 71
第三節 學生對Go-Lab科學探究實作評量之科技接受度 73
一、常態性檢定 73
二、模型路徑分析 74
三、科技接受結果分析與討論 77

第伍章 結論與建議 82
第一節 結論 82
第二節 建議 84

參考文獻 85
附錄 92
附錄一、科學探究實作評量於Go-Lab系統使用者操作介面 92
附錄二、實作評量正式試題 99
附錄三、遺傳法則前測正式試題 101
附錄四、遺傳法則後測正式試題 105
附錄五、Go-Lab系統科技接受效度問卷題目 109
附錄六、Go-Lab系統科技接受正式問卷題目 111
一、中文參考文獻
吳佳玲、張俊彥(2002)。高一學生地球科學問題解決能力與其先備知識及推理能力關係的初探研究。科學教育學刊, 10(2),頁 135-156。
李金連(2005)。先前知識在科學問題解決過程中角色的探究。物理教育, 6(1),頁 43-60。
李筠茱(2019)。臺灣教師使用歐盟Go-Lab系統進行線上探究式教學之推展研究。未出版之碩士論文,臺灣師範大學科學教育研究所。
李驥、邱美虹(2019)。NGSS和12年國民基本教育中探究、實作和建模的比較與分析。科學教育月刊,421,19-31。
林小慧、吳心楷(2019)。科學探究能力評量之標準設定與其效度檢核。教育心理學報。
林郁芬(2011)。空間能力, 先備知識與表徵順序對七年級概念理解之影響: 以人體呼吸運動單元為例。
邱美虹(2008)。模型與建模能力之理論架構。科學教育月刊。
南一書局(2019)。高中基礎生物學。
南一書局(2020)。國中自然科學七年級第二冊。
秦爾聰、劉致演、張克旭、段曉林(2015)。數學臆測探究教學對商職學生數學學習成就與動機之影響。臺灣數學教育期刊。
高慧蓮(2008)。九年一貫課程「自然與生活科技」領域科學探究能力之培養研究子計畫二:科學探究能力之評量(III))。
張志康、邱美虹(2009)。建模能力分析指標的發展與應用-以電化學為例。科學教育學刊, 17(4),頁 319-342。
張珮珊、賴吉永、溫媺純(2017)。科學探究與實作課程的發展, 實施與評量: 以實驗室中的科學論證為核心之研究。科學教育學刊, 25(4),頁 355-389。
教育部(2008)。國民中小學九年一貫課程綱要自然與生活科技學習領域)。 臺北市。
教育部(2014)。十二年國民基本教育課程綱要:總綱。 臺北市。
教育部(2015)。核心素養發展手冊。 臺北市。
教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級等校:自然科學領域)。 臺北市:教育部。
陳明鈺、歐陽誾(2017)。資訊科技融入 5E 探究教學對七年級學生生物科學習成就與學習態度之影響-以 [血液循環系統] 為例。教育學誌(38),頁 125-176。
陳俊亨(2014)。融入電腦模擬對七年級學生在遺傳單元之認知成就、學習動機與心流經驗的影響。未出版之碩士論文,國立臺灣師範大學科學教育研究所,臺北市。
黃議正(2010)。以認知負荷, 科技接受模式與計畫行為理論取向建構線上學習行為傾向模式之研究。
楊子瑩、高千惠、林凱胤、余安順、楊秀停、王國華(2011)。用網路資源進行 5E 探究教學之行動研究。科學教育月刊。
楊坤原、張賴妙理(2004)。遺傳學迷思概念之文獻探討及其在教學上的啟示。科學教育學刊, 12(3),頁 365-398。
葉美春、阮明淑(2007)。使用者採用知識管理系統之影響因素研究─ 理論模型的比較取向。世新大學資訊傳播學系,臺北市。
鄒玉鈿、張景媛(2012)。[探究式創意實驗教學] 對八年級學生自然領域學習表現之影響。慈濟大學教育研究學刊(8),頁 53-90。
蔡執仲、段曉林(2005)。探究式實驗教學對國二學生理化學習動機之影響。科學教育學刊, 13(3),頁 289-315。
蔡清田(2014)。國民核心素養:十二年國教課程改革的DNA。
蔡哲銘、邱美虹、曾茂仁、謝東霖(2019)。探討高中學生於建模導向科學探究之學習成效。科學教育學刊,27(4),頁 207-228。
盧秀琴、洪榮昭、蔡春微(2008)。" 5 Why" 鷹架式提問提升國小學生學習成就與科學探究學習能力之研究~ 以 “如何做麵包?” 教學模組為例。科學教育學刊, 16(4),頁 395-413。
蕭文龍、郭庭伊(2010)。部落客持續使用部落格之研究: 以整合期望確認, 科技接受模式和個人因素觀點探討。電子商務學報, 12(2),頁 221-249。
謝進昌(2010)。 國內大型學習成就評量資料庫標準設定:以國際大型相關資料庫的建置經驗為例。載於吳清山(主編), 測驗及評量專論文集:題庫建置與測驗編製。(頁 131-173): 國家教育研究院測驗與評量組。
顧炳宏、陳瓊森、温媺純(2014)。以實作評量方式探討引導發現式教學模式之學習成效—以「聲音」概念為例。科學教育學刊,1,頁 57-86。
一、英文參考文獻
Auer, M. E., Azad, A. K., Edwards, A., & De Jong, T. (2018). Cyber-physical laboratories in engineering and science education: Springer.
Campbell, T., Oh, P. S., Maughn, M., Kiriazis, N., & Zuwallack, R. (2015). A review of modeling pedagogies: Pedagogical functions, discursive acts, and technology in modeling instruction. Eurasia Journal of Mathematics, ScienceTechnology Education, 11(1), 159-176.
Chiu, M.-H., & Lin, J.-W. (2019). Modeling competence in science education. Disciplinary Interdisciplinary Science Education Research, 1(1), 1-11.
Chu, Y.-C. e. (2008). Learning Difficulties in Genetics and the Development of Related Attitudes in Taiwanese Junior High Schools. (the degree of Doctor of Philosophy), University of Glasgow, United Kingdom.
Cizek, G., & Bunch, M. (2007). The bookmark method. Standard Setting.
Cizek, G. J., Bunch, M. B., & Koons, H. (2004). Setting performance standards: Contemporary methods. Educational Measurement: Issues Practice, 23(4), 31-31.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences, 2nd edn. Á/L: Erbaum Press, Hillsdale, NJ, USA.
Council, N. R. (1996). National Science Education Standards. Washington, DC.
Council, N. R. (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC.
Council, N. R. (2001). Knowing what students know: The science and design of educational assessment: National Academies Press.
Council, N. R. (2012). Framework for K-12 Science Education. Washington, DC.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003.
De Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305-308.
De Jong, T., Sotiriou, S., & Gillet, D. (2014). Innovations in STEM education: the Go-Lab federation of online labs. Smart Learning Environments1(1), 3.
Gale, J., Wind, S., Koval, J., Dagosta, J., Ryan, M., & Usselman, M. (2016). Simulation-based performance assessment: an innovative approach to exploring understanding of physical science concepts. International Journal of Science Education, 38(14), 2284-2302.
George, D., & Mallery, M. (2003). Using SPSS for Windows step by step: a simple guide and reference.
Germann, P. J., & Aram, R. J. (1996). Student performances on the science processes of recording data, analyzing data, drawing conclusions, and providing evidence. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 33(7), 773-798.
Hestenes, D. (1992). Modeling games in the Newtonian world. American Journal of Physics, 60(8), 732-748.
Hovardas, T., Pedaste, M., Zacharia, Z., & de Jong, T. (2018). Model-based inquiry in computer-supported learning environments: The case of go-lab Cyber-Physical Laboratories in Engineering and Science Education (pp. 241-268): Springer.
Klahr, D., Triona, L. M., & Williams, C. (2007). Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children. Journal of Research in Science teaching, 44(1), 183-203.
Kline, P. (1998). The new psychometrics: Science, psychology, and measurement: Psychology Press.
Liu, O. L., Lee, H.-S., Hofstetter, C., & Linn, M. C. (2008). Assessing knowledge integration in science: Construct, measures, and evidence. Educational Assessment, 13(1), 33-55.
Louca, L. T., & Zacharia, Z. C. (2008). The use of computer‐based programming environments as computer modelling tools in early science education: The cases of textual and graphical program languages. International Journal of Science Education, 30(3), 287-323.
Louca, L. T., & Zacharia, Z. C. (2015). Examining learning through modeling in K-6 science education. Journal of Science Education Technology, 24(2-3), 192-215.
Marshall, R., & Mardia, K. (1985). Minimum norm quadratic estimation of components of spatial covariance. Journal of the International Association for Mathematical Geology, 17(5), 517-525.
Marzano, R. J., Pickering, D., & McTighe, J. (1993). Assessing Student Outcomes: Performance Assessment Using the Dimensions of Learning Model: ERIC.
Pedaste, M., Mäeots, M., Siiman, L. A., De Jong, T., Van Riesen, S. A., Kamp, E. T., . . . Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational research review, 14, 47-61.
States, N. L. (2013). Next Generation Science Standards: For states, by states. Washington, DC.
Triona, L. M., & Klahr, D. (2003). Point and click or grab and heft: Comparing the influence of physical and virtual instructional materials on elementary school students' ability to design experiments. Cognition Instruction, 21(2), 149-173.
Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision sciences, 27(3), 451-481.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science46(2), 186-204.
Wiesner, T. F., & Lan, W. (2004). Comparison of student learning in physical and simulated unit operations experiments. Journal of Engineering Education, 93(3), 195-204.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top