( 您好!臺灣時間:2021/08/02 19:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Chou, Yuan-Ho
論文名稱(外文):The effect of wearing new personal military combat suit on gait
指導教授(外文):Lee, Heng-Ju
外文關鍵詞:military load carriagebiomechanicsload carriageenergy
  • 被引用被引用:0
  • 點閱點閱:7
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
緒論: 近年來,國軍開發了一套完整的新式個裝,目前有關此套各裝對於我國軍人在步態上的影響尚未可知,因此需更進一步探討,藉此了解我國軍人在穿著此套個裝時可能會遇到的問題。方法: 10名中華民國國軍為本實驗參與者,國軍新式個裝加上步槍的總重為20公斤,每一位受測者分別需進行控制組 (沒穿) 以及實驗組 (有穿) 的試驗,所有試驗皆在實驗室內鑲嵌著測力板的10公尺走道上以自選速度行走,資料在每一組均收取五次,組間休息五分鐘。實驗使用七台紅外線高速攝影機 (Vicon 200Hz),收取運動學資料,四顆無線肌電電極 (Noraxon 2000Hz),收取四條肌肉肌電資料,一塊測力板 (AMTI 1000Hz),收取動力學資料,統計方法為成對樣本T檢定,統計考驗的顯著水準之α值定義為.05。結果: 實驗組在著地期有較大的髖伸直、內收角度以及膝屈曲、外展角度,並且在軀幹都呈現較為前傾的情況。力矩方面,實驗組有較大的髖屈曲以及外展力矩,膝關節有較大的伸直以及外展力矩,踝關節有較大的蹠屈力矩。肌電方面,實驗組在著地前期,股直肌活化程度較高,在推進前期,股直肌、臀大肌、豎脊肌的活化程度較高,在步態參數方面,步幅以及步頻並無顯著差異,但在著地期的時間則是實驗組有顯著差異的長。質心運動方面,實驗組有較大的垂直方向位移量以及動位能峰值時間差。結論: 由於整體重量加上在個裝中的戰鬥腰帶及軍靴限制了下肢關節在步態上的活動程度,導致下肢關節的負荷增加,未來對於腰帶以及軍靴的佩戴上可以稍作改良,並且在軍事訓練上可以多加強下肢的肌肉力量。
Introduction: Recently the R.O.C. Ministry of Defense has developed the new personal military combat suit. The effect of wearing new combat suit on soldiers remain unknown. Therefore, this study aimed to investigate the effect of wearing the new personal military combat suit on gait, and figure out the problems that soldiers may encounter. Methods: There were ten male participated soldiers in this study. The whole suit with firearms weigh 20 kg. All groups were walkthrough 10m walkway, which contain the force plate. Each participant has to attend both control (no wear) and experimental (wear) group. Seven cameras (Vicon 200Hz) were used to capture the three-dimensional kinematics data, four surface wireless EMG (Noraxon 2000Hz) were used to capture the muscle activity, one force plate (AMTI 1000Hz) to capture kinetic data. A paired T-test were conducted to determine the effect of new combat suit on gait Result: The experimental group has more hip and knee range of motion, and the trunk show more forward-leaning during the stance phase. Flexion moment and abduction moment is significant increase in hip joint. Extension moment and abduction moment is significant increase in knee joint. Plantar flexion moment is significant increase in ankle. There is a significant increase in stance time with experimental group, but cadence and stride length have no significant different. On the other hand, the experimental group shows more muscle activity on the lower limb and trunk during the pre-swing phase. At last, the experimental group have more displacement on center of mass on the vertical plane and the time between potential energy and kinetic energy peak value. Conclusion: The weight of combat suit, the belt and the boots restrict the movement of lower limbs on gait. As a result, it increases the loading on the lower extremity. The improvement of the belts and boots is the problem needs to be solved in further. In order to improve the loading problem, lower extremity training is critical for the soldiers.
目 次
中文摘要 i
英文摘要 ii
目次 iv
表次 vi
圖次 vii

第一章 緒論-1-
第一節 問題背景-1-
第二節 研究目的-2-
第三節 研究假設-2-
第四節 研究範圍與限制-3-
第五節 關節角度定義-3-

第貳章 文獻探討-6-
第一節 身體負重對於步態的影響-6-
第二節 軍事負重的相關實驗-7-
第三節 質心運動-8-
第四節 文獻總結-9-

第參章 研究方法-10-
第一節 研究對象-10-
第二節 研究設備及工具-10-
第三節 實驗設計-22-
第四節 實驗實施程序-23-
第五節 資料處理-24-
第六節 統計分析-26-

第肆章 結果-27-
第一節 運動學資料-27-
第二節 動力學資料-29-
第三節 地面反作用力以及步態參數-31-
第四節 質心運動-31-
第五節 肌電資料-32-

第伍章 討論-34-
第一節 負重所帶來的影響-34
第二節 結論與建議-36

鐘維軒、李尹鑫、林宗慶、相子元 (2012)。以四肢負重法模擬中老年女性下肢動作研究。體育學報,45(3),191-202。doi: 10.6222/pej.4503.201209.0703

[Chung, W. H., Lee, Y. S., Lin, T. C., & Shiang, T. Y. (2013). A kinematical study of lower limbs of elderly women by load bearing simulation. Physical Education Journal, 45(3), 191-202.]

Attwells, R. L., Birrell, S. A., Hooper, R. H., & Mansfield, N. J. (2006). Influence of carrying heavy loads on soldiers' posture, movements and gait. Ergonomics, 49(14), 1527-1537. doi: 10.1080/00140130600757237.

Bennett, B. C., Abel, M. F., Wolovick, A., Franklin, T., Allaire, P. E., Kerrigan, D. C. (2005). Center of mass movement and energy transfer during walking in children with cerebral palsy. Archives of Physical Medicine and Rehabilitation, 86(11), 2189-2194. doi: 10.1016/j.apmr.2005.05.012.

Birrell, S. A., & Haslam, R. A. (2009). The effect of military load carriage on 3-D lower limb kinematics and spatiotemporal parameters. Ergonomics, 52(10), 1298-1304. doi: 10.1080/00140130903003115.

Chen, Y. L., & Mu, Y. C. (2018). Effects of backpack load and position on body strains in male schoolchildren while walking. Plos One, 13(3). doi: 10.1371/journal.pone.0193648

Chow, D. H., Kwok, M. L., Au-Yang, A. C., Holmes, A. D., Cheng, J. C., Yao, F. Y., & Wong, M. S. (2005). The effect of backpack load on the gait of normal adolescent girls. Ergonomics, 48(6), 642-656. doi: 10.1080/00140130500070921.

Chambers, H. G., & Sutherland, D. H. (2002). A practical guide to gait analysis. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 10(3), 222-231. doi: 10.5435/00124635-200205000-00009

Devroey, C., Jonkers, I., De Becker, A., Lenaerts, G., & Spaepen, A. (2007). Evaluation of the effect of backpack load and position during standing and walking using biomechanical, physiological and subjective measures. Ergonomics, 50(5), 728-742. doi: 10.1080/00140130701194850.

Fiolkowski, P., Horodyski, M., Bishop, M., Williams, M., & Stylianou, L. (2006). Changes in gait kinematics and posture with the use of a front pack. Ergonomics, 49(9), 885-894. doi: 10.1080/00140130600667444.

Fox, A., Ferber, R., Saunders, N., Osis, S., & Bonacci, J. (2018). Gait kinematics in individuals with acute and chronic patellofemoral pain. Medicine and Science in Sports and Exercise, 50(3), 502-509. doi: 10.1249/MSS.0000000000001465.

Knapik, J. J., Reynolds, K. L., & Harman, E. (2004). Soldier load carriage: historical, physiological, biomechanical, and medical aspects. Military Medicine, 169(1), 45-56. doi: 10.7205/milmed.169.1.45.

Kuo, A. D., Donelan, J. M., Ruina, A. (2005). Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exercise and Sport Sciences Reviews, 33(2), 88-97. doi: 10.1097/00003677-200504000-00006.

Lee, J., Yoon, Y.-J., & Shin, C. S. (2017). The effect of backpack load carriage on the kinetics and kinematics of ankle and knee joints during uphill walking. Journal of Applied Biomechanics, 33(6), 397-405. doi: 10.1123/jab.2016-0221.

Liew, B., Morris, S., & Netto, K. (2016). The effect of backpack carriage on the biomechanics of walking: A systematic review and preliminary meta-analysis. Journal of Applied Biomechanics, 32(6), 614-629. doi: 10.1123/jab.2015-0339.

Loverro, K. L., Hasselquist, L., & Lewis, C. L. (2019). Females and males use different hip and knee mechanics in response to symmetric military-relevant loads. Journal of Biomechanics, 95, 109280. doi: 10.1016/j.jbiomech.2019.07.024.

Majumdar, D., Pal, M. S., & Majumdar, D. (2010). Effects of military load carriage on kinematics of gait. Ergonomics, 53(6), 782-791. doi: 10.1080/00140131003672015.

Orr, R. M., & Pope, R. (2016). Gender differences in load carriage injuries of Australian army soldiers. BMC Musculoskeletal Disorders, 17(1), 488. doi: 10.1186/s12891-016-1340-0.

Ortega, J. D., & Farley, C. T. (2005). Minimizing center of mass vertical movement increases metabolic cost in walking. Journal of Applied Physiology, 99(6), 2099-2107. doi.org/10.1152/japplphysiol.00103.2005.

Rice, H., Fallowfield, J., Allsopp, A., & Dixon, S. (2017). Influence of a 12.8-km military load carriage activity on lower limb gait mechanics and muscle activity. Ergonomics, 60(5), 649-656. doi.org/10.1080/00140139.2016.1206624.

Seymore, K. D., Fain, A. C., Lobb, N. J., & Brown, T. N. (2019). Sex and limb impact biomechanics associated with risk of injury during drop landing with body borne load. PloS One, 14(2), e0211129. doi.org/10.1371/journal.pone.0211129.

Talarico, M. K., Haynes, C. A., Douglas, J. S., & Collazo, J. (2018). Spatiotemporal and kinematic changes in gait while carrying an energy harvesting assault pack system. Journal of Biomechanics, 74, 143-149. doi: 10.1016/j.jbiomech.2018.04.035.

Tesio, L., Lanzi, D., & Detrembleur, C. (1998). The 3-D motion of the centre of gravity of the human body during level walking. I. Normal subjects at low and intermediate walking speeds. Clinical Biomechanics, 13(2), 77-82. doi: 10.1016/s0268-0033(97)00080-6.

Wills, J. A., Saxby, D. J., Lenton, G. K., & Doyle, T. L. (2019). Ankle and knee moment and power adaptations are elicited through load carriage conditioning in males. Journal of Biomechanics, 97, 109341. doi: 10.1016/j.jbiomech.2019.109341.

Winter, D. A. (2009). Biomechanics and motor control of human movement. New York: Wiley-InterScience.
電子全文 電子全文(網際網路公開日期:20211231)
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top