跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 14:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃奕翔
研究生(外文):Huang, Yi-Hsiang
論文名稱:運動誘發延遲性肌肉痠痛後使用充氣加壓按摩對痠痛指數及下肢肌力表現之效益
論文名稱(外文):Effects of intermittent pneumatic compression on lower limbs muscle strength and muscle pain after exercise-induced delayed onset muscle soreness
指導教授:王鶴森王鶴森引用關係
指導教授(外文):Wang, Ho-Seng
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:體育學系
學門:教育學門
學類:專業科目教育學類
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:39
中文關鍵詞:運動後恢復運動誘發肌肉損傷運動表現
外文關鍵詞:recovery of exerciseexercise-induced muscle damagesports performance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:14
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
背景:快速消除運動後的疲勞為近來熱門之研究議題,其中間歇充氣加壓按摩 (intermittent pneumatic compression, IPC) 被視為一種積極促進運動後恢復的方法,惟其在運動誘發延遲性肌肉痠痛後的效益還有待確認。方法:本研究招募18名男性 (年齡:23 ± 2.8歲) 進行70% V̇O2max之30分鐘下坡跑運動以誘發延遲性肌肉痠痛,採隨機方式將受試者雙腳分為實驗腳 (IPC) 及控制腳 (CON),IPC腳於運動後立即與運動後24、48小時各接受20分鐘IPC處理,CON腳採完全靜態休息。所有受試者於運動前、運動後24小時、運動後48小時及每次實驗處理後,記錄雙腳痠痛指數及關節活動度,隨後接受每秒60゚與180゚之下肢等速向心、離心肌力表現測驗。結果: (一) 痠痛指數:運動後立即處理後之痠痛指數IPC顯著低於CON (5.3 ± 1.2 vs. 6.2 ± 1.1分);運動後24小時處理後IPC顯著低於CON (6.2 ± 1.6 vs. 7.0 ± 1.4分);運動後48小時之安靜值及處理後IPC也皆顯著低於CON (7.2 ± 1.8 vs. 7.5 ± 1.8;6.9 ± 1.9 vs. 7.4 ± 1.7分) (p < .05),其餘各時間點兩腳之痠痛指數皆無顯著差異。(二) 關節活動度:運動後24及48小時處理後IPC皆顯著高於CON (99.5 ± 15.6度 vs. 89.5 ± 18.8度;99 ± 15.1度 vs. 92.5 ± 17.7度);運動後48小時之安靜值IPC也顯著高於CON (94 ± 18.8度 vs. 89.5 ± 18.8度) (p < .05),其餘各時間點兩腳之關節活動度皆無顯著差異。(三) 肌力指標:所有肌力指標之交互作用皆未達顯著,且每秒60゚及每秒180゚下肢等速向心、離心肌力的處理主要效果也皆未達顯著。結論:運動後立即實施間歇充氣加壓按摩有助於舒緩肌肉痠痛及改善關節活動度,但未能減緩運動誘發延遲性肌肉痠痛所伴隨之肌力流失現象。
Background: Research topics about fast recovery strategies following exercise have become popular recently. Intermittent pneumatic compression (IPC) is regarded as a method to actively boost recovery after exercise, but whether it will be effective after exercise-induced delay onset muscle soreness remains questionable. Methods: 18 males (age: 23 ± 2.8 years) were recruited to participate in a 30-minute downhill running of 70% V̇O2max to induce delayed onset muscle soreness, and the participants' two legs were randomly divided into experimental leg (IPC) and control leg (CON). The IPC leg received 20 minutes of IPC treatment immediately after exercise as well as at 24 and 48 hours after exercise. At the same time, the CON leg completely rested. Perceived soreness and range of motion of the two legs were recorded before exercise, 24 hours after exercise, 48 hours after exercise and after each experimental treatment, then 60゚/s and 180゚/s lower extremity isokinetic concentric and eccentric contraction were tested as muscle strength. Results: (1) perceived soreness: IPC were significantly lower than CON after the treatment immediately after exercise (5.3 ± 1.2 vs. 6.2 ± 1.1) and 24 hours after exercise (6.2 ± 1.6 vs. 7.0 ± 1.4 points). 48 hours after exercise, IPC were also significantly lower than CON before (7.2 ± 1.8 vs. 7.5 ± 1.8) and after treatment (6.9 ± 1.9 vs. 7.4 ± 1.7 points). (2) Range of motion: 24 and 48 hours after exercise, IPC were significantly higher than CON after treatment (99.5 ± 15.6°vs. 89.5 ± 18.8°; 99 ± 15.1° vs. 92.5 ± 17.7°). IPC was also significantly higher than CON before treatment 48 hours after exercise (94 ± 18.8° vs. 89.5 ± 18.8°). There were no significant differences in range of motion between two legs at rest given time points. (3) Muscle strength: The treatment × time interaction of all muscle strength indicators were not significant (p > .05). Treatment main effects on 60゚/s and 180゚/s isokinetic concentric and eccentric contraction were not significant either (p > .05). Conclusion: Applying intermittent pneumatic compression immediately after exercise could relieve muscle soreness and improve range of motion, but fails to alleviate the loss of muscle strength associated with exercise-induced delayed onset muscle soreness.
中文摘要i
英文摘要
目次iii
表次vi
圖次vii

第壹章 緒論 1
第一節 研究背景 1
第二節 研究目的 3
第三節 研究假設 3
第四節 研究範圍與限制 3
第五節 名詞操作性定義 4
第六節 研究重要性 5

第貳章 文獻探討 6
第一節 間歇充氣加壓之介紹 6
第二節 間歇充氣加壓與運動恢復之效果 7
第三節 延遲性肌肉痠痛(DOMS) 10
第四節 本章總結 11

第參章 研究方法 12
第一節 研究對象 12
第二節 研究日期與地點 12
第三節 研究工具 12
第四節 實驗方法與步驟 13
第五節 資料處理與分析 20
第肆章 結果 21
第一節 受試者基本資料 21
第二節 酸痛指數 22
第三節 關節活動度 23
第四節 下肢肌力表現 24
第伍章 討論 26
第一節 間歇充氣加壓力對痠痛指數與關節活動度之效益 26
第二節 間歇充氣加壓力對肌力表現之效益 28
第三節 結論與建議 30
第四節 實務運用 30

參考文獻 31
附 錄
附錄一 受試者須知 36
附錄二 健康及訓練情況調查表 38
附錄三 受試者同意書 39
王建睎、何仁育、林明儒 (2017)。短期Beta-丙胺酸增補對下坡跑運動引起肌肉損傷的影響。運動生理暨體能學報,23-36。doi: 10.6127/JEPF.2017.25.03

吳家慶、謝伸裕 (2008)。動態恢復強度對損傷肌肉之功能及跑步經濟性的影響。體育學報,41(4),1-14。doi: 10.6222/pej.4104.200812.0801

張政鈺、陸康豪、詹貴惠 (2014)。間歇充氣加壓對運動後恢復之效果。中華體育季刊,28(3),211-218。doi: 10.6223/qcpe.2803.201409.1005

陳忠慶 (2004)。運動引起肌肉損傷的原因之探討。運動生理暨體能學報,(1),19-32。doi:10.6127/JEPF.2004.01.03

Armstrong, R. B. (1984). Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Medicine and Science in Sports and Exercise, 16(6), 529-538.

Amanda, M. H., Heapy, M. D., Hoffman, H. H., Verhagen, S. W., Thompson, P. D., Fiona, J. S., & Mary, C. C. (2018). A randomized controlled trial of manual therapy and pneumatic compression for recovery from prolonged running – an extended study. Research in Sports Medicine, 26(3), 354-264. doi: 10.1080/15438627.2018.1447469

Benwell, N. M., Sacco, P., Hammond, G. R., Byrnes, M. L., Mastaglia, F. L., & Thickbroom, G. W. (2006). Short-interval cortical inhibition and corticomotor excitability with fatiguing hand exercise: a central adaptation to fatigue? Experimental Brain Research, 170(2), 191-198. doi: 10.1007/s00221-005-0195-7

Best, T. M., Hunter, R., Wilcox, A., & Haq, F. (2008). Effectiveness of sports massage for recovery of skeletal muscle from strenuous exercise. Clinical Journal of Sport Medicine, 18(5), 446-460. doi: 10.1097/jsm.0b013e31818837a1

Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sport & Exercise, 14(5), 377-381.

Broadie, K. S. (1999). Development of electrical properties and synaptic transmission at the embryonic neuromuscular junction. In International Review of Neurobiology (Vol. 43, pp. 45-67). Academic Press. doi: 10.1016/s0074-7742(08)60540-1

Cheung, K., Hume, P. A., & Maxwell, L. (2003). Delayed onset muscle soreness. Sports Medicine, 33(2), 145-164. doi: 10.2165/00007256-200333020-00005

Clarkson, P. M., Byrnes, W. C., McCormick, K. M., Turcotte, L. P., & White, J. S. (1986). Muscle soreness and serum creatine kinase activity following isometric, eccentric, and concentric exercise. International Journal of Sports Medicine, 7(03), 152-155. doi: 10.1055/s-2008-1025753

Chleboun, G. S., Howell, J. N., Baker, H. L., Ballard, T. N., Graham, J. L., Hallman, H. L., ... & Conatser, R. R. (1995). Intermittent pneumatic compression effect on eccentric exercise-induced swelling, stiffness, and strength loss. Archives of Physical Medicine and Rehabilitation, 76(8), 744-749. doi: 10.1016/s0003-9993(95)80529-x

Clarkson, P. M., & Sayers, S. P. (1999). Etiology of exercise-induced muscle damage. Canadian Journal of Applied Physiology, 24(3), 234-248. doi: 10.1139/h99-020

Cochrane, D. J., Booker, H. R., Mundel, T., & Barnes, M. J. (2013). Does intermittent pneumatic leg compression enhance muscle recovery after strenuous eccentric exercise. International Journal of Sports Medicine, 34(11), 969-74. doi: 10.1055/s-0033-1337944

Crane, J. D., Ogborn, D. I., Cupido, C., Melov, S., Hubbard, A., Bourgeois, J. M., & Tarnopolsky, M. A. (2012). Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. Science Translational Medicine, 4(119), 119ra13. doi: 10.1126/scitranslmed.3002882

Draper, S. N., Kullman, E. L., Sparks, K. E., Little, K., & Thoman, J. (2020). Effects of intermittent pneumatic compression on delayed onset muscle soreness (DOMS) in long distance runners. International Journal of Exercise Science, 13(2), 75-86.

Farr, T., Nottle, C., Nosaka, K., & Sacco, P. (2002). The effects of therapeutic massage on delayed onset muscle soreness and muscle function following downhill walking. Journal of Science and Medicine in Sport, 5(4), 297-306. doi: 10.1016/s1440-2440(02)80018-4

Friden, J., & Lieber, R. L. (1992). Structural and mechanical basis of exercise induced muscle injury. Medicine & Science in Sport & Exercise, 5, 521-530. doi: 10.1249/00005768-199205000-00005

French, D. N., Thompson, K. G., Garland, S. W., Barnes, C. A., Portas, M. D., Hood, P. E., & Wilkes, G. (2008). The effects of contrast batjing and compression therapy on muscular performance. Medicine & Science in Sport & Exercise, 40(7), 1297-1306. doi: 10.1249/mss.0b013e31816b10d5

Fuglevand, A. J. (1995). The role of the sarcolemma action potential in fatigue. In Fatigue (pp. 101-108). Springer, Boston, MA. doi: 10.1007/978-1-4899-1016-5_8

Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews. doi: 10.1152/physrev.2001.81.4.1725

Gleeson, M., Blannin, A. K., Walsh, N. P., Field, C. N., & Pritchard, J. C. (1998). Effect of exercise-induced muscle damage on the blood lactate response to incremental exercise in humans. European Journal of Applied Physiology and Occupational Physiology, 77(3), 292-295. doi: 10.1007/s004210050336

Hing, W. A., White, S. G., Bouaaphone, A., & Lee, P. (2008). Contrast therapy—a systematic review. Physical Therapy in Sport, 9(3), 148-161. doi: 10.1016/j.ptsp.2008.06.001

Howatson, G., van Someren, K. A.(2008). The prevention and treatment of exercise - induced muscle damage. Sports Medicine, 38(6), 483-503. doi: 10.2165/00007256-200838060-00004

Hanson, E., Stetter, K., Li, R., & Thomas, A. (2013). An intermittent pneumatic compression device reduces blood lactate concentrations more effectively than passive recovery after Wingate testing. Journal of Athletic Enhancement, 4, 18-25. doi: 10.4172/2324-9080.1000115

Kent-Braun, J. A. (1999). Central and peripheral contributions to muscle fatigue in humans during sustained maximal effort. European Journal of Applied Physiology and Occupational Physiology, 80(1), 57-63. doi: 10.1007/s004210050558

Kephart, W. C., Mobley, C. B., Fox, C. D., Pascoe, D. D., Sefton, J. M., Wilson, T. J., & Martin, J. S. (2015). A single bout of whole‐leg, peristaltic pulse external pneumatic compression upregulates PGC‐1α mRNA and endothelial nitric oxide sythase protein in human skeletal muscle tissue. Experimental Physiology, 100(7), 852-864. doi: 10.1113/EP085160

Lewis, P. B., Ruby, D., & Bush-Joseph, C. A. (2012). Muscle soreness and delayed-onset muscle soreness. Clinics in Sports Medicine, 31(2), 255-262. doi: 10.1016/j.csm.2011.09.009

Martin, J. S., Kephart, W. C., Mobley, C. B., Wilson, T. J., Goodlett, M. D., & Roberts, M. D. (2017). A single 60‐min bout of peristaltic pulse external pneumatic compression transiently upregulates phosphorylated ribosomal protein s6. Clinical Physiology and Functional Imaging, 37(6), 602-609. doi: 10.1111/cpf.12343

Sands, W. A., Murray, M. B., Murray, S. R., McNeal, J. R., Mizuguchi, S., Sato, K., & Stone, M. H. (2014). Peristaltic pulse dynamic compression of the lower extremity enhances flexibility. The Journal of Strength & Conditioning Research, 28(4), 1058-1064. doi: 10.1519/JSC.0000000000000244

Sands, W. A., McNeal, J. R., Murray, S. R., & Stone, M. H. (2015). Dynamic compression enhances pressure-to-pain threshold in elite athlete recovery: exploratory study. The Journal of Strength & Conditioning Research, 29(5), 1263-1272. doi: 10.1519/JSC.0000000000000412

Sheldon, R. D., Roseguini, B. T., Laughlin, M. H., & Newcomer, S. C. (2013). New insights into the physiologic basis for intermittent pneumatic limb compression as a therapeutic strategy for peripheral artery disease. Journal of Vascular Surgery, 58(6), 1688-1696. doi: 10.1016/j.jvs.2013.08.094

Smith, L. L., Keating, M. N., Holbert, D., Spratt, D. J., McCammon, M. R., Smith, S. S., & Israel, R. G. (1994). The effects of athletic massage on delayed onset muscle soreness, creatine kinase, and neutrophil count: a preliminary report. Journal of Orthopaedic & Sports Physical Therapy, 19(2), 93-99. doi: 10.2519/jospt.1994.19.2.93

Tufano, J. J., Conlon, J. A., Nimphius, S., Brown, L. E., Seitz, L. B., Williamson, B. D., & Haff, G. G. (2016). Maintenance of velocity and power with cluster sets during high-volume back squats. International Journal of Sports Physiology and Performance, 11(7), 885-892. doi: 10.1123/ijspp.2015-0602

Weber, M. D., Servedio, F. J., & Woodall, W. R. (1994). The effects of three modalities on delayed onset muscle soreness. Journal of Orthopaedic & Sports
Physical Therapy, 20(5), 236-242. doi: 10.2519/jospt.1994.20.5.236

Waller, T., Caine, M., & Morris, R. (2006). Intermittent pneumatic compression technology for sports recovery. In The Engineering of Sport 6 (pp. 391-396). Springer, New York, NY. doi: 10.1007/978-0-387-45951-6_70

Wilcock, I. M., Cronin, J. B., & Hing, W. A. (2006). Water immersion: does it enhance recovery from exercise. International Journal of Sports Physiology and Performance, 1(3), 195-206. doi: 10.1123/ijspp.1.3.195

Zelikovski, A., Kaye, C. CL., Fink, G., Spitzer, S. A., & Shapiro, Y. (1993). The effects of the modified intermittent sequential pneumatic device (MISPD) on exercise performance following an exhaustive exercise bout. British Journal of Sports Medicine, 27(4), 255-259. doi: 10.1136/bjsm.27.4.255
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文