跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 23:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇峻緯
研究生(外文):Su, Chun-Wei
論文名稱:高分子散射液晶應用於主動式陣列薄膜電晶體透明液晶顯示器
論文名稱(外文):Polymer-Dispersed Liquid Crystal Applied in Active-Matrix Thin-Film Transistor Transparent Liquid Crystal Display
指導教授:陳美勇陳美勇引用關係
學位類別:博士
校院名稱:國立臺灣師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:99
中文關鍵詞:主動式薄膜電晶體高分子散射液晶透明顯示器液晶顯示器
外文關鍵詞:active-matrix thin-film transistorpolymer-dispersed liquid crystaltransparent displayliquid crystal display
相關次數:
  • 被引用被引用:0
  • 點閱點閱:23
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是利用高分子散射液晶技術應用於主動式陣列薄膜電晶體透明液晶顯示器。同時發展單色主動式陣列薄膜電晶體透明液晶顯示器以及彩色主動式陣列薄膜電晶體透明液晶顯示器。其中,單色主動式陣列薄膜電晶體透明液晶顯示器的穿透態的穿透率可以達到40%以上,散射態的穿透率可以達到3%以下,以及驅動電壓符合主動式陣列薄膜電晶體。彩色主動式陣列薄膜電晶體透明液晶顯示器的穿透態的穿透率可以達到15%以上,散射態的穿透率可以達到1.5%以下,以及驅動電壓也符合主動式陣列薄膜電晶體。並且本論文還提出顯示效果提升概念,改善高分子散射液晶技術應用於主動式陣列薄膜電晶體透明液晶顯示器所造成的散射顯示問題。最後,本論文專注於探討利用高分子散射液晶技術應用於主動式陣列薄膜電晶體透明液晶顯示器的電光特性、顯示效果以及未來相關應用。本研究明顯指示出利用高分子散射液晶技術應用於主動式陣列薄膜電晶體透明液晶顯示器具有免PI轉寫製程、不需偏光板、較佳可視性、高穿透率、不需背光模組(只需環境光源)等等的優良特性。
In this study, we using polymer dispersed liquid crystal (PDLC) technology to apply in active-matrix thin-film transistor (TFT) transparent liquid crystal display (LCD). Then, we have developed the monochromatic active-matrix TFT transparent LCD and the color active-matrix TFT transparent LCD by using PDLC technology. In the monochromatic active-matrix TFT transparent LCD, the transmittance of the transparent state is upward 40%, the transmittance of the scattering state is under 3%, and the driving voltage is satisfied with active-matrix TFT. In the color active-matrix TFT transparent LCD, the transmittance of the transparent state is upward 15%, the transmittance of the scattering state is under 1.5%, and the driving voltage is also satisfied with active-matrix TFT. Also, we have developed unsharp-masking filter method to improve the visual quality of transparent PDLC display. Finally, we have focused on discussing the electro-optical characteristic, display performances and future applications for active-matrix TFT transparent LCD by using PDLC technology. It indicated that the active-matrix TFT transparent LCD by using PDLC technology has some advantages, such as, polyimide less, polarizer free, good visibility, high transparency, backlight less (environmental light only), and so on.
Chapter 1 Introduction
1.1 Introduction 1
1.2 Past Approaches 3
1.3 Research Motivations 12
1.4 Research Objectives 13
1.5 Thesis Organization 14


Chapter 2 Fundamental of PDLC Theory
2.1 Introduction and Historical Development 15
2.2 Methods for PDLC Materials 18
2.3 Models for Light Scattering of PDLC Droplets 23
2.4 Electro-optical Effects in PDLC Droplets 28


Chapter 3 Description of Experiment Set-up
3.1 Liquid Crystal Materials Preparation 33
3.2 Polymer Materials Preparation 34
3.3 Fabricated Process 35
3.4 Measurement System 36


Chapter 4 Results & Discussions
4.1 Working Principle for Transparent Display 37
4.2 Electro-optical of Test Cell 39
4.3 Electro-optical of Monochromatic Transparent Display 44
4.4 Electro-optical of Color Transparent Display 48
4.5 Visual Quality Improvement for Transparent Display 52
4.6 Brief Summary 71


Chapter 5 Conclusions & Future Prospect
5.1 Conclusions 73
5.2 Future Prospect 75


References 77
Publication List 84
Appendix SDS 86
Appendix MSDS 93
[1] J. Lee and J. Moon, “Introduction of transparent LCD displays,” Proceedings of International Display Workshops, pp. 1669-1670, 2011.
[2] T. Riedl, P. Görrn, and W. Kowalsky, “Transparent electronics for see-through AMOLED displays,” Journal of Display Technology, vol. 5, no. 12, pp. 74-76, Nov. 2009.
[3] Y. W. Song, K. H. Hwang, S. G. Yoon, J. H. Ha, and K. N. Kim, “Distinguished paper: LTPS-based transparent AM LCD,” Proceedings of Society for Information Display, pp. 144-147, 2010.
[4] J. Chung, J. Lee, J. Choi, C. Park, J. Ha, H. Chung, and S. S. Kim, “Transparent AMOLED Display Based on Bottom Emission Structure,” Proceedings of Society for Information Display, pp. 148-151, 2010.
[5] S. M. Lee, S. H. Oh, and K. C. Choi, “Highly transparent SU-8 photoresist barrier rib for a transparent AC plasma display panel,” Journal of Display Technology, vol. 7, no. 1, pp. 40-43, Jan. 2011.
[6] C. Jang, K. Kim, and K. C. Choi, “Toward flexible transparent plasma display: optical characteristics of low-temperature fabricated organic-based display structure,” IEEE Electron Device Letters, vol. 33, no. 1, pp. 74-76, Jan. 2012.
[7] W. S. Song, Y. S. Kim, and H. Yang, “Hydrothermal synthesis of self-emitting Y(V,P)O4 nanophosphors for fabrication of transparent blue-emitting display device,” Journal of Luminescence, vol. 132, no. 5, pp. 1278-1284, Jan. 2012.
[8] W. S. Song, K. H. Lee, Y. S. Kim, and H. Yang, “Tuning of size and luminescence of red Y(V,P)O4 nanophosphors for their application to transparent panels of plasma display,” Materials Chemistry and Physics, vol. 135, no. 1, pp. 51-57, Apr. 2012.
[9] S. H. Park, K. H. Lee, J. S. Park, E. D. Kim, J. K. Kang, M. C. Jun, and I. J. Jung, “47inch Full HD transparent display without polarizer using S-IPS mode,” Proceedings of International Display Workshops, pp. 155-158, 2010.
[10] C. H. Lin, W. B. Lo, K. H. Liu C. Y. Liu, J. K. Lu, and N. Sugiura, “Novel transparent LCD with tunable transparency,” Proceedings of Society for Information Display, pp. 1159-1162, 2012.
[11] C. W. Kuo, C. H. Lin, Y. Y. Liao, Y. H. Lai, C. T. Chung, C. N. Yeh, J. K. Lu, and N. Sugiura, “Blur- free transparent LCD with hybrid transparency,” Proceedings of Society for Information Display, pp. 70-73, 2013.
[12] C. C. Tsai, S. H. Yu, K. H. Chien, H. F. Yin, and T. P. Lin, “A window LCD achieved by color-sequential methods,” Proceedings of Society for Information Display, pp. 74-77, 2011.
[13] J. Ma, L. Shi, and D. K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Applied Physics Express, vol. 3, Feb. 2010.
[14] K. H. Kim, H. J. Jin, K. H. Park, J. H. Lee, J. C. Kim, and T. H. Yoon, “Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection,” Optics Express, vol. 18, no. 16, Aug. 2010.
[15] K. H. Kim, D. H. Song, Z. G. Shen, B. W. Park, K. H. Park, J. H. Lee, and T. H. Yoon, “Fast switching of long-pitch cholesteric liquid crystal device,” Optics Express, vol. 19, no. 11, May. 2011.
[16] C. S. Hsieh, J. T. Lien, and H. M. Fu, “Transparent liquid crystal by dye doped liquid crystal (DDLC) gel,” Proceedings of International Display Workshops, pp. 1569-1572, 2012.
[17] J. N. Lin and C. W. Su, “A transparent display based on dye-doped liquid crystal technology,” Proceedings of International Display Workshops, pp. 140-142, 2015.
[18] E. Satoh, Y. Asaoka, K. Deguchi, I. Ihara, K. Minoura, S. Fujiwara, A. Miyata, Y. Itoh, Y. Iyama, M. Shibasaki, K. Kikuchi, and M. Kubo, “60-inch highly transparent see-through active matrix display without polarizers,” Proceedings of Society for Information Display, pp. 1192-1195, 2010.
[19] Y. S. Ku, S. W. Kuo, Y. H. Tsai, P. P. Cheng, J. L. Chen, K. W. Lan, K. L. Lo, K. C. Lee, and W. Y. Cheng, “The structure and manufacturing process of large area transparent electrowetting display,” Proceedings of Society for Information Display, pp. 850-852, 2010.
[20] K. L. Lo, Y. H. Tsai, W. Y. Cheng, J. W. Shiu, and J. L. Chen, “Recent development of transparent electrowetting display,” Proceedings of Society for Information Display, pp. 123-126, 2013.
[21] J. He, B. Yan, B. Yu, S. Wang, Y. Zeng, and Y. Wang, “The effect of molecular weight of polymer matrix on properties of polymer-dispersed liquid crystal,” European Polymer Journal, vol. 43, pp. 2745-2749, Mar. 2007.
[22] D. Cupelli, F. P. Nicoletta, S. Manfredi, M. Vivacqua, P. Formoso, G. D. Filpo, and G. Chidichimo, “Self-adjusting smart windows based on polymer-dispersed liquid crystals,” Solar Energy Materials and Solar Cells, vol. 93, pp. 2008-2012, Aug. 2009.
[23] V. A. Loiko, V. Y. Zyryanov, U. Maschke, A. V. Konkolovich, and A. A. Miskevich, “Small-angle light scattering and transmittance of polymer film containing liquid crystal droplets with inhomogeneous boundary conditions,” Journal of Quantitative Spectroscopy & Radiative Transfer, vol. 113, pp. 2585-2592, Mar. 2012.
[24] P. Alto, Liquid Crystal Dispersions, World Scientific Publishing Co. Pte. Ltd., 1995.
[25] B. Bahadur, Liquid Crystals: Applications and Uses, World Scientific Publishing Co. Pte. Ltd., 1990.
[26] A. I. Isayev, T. Kyu, and S. Z. D. Cheng, Liquid-Crystalline Polymer Systems: Technological Advances, American Chemical Society (ACS), 1997.
[27] W. Zhang, J. Lin, T. Yu, S. Lin, and D. Yang, “Effect of electric field on phase separation of polymer dispersed liquid crystal,” European Polymer Journal, vol. 39, pp. 1635-1640, Mar. 2003.
[28] P. Formentín, R. Palacios, J. Ferré-Borrull, J. Pallarés, and L. F. Marsal, “Polymer-dispersed liquid crystal based on E7: morphology and characterization,” Synthetic Metals, vol. 158, pp. 1004-1008, Aug. 2008.
[29] K. T. Cheng, Y. D. Chen, and A. Y. G. Fuh, “Scattering mode LC light shutter based on double-side poly(n-vinyl carbazole) films,” Proceedings of International Display Workshops, pp. 1577-1580, 2012.
[30] F. Z. Abdoune, L. Benkhaled, L. Méchernène, and U. Maschke, “Investigation of the electro-optical behaviour of UV-cured polymer/liquid crystal systems,” Physics Procedia, vol. 2, pp. 643-648, Aug. 2009.
[31] P. Malik, K. K. Raina, and A. K. Gathania, “Effects of polymer viscosity on the polymerization switching and electro-optical properties of unaligned liquid crystal/UV curable polymer composites,” Thin Solid Films, vol. 519, pp. 1047-1051, Aug. 2010.
[32] O. Yaroshchuk, F. Elouali, and U. Maschke, “Control of phase separation and morphology of thiol–ene based PDLCs by curing light intensity,” Optical Materials, vol. 32, pp. 982-989, Mar. 2010.
[33] W. Korner, H. Scheller, A. Beck, and J. Fricke, ‘‘PDLC films for control of light transmission,’’ Journal of Physics D: Applied Physics, vol. 27, no. 10, pp. 2145–2151, Jul. 1994.
[34] F. Bloisi, C. Ruocchio, P. Terrecuso, and L. Vicari, “PDLC: influence of dropet order parameter in light transmittance,” Optics Communications, vol. 123, pp. 449-452, 1996.
[35] F. Bloisi, P. Terrecuso, and L. Vicari, “Polarized light scattering in a novel polymer dispersed liquid-crystal geometry,” J. Opt. Soc. Am. A, vol. 14, no. 3, pp. 662-668, Mar. 1997.
[36] K. T. Cheng, Y. D. Chen, and A. Y. G. Fuh, “Scattering mode LC light shutter based on double-side poly(n-vinyl carbazole) films,” Proceedings of International Display Workshops, pp. 1577-1580, 2012.
[37] I. C. Khoo, Liquid Crystals, 2nd, Wiley, 2007.
[38] W. Zhang, J. Lin, T. Yu, S. Lin, and D. Yang, “Effect of electric field on phase separation of polymer dispersed liquid crystal,” European Polymer Journal, vol. 39, pp. 1635-1640, Mar. 2003.
[39] P. Formentín, R. Palacios, J. Ferré-Borrull, J. Pallarés, and L. F. Marsal, “Polymer-dispersed liquid crystal based on E7: morphology and characterization,” Synthetic Metals, vol. 158, pp. 1004-1008, Aug. 2008.
[40] Y. H. Lin, H. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90∘twisted cell,” Applied Physics Letters, vol. 84, no. 20, 17 May. 2004.
[41] J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” Journal of Society for Information Display 13/12, pp. 1017-1026, 2005.
[42] J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” Journal of Polymer Science, Part B: Polymer Physics, vol. 52, pp. 183-192, 2014.
[43] R. C. Gonzales and R. E. Woods, Digital Image Processing, ch. 6, pp. 407-413, Prentice Hall, 2008.
[44] C. Lee, J. H. Kim, C. Lee, C. S. Kim, Optimized brightness compensation and contrast enhancement for transmissive liquid crystal displays, IEEE Trans. Circuits Syst. Video Technol., 24 (2015) 576-590.
[45] T. R. Singh, O. I. Singh, K. M. Singh, T. Sinam, T. R. Singh, Image enhancement by adoptive power-law transformations, Bahria Univ. J. Inf. Commun. Technol. (BUJICT), 3 (2010) 29-37.
[46] G. Deng, “A generalized unsharp masking algorithm,” IEEE Trans. Image Process., vol. 20, no.5, pp.1249-1261, May 2011.
[47] A.Polesel, G. Ramponi, and V. J. Mathews, “Image enhancement via adaptive unsharp masking,” IEEE Trans. Image Process., vol. 9, no. 3, pp. 505-510, Mar. 2000.
[48] O. P. Verma, N. Gill, P. Gupta, Megha, A simple approach for image enhancement using new power-law transformation operators, in: IEEE International Conference on Signal Processing and Communication (ICSC), 2013, pp. 276-281.
[49] Y. C. Zeng, H. Y. M. Liao, Video enhancement based on saturation adjustment and contrast enhancement, in: IEEE International Symposium on Circuits and Systems (ISCAS), 2008, pp. 3550-3553.
[50] C. C. Liao, C. W. Su, and M. Y. Chen, “Mitigation of Image Blurring for Performance Enhancement in Transparent Displays Based on Polymer-Dispersed Liquid Crystal,” Displays, vol. 56, pp. 30-37, Jan. 2019.
[51] K. T. Chen, Y. H. Huang, Y. H. Tsai, W. C. Chen, L. H. Wang, H. Y. Chen, Glory Chen, J. C. Ho, and C. C. Lee, “Highly transparent AMOLED display with interactive system,” Proceedings of Society for Information Display, 2019.
[52] F. Ahmad, M. Jamil, and Y. J. Jeon, “Reverse mode polymer stabilized cholesteric texture (PSCT) light shutter display – A short review,” Journal of Molecular Liquids, Vol. 233, pp. 187-196, May 2017.
[53] J. S. Kim and S. W. Lee, “Study on how to improve visibility of transparent display for augmented reality under various environment conditions,” Optics Express, Vol. 28, pp. 2060-2069, 2020.
電子全文 電子全文(網際網路公開日期:20260118)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top