跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 01:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪振翔
研究生(外文):Hung, Chen-Hsiang
論文名稱:無網格廣義有限差分法在薄殼幾何非線性分析之應用
論文名稱(外文):Applications of Meshless with Generalized Finite Difference Method to Geometrical Nonlinear Analysis of Thin-Shells
指導教授:郭世榮郭世榮引用關係
指導教授(外文):Kuo, Shyh-Rong
口試委員:姚忠達陳泰安郭世榮
口試委員(外文):Yao, Chung-TaChen, Tai-AnKuo, Shyh-Rong
口試日期:2020-07-16
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:62
中文關鍵詞:薄殼大變形大轉角無網格法剛體運動法則增量組成律
外文關鍵詞:Thin-shellsLarge deformationLarge rotationMeshless methodsRigid body motion ruleIncremental constitutive law
相關次數:
  • 被引用被引用:2
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本文應用更新式推演法(Updated Lagrange)U.L.法與剛體運動法則作為基礎,從而建立具有大變形及大轉角特性之薄殼幾何非線性理論的無網格數值分析架構。在方程式推導過程中利用位置向量求得薄殼變形前後的切平面座標,並應用剛體旋轉,將控制點建立在切平面上,藉此簡化方程式的推導,同時提升數值分析效率。
在分析幾何非線性的問題上,將採用弧長控制法進行迭代,以驗證本文提出的非線性理論及數值分析架構的正確性和合理性。而迭代過程又可分為預測及修正兩階段: (1)預測階段─忽略增量位移的高次項,應用更新式推演法,求得簡易形式的薄殼線性化增量位移表示式;(2)修正階段─採用更新式推演法並應用剛體運動法則建立薄殼幾何非線性微分方程式,並利用迭代收斂至正確解。
本文在無網格法的使用上,將應用移動最小二乘法及廣義有限差分法建立微分方程式與求解物理量,另外在無網格法的佈點上,也將引入虛擬節點來解決邊界已知條件數與未知條件數不相等的問題,最後將以例題驗證本文方法的可行性,並同時探討薄殼的慣性矩問題。
Based on the Update Lagrange Method and rigid body motion rule, a meshless numerical analysis framework of the geometrical nonlinear theory will be established for thin-shells with large deformations and large rotations. In the equation derivation process, position vectors are used to obtain the tangent plane coordinates before and after the deformation of the thin shell, and the rigid body rotation is applied to ignore the contribution of the higher-order term of the incremental displacement, simplifying the derivation of the equation and improving the efficiency of numerical analysis.
In the analysis of geometric nonlinearity, the arc length control method will be used to iterate to verify the correctness and rationality of the nonlinear theory and numerical analysis framework proposed in the present. The iterative process can be divided into two stages of prediction and correction: (1) In the prediction stage, ignoring the higher-order terms of incremental displacement, and obtain a simple form of linearized incremental displacement expression of thin shells by applying Update Lagrange Method. (2) In the correction stage, using Update Lagrange Method and rigid body motion to establish the law of shell geometry nonlinear differential equations, and iterative convergence to the correct solution..
In the present, the meshless method will use the Moving Least Squares Differential Method and the Generalized Finite Difference Method to establish differential equations and solve physical quantities. In addition, on the layout of the meshless method, virtual nodes will also be introduced to solve known conditions and unknowns with the problem of unequal conditions. Finally, verify the feasibility of the method in the present with examples and discuss the inertia of thin shells.
誌謝....I
中文摘要....II
Abstract....III
目錄....IV
圖目錄....VI
表目錄....VIII
縮寫、符號表....IX
第一章 導論....1
1-1 文獻回顧....1
1-2 研究目的及方法....2
1-3 論文架構與內容....2
第二章 薄殼幾何非線性理論推導....4
2-1 前言....4
2-2 薄殼中曲面幾何性質....4
2-3 應變表示式....6
2-4 第一類及第二類截面力(彎矩)....8
2-5 力平衡方程式....10
2-6 組成律及等效剪力....11
2-7 預測階段-線性化增量位移表示式....14
第三章 無網格數值分析方法概述....17
3-1 前言....17
3-2 無網格分析方法介紹....17
3-3 移動最小二乘法介紹....17
3-4 虛擬佈點....20
第四章 非線性數值方法討論....21
4-1 前言....21
4-2 弧長法....21
4-3 切平面座標建立....25
4-3-1 切平面座標....25
4-3-2 旋轉矩陣....27
4-4 內力計算程序....29
第五章 實例分析....30
5-1 前言....30
5-2 線性分析....30
5-3 實例分析-線性分析....32
5-3-1 薄板承受軸向應力....32
5-3-2 薄板承受z方向剪應力....35
5-3-3 薄板承受軸向應力和側向拉應力....37
5-3-4 薄殼承受軸向應力....39
5-3-5 薄殼承受彎矩....42
5-4 非線性分析....49
5-4-1 預測階段....49
5-4-2 修正階段....52
5-5 實例分析-非線性分析....54
5-5-1 薄板承受軸向壓應力和z方向剪力微小擾動(t=0.5mm)....54
5-5-2 薄板承受軸向壓應力和z方向剪力微小擾動(t=1mm)....55
5-5-3 薄殼承受軸向壓應力和彎矩微小擾動(t=0.5mm)....56
5-5-4 薄殼承受軸向壓應力和彎矩微小擾動(t=0.7mm)....57
第六章 結論與建議....58
6-1 結論....58
6-2 建議....58
參考文獻....59
附錄A....A-1
1.Arregui, I., Destuynder, P. and Salaun, M., (1997). "An Eulerian approach for large displacements of thin shells including geometric non-linearities," Computer Methods in Applied Mechanics and Engineering., Vol. 140, Issue 3-4, pp. 361-381.
2.Bathe, K. J. and Bolourchi, S., (1979). "A geometric and material nonlinear plate and shell element," Computes & Structures., Vol. 11, Issues 1-2, pp. 23-48.
3.Belytschko, T., Lu, Y.Y. and Gu, L., (1994). " Element-free Galerkin methods," Numerical Methods in Engineering., Vol. 37, Issue 2, pp.229-256.
4.Benito, J. J., Urena, F. and Gavete, L., (2001). "Influence of several factors in the generalized finite difference method," Applied Mathematical Modelling., Vol. 25, pp. 1039-1053.
5.Benito, J. J., Urena, F. and Gavete, L., (2007). "Solving parabolic and hyperbolic equations by the generalized finite difference method," Journal of Computational and Applied Mathematics., Vol. 209, pp. 208-233.
6.Benito, J. J., Urena, F., Gavete, L. and Alonso, B., (2008). "Application of the generalized finite difference method to improve the approximated solution of pdes," Computer Modeling in Engineering and Sciences., Vol. 38, pp. 39-58.
7.Cai, Y. C. and Atluri, S. N., (2012). "Large Rotation Analyses of Plate/Shell Structures Based on the Primal Variational Principle and a Fully Nonlinear Theory in the Updated Lagrangian Co-Rotational Reference Frame," Cmes-Computer Modeling In Engineering & Sciences., Vol 83, Issue 3, pp. 249-273.
8.Chan, H. F. and Fan, C. M., (2013). "The local radial basis function collocation method for solving two-dimensional inverse Cauchy problems," Numerical Heat Transfer, Part B : Fundamentals., Vol. 63, pp. 284-303.
9.Chan, H. F., Fan, C. M. and Kuo, C. W., (2013). "Generalized finite difference method for solving two-dimensional nonlinear obstacle problem," Engineering Analysis with Boundary Elements., Vol. 37, pp. 1189-1196.
10.Divo, E. and Kassab, A. J., (2007). "An efficient localized radial basis function meshless method for fluid flow and conjugate heat transfer," Journal of Heat Transfer., Vol. 129, pp. 124-136.
11.Fan, C. M., Huang, Y. K., Li, P. W. and Chiu, C. L., (2014). "Application of the generalized finite difference method to inverse biharmonic boundary-value problems," Numerical Heat Transfer, Part B:Fundamentals., Vol. 65, pp. 129-154.
12.Fan, C. M. and Li, P. W., (2014). "Generalized finite difference method for solving two-dimensional Burgers’ equations," Procedia Engineering., Vol. 79, pp. 55-60.
13.Fan, C. M., Li, P. W. and Yeih, W., (2015). "Generalized finite difference method for solving two-dimensional inverse Cauchy problems," Inverse Problems in Science and Engineering., Vol. 23, pp. 737-759.
14.Ferreira, A. J. M. and Barbosa, J. T., (2000). "Buckling behaviour of composite shells," Compos. Struct., Vol. 50, Issue 1, pp. 93-98.
15.Gavete, L., Gavete, M. L. and Benito, J. J., (2003). "Improvements of generalized finite difference method and comparison with other meshless method," Applied Mathematical Modelling., Vol. 27, pp. 831-847.
16.Golzan, B. S. and Showkati, H., (2008). "Buckling of thin-walled conical shells under uniform external pressure," Thin-Walled Struct., Vol. 46, Issue 5, pp. 516-529.
17.Hu, H. Y. and Chen, J. S., (2008). "Radial basis collocation method and Quasi-Newton iteration for nonlinear elliptic problems," Numerical Methods for Partial Differential equations., Vol.24, pp.991-1017.
18.Kim, S.E. and Kim, C. S., (2002). "Buckling strength of cylindrical shell and tank subjected to axially compressive loads," Thin-Walled Struct., Vol. 40, Issue 4, pp. 329-353.
19.Kuo, S. R., Chi, C. C., Yeih, W. and Chang, J. R., (2006). "A reliable three-node triangular plate element satisfying rigid body rule and incremental force equilibrium condition," Journal of the Chinese Institute of Engineers., Vol. 29, Issue 4, pp. 619-632.
20.Kuo, S. R., Chi, C. C. and Yang, Y. B., (2009). "A complete stability theory for the kirchhoff thin plate under all kinds of actions," Journal of Marine Science and Technology., Vol. 17, Issue 3, pp. 180-193.
21.Kuo, S. R. and Yang, Y. B., (2013). "A rigid-body-qualified plate theory for the nonlinear analysis of structures involving torsional actions," Engineering Structures., Vol. 47, pp. 2-15.
22.Kuo, S. R., Yang, J. and Yang, Y. B., (2015). "A novel approach for buckling analysis of pretwisted spatially curved beams by state equations," International Journal of Structural Stability and Dynamics., DOI: 10.1142/S021945541550011X.
23.Kuo, S. R., Yang, J. P. and Yang, Y. B. (2016). "A Qualified Plate Theory for Rigid Rotation in Post-Critical Nonlinear Analysis," Mechanics of Advanced Materials and Structures., pp.1-12.
24.Li, M. R. and Zhan, F. L., (2000). "The finite deformation theory for beam, plate and shell. Part V. The shell element with drilling degree of freedom based on Biot strain," Computer Methods in Applied Mechanics and Engineering., Vol. 189, Issue 3, pp. 743-759.
25.Li, M. R. and Zhan, F. L., (2000). "The finite deformation theory for beam, plate and shell. Part IV. The Fe formulation of Mindlin plate and shell based on Green–Lagrangian strain," Computer Methods in Applied Mechanics and Engineering., Vol. 182, Issue 1-2, pp. 187-203.
26.Luo, Y. and Haussler-Combe, U., (2002). "A generalized finite difference method based on minimizing global residual," Computer Methods in Applied Mechanics and Engineering., Vol. 191, pp. 1421-1438.
27.Maccarini, R. R., Saetta, A., and Vitaliani, R., (2001). "A non-linear finite element formulation for shells of arbitrary geometry," Comput. Methods Appl. Mech. Eng., Vol 190, Issues 37-38, pp. 4967-4986.
28.Oñate, E. (2013). Structural analysis with the finite element method. Linear statics: volume 2: beams, plates and shells. Springer Science & Business Media.
29.Payre, G. M. J., (2007). "Influence graphs and the generalized finite difference method, "Computer Methods in Applied Mechanics and Engineering., Vol. 196, pp. 1933-1945.
30.Reddy, J. N., (1994). "An Introduction to the Finite Element Method: 2nd (second) Edition," McGraw-Hill Higher Education.
31.Shariati, M. and Akbarpour, A., (2012). "Buckling and Post Buckling Investigation of Thin Walled Shells Contain Elliptical and Circular Cutout, Subjected to Oblique Loading," Journal of Basic and Applied Scientific Research., Vol. 2, Issue. 9, pp. 9548-9557.
32.Som, P. and Deb, A., (2014). "A generalized Ritz-based method for nonlinear buckling of thin cylindrical shells," Thin-Walled Struct., Vol. 76, pp. 14-27.
33.Timoshenko, S. P. and Woinowsky-Krieger, S., (1959). Theory of Plates and Shells, (2nd ed.), New York : McGraw-Hill.
34.Ugural, A. C., (1981). Stresses in plates and shells, New York : McGraw-Hill.
35.Wempner, G., (1981). Mechanics of solids with applications to thin bodies. Rockville, Mryland, U.S.A.: Sijthoff & Noordhoff.
36.Wu, C. P. and Chen, C. W., (2001). "Elastic buckling of multilayered anisotropic conical shells, " J. Aerosp. Eng., Vol. 14, Issue 1, pp. 29-36.
37.Yang, Y. B. and Chiou, H. T., (1987). "Rigid body motion test for nonlinear analysis with beam elements," Journal of Engineering Mechanics., Vol. 113, Issue 9, pp. 1404-1419.
38.Yang, Y. B. and Kuo, S. R., (1994). "Theory and Analysis of Nonlinear Framed Structures," Englewood Cliffs, N.J: Prentice Hall.
39.Yang, Y. B., Kuo, S. R. and Yau, J. D., (2014). "A new buckling theory for curved beams of solid cross sections derived from rigid body and force equilibrium considerations," The IES Journal Part A: Civil & Structural Engineering., Vol. 7, Issue 2, pp. 63-72.
40.Yang, J. P., Guan, Pai-Chen., and Fan, Chia-Ming., (2016). "Weighted Reproducing Kernel Collocation Method and Error Analysis for Inverse Cauchy Problems," International Journal of Applied Mechanics., Vol. 8, Issue 3, 1650030.
41.Yang, J. P. and SU, W. T., (2016). "Strong-Form Framework for Solving Boundary Value Problems with Geometric Nonlinearity," Applied Mathematics and Mechanics., Vol. 37, Issue 12, pp. 1707-1720.
42.范佳銘, "無網格法上課講義"
43.郭世榮, "空間構架的靜力及動力及動力穩定理論", 國立臺灣大學土木工程研究所博士論文, 1991
44.呂良正,(1989)。"桁架及構架之非線性理論", 國立臺灣大學土木工程研究所碩士論文。
45.紀志昌, "剛體運動法則與增量力平衡在板殼結構幾何非線性理論分析之應用", 國立台灣海洋大學河海工程研究所博士論文, 2006
46.羅文韋(2016)。"無網格法在薄板幾何非線性分析之應用",國立臺灣海洋大學河海工程學士碩士學位論文。
47.張海娟(2017)。"全量式薄板幾何非線性分析之研究",國立臺灣海洋大學河海工程學士碩士學位論文。
48.錢偉長, "彈性力學", 亞東書局, 台北, 1987
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊