跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/05 11:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡宜倍
研究生(外文):TSAI, YI-PEI
論文名稱:整合經驗學習理論與即時回饋系統教學策略對國小人工智慧概念學習之影響
論文名稱(外文):The Effect of Integrating Experiential Learning Theory and Interactive Response System Teaching Strategy on the Learning of Artificial Intelligence Concepts in Elementary Schools
指導教授:王彥雯王彥雯引用關係顏榮泉顏榮泉引用關係
指導教授(外文):WANG, CHARLOTTEYEN,JUNG-CHUAN
口試委員:賴阿福蔡智孝
口試委員(外文):LAI, AH-FURTSAI, CHIN-HSIAO
口試日期:2021-06-14
學位類別:碩士
校院名稱:國立臺北教育大學
系所名稱:數學暨資訊教育學系
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:145
中文關鍵詞:人工智慧概念經驗學習圈即時回饋系統
外文關鍵詞:Artificial Intelligence ConceptionExperiential Learning CycleInteractive Response System
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討不同教學策略對國小五年級學童學習人工智慧概念之學習動機、學習態度與學習成就之影響。本研究採準實驗研究法,研究對象為臺北市國小五年級六個班,扣除無效樣本後為130位學習者,以原班組成為單位,隨機分配至傳統簡報教學組、經驗學習圈搭配Nearpod教學組與經驗學習圈組。傳統簡報教學組採傳統講述搭配傳統簡報教學策略;經驗學習圈整合Nearpod教學組採經驗學習圈搭配Nearpod即時回饋系統教學策略;經驗學習圈教學組採經驗學習圈搭配傳統簡報教學策略。所有研究對象皆全程參與為期八週之教學實驗研究。
本研究以多變量共變數分析法進行人工智慧學習動機與學習態度之分析;以共變數分析進行人工智慧學習成就之分析。結果顯示:一、經驗學習圈整合即時回饋策略能提升人工智慧概念學習動機。二、經驗學習圈整合即時回饋策略能提升人工智慧概念學習態度。三、經驗學習圈教學策略能促進人工智慧概念學習成就表現。
本研究綜合歸納:實施人工智慧概念課程建議採用Nearpod即時回饋系統以提升學習者之動機與態度,而在提升學習者之成就方面,則建議採用經驗學習圈教學策略。未來在進行人工智慧課程相關教學設計時,可整合運用上述兩種策略,並於教學媒材使用前須做好充分準備,以有效提升學生之學習動機、態度與成就。

The purpose of this study was to explore the effects of different teaching strategies on the learning motivation, learning attitude and learning achievement of fifth-grade elementary school children in learning the concept of artificial intelligence. A quasi-experimental design was adopted in this study. After removing invalid samples, the purposive sampling was executed to comprise 130 students from 4 sixth-grade classes of an elementary schools in Taipei city, who are randomly assigned to the traditional group, the experiential learning circle with Nearpod group and experience learning circle group according to the original class. The traditional group adopts traditional narration and presentation teaching strategies; the experience learning circle with Nearpod group adopts the experience learning circle integration Nearpod interactive response system teaching strategy; the experience learning circle group adopts the experience learning circle with presentation teaching strategy. All groups were conducted teaching experiment for four weeks.
Data collected in the teaching experiments were examined through an analysis of covariance (ANCOVA) and multivariate analysis of variance (MANOVA) to yield statistics. The findings of this study are as follows. First, The integration of interactive response system and the experience learning circle can enhance the motivation of artificial intelligence concept learning. Second, The integration of interactive response system and the experience learning circle can enhance the learning attitude of artificial intelligence concepts. At last, The teaching strategy of experiential learning circle can promote the achievement of artificial intelligence concept learning.
There were implications we can draw from this study. the implementation of artificial intelligence concept courses recommends applying Nearpod interactive response system to enhance learners' motivation and attitudes, and in terms of enhancing learners' achievements, it is recommended to adopts experience learning circle teaching strategies. In the future, when conducting artificial intelligence courses, the above two strategies can be integrated and adopted. Moreover, full preparation must be made before the use of interactive response system in order to effectively enhance students' learning motivation, attitude and achievement.

第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與問題 5
第三節 名詞解釋 6
第四節 研究範圍與限制 9
第二章 文獻探討 11
第一節 人工智慧 11
第二節 經驗學習圈 32
第三節 即時回饋系統 42
第三章 研究方法 53
第一節 研究設計與架構 53
第二節 研究對象 58
第三節 研究流程 59
第四節 研究工具 62
第五節 教學活動設計 74
第六節 資料蒐集與分析方法 83
第四章 研究結果與分析 85
第一節 人工智慧學習動機分析 85
第二節 人工智慧學習態度分析 95
第三節 人工智慧學習成就分析 105
第五章 結論與建議 112
第一節 研究結論 112
第二節 研究建議 114
參考文獻 116
一、中文部份 116
二、英文部份 119


參考文獻
一、中文部分
1.中國國務院(2017年7月8日)。國務院關於印發新一代人工智慧發展規劃的通知。取自http://big5.gov.cn/gate/big5/www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm
2.中國教育技術協會(2012年5月)。基礎教育信息技術課程標準。取自https://www.slideshare.net/shaobing/2012-28079597
3.中國電子學會(2017)。新一代人工智能發展白皮書。取自http://pmoa4f1ea.pic30.websiteonline.cn/upload/az9e.pdf
4.王怡婷(2012)。國民小學教師實施尊重與關懷體驗學習之行動研究(未出版碩士論文)。國立中正大學,嘉義市。
5.江坤山(譯)(2020)。AI時代的教與學(初版)(原作者:M. Zimmerman)。臺北市:親子天下。(原著出版年:2018)
6.行政院(2018年6月29日)。台灣AI行動計畫。取自https://digi.ey.gov.tw/File/4C622B6A10053DAD
7.吳明隆(2013)。SPSS統計應用學習實務:問卷分析與應用統計(三版)。臺北市:易習圖書。
8.吳亭儀(2010)。以Kolb經驗學習圈進行國民小學高關懷學生小團體輔導之行動研究(未出版碩士論文)。國立臺北教育大學,臺北市。
8.李建樹、李育強、陳虹伶、陳瑞翎、石昭玲、陳建宏、林俐儀、彭美玉(2019)。和AI做朋友----相逢篇:人工智慧有意思(初版)。臺北市:教育部。
9.沈秋蕙(2014)。試題反應理論架構下之試題分析(未出版碩士論文)。國立政治大學,臺北市。
10.林瑾芳(2012)。體驗學習方案應用於國小學童關懷能力培養之行動研究(未出版之碩士論文)。國立臺北教育大學,臺北市。
11.紀姵吟(2017)。線上回饋系統對於台灣中學生單字學習的影響(未出版碩士論文)。國立臺灣師範大學,臺北市。
12.徐顤倩(2016)。應用體驗學習理論及CPS 於國小數學領域之教學探究(未出版碩士論文)。國立臺北教育大學,臺北市。
13.國家教育研究院(2020年6月)。國民小學科技教育及資訊教育課程發展參考說明。取自http://www.chcses.chc.edu.tw/uploads/tadnews/tmp/596/0070700A00_ATTCH1.pdf#0070700A00_ATTCH1.pdf
14.張丹、崔光佐(2020)。中小學階段的人工智能教育研究。現代教育技術,(1),39-44.
15.張玉山、張雅富、陳冠吟(2016)。Kolb經驗學習理論於國中機器人活動之教學應用。科技與人力教育季刊,2(4),1-16.
16.張育禎(2008)。國中生之經驗學習歷程與科技問題解決能力之關係(未出版之碩士論文)。國立臺灣師範大學,臺北市。
17.張春興(2001)。教育心理學-三化取向的理論與實踐(二版)。臺北市:東華書局。
18.張原禎(2019)。用Google玩人工智慧實驗(初版)。臺北市:台科大圖書。
19.郭伯臣(2019年6月27日)。教育部AI與新興科技教育布局。https://ccds2019.ndhu.edu.tw/ezfiles/204/1204/img/3852/20190627_keynote_speech_B.pdf
20.郭雪(譯)(2019)。人人都該懂的人工智慧(原作者:B. Whitby)。浙江省:人民出版社。 (原著出版年:2015)
21.陳揚名(2020)。臺北市國民小學推動體驗教育之研究─以竹夢實小為例(未出版之碩士論文)。國立政治大學,臺北市。
22.游光昭、韓豐年、徐毅穎、林坤誼(2005)。國中學生科技態度量表之發展。高雄師大學報:自然科學與科技類,19,69-83.
23.微軟小冰(2017)。陽光失了玻璃窗(初版)。北京:聯合出版公司。
24.趙美聲、陳姚真(譯)(1999)。遠距教育:系統關(原作者:Michael G. Moore & Greg Kearsley)。臺北市:松崗圖書。 (原著出版年:1996)
25.劉彥余(2015)。運用體驗學習方案提升國小六年級學生關懷能力之行動研究(未出版碩士論文)。國立臺北教育大學,臺北市。
26.鄭婭峰、傅騫、趙亞寧(2020)。我國人工智能教育研究現況及主題結構分析。數字教育, 6(1), 21-26.
27.賴婉玥(2018)。以聊天機器人實作培養學生運算思維(未出版碩士論文)。國立臺灣師範大學,臺北市。
28.鍾翔宜(2020)。探討線上即時回饋系統融入國小五年級因數與倍數單元學習成效與學習態度之影響—以Nearpod為例(未出版碩士論文)。中原大學,桃園市。
29.顏予萱、蔡銘修(2018)。即時回饋系統活化補習班教學。臺灣教育評論月刊,7(5),249-253.
30.羅文妤(2019)。結合經驗學習圈理論之遊戲式學習法對數學科學習成效之影響(未出版之碩士論文)。國立臺北教育大學,臺北市。
二、英文部分
1.Ali, Z. (2020). Artificial Intelligence (AI): A Review of its Uses in Language Teaching and Learning. In Editors, IOP Conference Series: Materials Science and Engineering: Vol. 769. (p. 1-6). Bristol, England: IOP Publishing. doi:10.1088/1757-899X/769/1/012043
2.Birdsall, M. (2014). Google and ITE: The road ahead for self-driving cars. Institute of Transportation Engineers, 84(5), 36-39.
3.Bruner, J. S. (1964). The course of cognitive growth. American psychologist, 19(1), 1-15. doi: 10.1037/h0044160
4.Computer Science Teachers Association. (2017). CSTA K-12 Computer Science Standards. Retrieved from http://www.csteachers.org/standards
5.Dewey, J. (1938). Unity of science as a social problem. Chicago, IL: University of Chicago Press.
6.European commission (2020). On Artificial Intelligence-A European approach to excellence and trust. Retrieved from https://ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf
7.Executive Office of the President National Science and Technology Council Committee on Technology (2016). Preparing for the future of artificial intelligence. Retrieved from https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf
8.Fahimirad, M., & Kotamjani, S. S. (2018). A Review on Application of Artificial Intelligence in Teaching and Learning in Educational Contexts. International Journal of Learning and Development, 8(4), 106-118. doi: 10.5296/ijld.v8i4.14057
9.Gordon, G., Spaulding, S., Westlund, J. K., Lee, J. J., Plummer, L., Martinez, M., ... & Breazeal, C. (2016). Affective personalization of a social robot tutor for children's second language skills. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 3951-3957.
10.Greenblatt, N. A. (2016). Self-driving cars and the law. IEEE spectrum, 53(2), 46-51. doi: 10.1109/MSPEC.2016.7419800.
11.Hien, D. T. D., & Oanh, D. T. K. (2018). Experiential Learning Activities of Technical Students at Higher Education Institutions in Vietnam. Universal Journal of Educational Research, 6(10), 2310-2319.
12.Huang, S. P. (2018). Effects of using artificial intelligence teaching system for environmental education on environmental knowledge and attitude. Eurasia Journal of Mathematics, Science and Technology Education, 14(7), 3277-3284. doi: 10.29333/ejmste/91248
13.Kaplan, A., & Haenlein, M. (2019). Siri, Siri in my Hand, who's the Fairest in the Land? On the Interpretations, Illustrations and Implications of Artificial Intelligence. Business Horizons, 62(1), 15-25
14.Kepuska, V., & Bohouta, G. (2018). Next-generation of virtual personal assistants (microsoft cortana, apple siri, amazon alexa and google home). 2018 IEEE 8th Annual Computing and Communication Workshop and Conference, pp. 99-103.
15.Kolb, A. Y., & Kolb, D. A. (2009). Experiential learning theory: A dynamic, holistic approach to management learning, education and development. In S.J. Armstrong & C. V. Fukami, The SAGE handbook of management learning, education and development (pp. 42-66). New York, NY: SAGE Publications.
16.Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development. Upper Saddle River, NJ: FT press.
17.Kolb, D.A. (1984). Experiential Learning: Experience as the Source of Learning and Development. Upper Saddle River State, NJ: Prentice-Hall. doi: 10.1002/job.4030080408
18.Kurzweil, R., Richter, R., Kurzweil, R., & Schneider, M. L. (1990). The age of intelligent machines. Cambridge, IL: MIT press.
19.McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine, 27(4), 12-14.
20.Pintrich, P. R., Smith, D. A., Garcia, T., & McKeachie, W. J. (1993). Reliability and predictive validity of the Motivated Strategies for Learning Questionnaire (MSLQ). Educational and psychological measurement, 53(3), 801-813.
21.Retto, J. (2017). Sophia, first citizen robot of the world. ResearchGate. Retrieved from https://www.researchgate.net.
22.Sharlanova, V. (2004). Experiential learning. Trakia Journal of Sciences, 2(4), 36-39.
23.Slonim, N. (2018). Project Debater. In S. Modgil, K. Budzynska, J. Lawrence, Computational Models of Argument: Proceedings of COMMA 2018 (p. 4). Washington, DC: IOS Press.
24.The Australian Curriculum, Assessment and Reporting Authority. (2015). Digital Technologies-Sequence of content. Retrieved from https://docs.acara.edu.au/resources/Digital_Technologies_-_ Sequence_of_content.pdf
25.The Foundation for Young Australians. (2017). FYA’s New Work Order report series. Retrieved from https://www.fya.org.au/wp-content/uploads/2017/07/FYA_TheNewWorkSmarts_July2017.pdf
26.Touretzky, D., Martin, F., Seehorn, D., Breazeal, C., & Posner, T. (2019). Special Session: AI for K-12 Guidelines Initiative. Proceedings of the 50th ACM Technical Symposium on Computer Science Education, pp. 492-493.
27.Turing, A. M. (1950). Computing Machinery and Intelligence. Mind, 49, 433-460.
28.Van Rensburg, S., Ankiewicz, P., & Myburgh, C. (1999). Assessing South Africa learners’attitudes towards technology by using the PATT (Pupils’ Attitudes Towards Technology)questionnaire. International Journal of Technology and Design Education, 9, 137-151.
29.Voke, K.S., Yip, W. M., & Lo, T.K. (2003). Hong Kong pupils’ attitudes toward technology: The impact of design and technology programs. Journal of Technology Education, 15(1), 48-63.
30.Wang, F. Y., Zhang, J. J., Zheng, X., Wang, X., Yuan, Y., Dai, X., ... & 31.Yang, L. (2016). Where does AlphaGo go: From church-turing thesis to AlphaGo thesis and beyond. IEEE/CAA Journal of Automatica Sinica, 3(2), 113-120.
32.Warwick, K., & Shah, H. (2016). Can machines think? A report on Turing test experiments at the Royal Society. Journal of experimental & Theoretical artificial Intelligence, 28(6), 989-1007.
33.Wirawan, A. W., Indrawati, C. D. S., & Rahmanto, A. N. (2017). The Development of Digital Learning Based on Microsoft Access Subjects Archives to Improve Student Learning Outcomes in Office Administration at Vocational High School 3 Surakarta. Proceedings Education and Language International Conference.
34.Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking through Scratch in K-9. Computers & Education, 141, 1-25.
電子全文 電子全文(網際網路公開日期:20250101)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top