跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 12:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張婉琳
研究生(外文):CHANG,WAN-LIN
論文名稱:離岸風力發電系統之生命週期評估- 以大彰化東南暨西南風場為例
論文名稱(外文):Life Cycle Assessment of The Greater Changhua Off-Shore Wind Power Systems
指導教授:李育明李育明引用關係
指導教授(外文):LEE,YUH-MING
口試委員:申永順洪淑惠李育明
口試委員(外文):SHEN,YUNG-SHUENHUNG,SHU-HUILEE,YUH-MING
口試日期:2021-06-10
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:自然資源與環境管理研究所
學門:環境保護學門
學類:環境資源學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:95
中文關鍵詞:生命週期評估離岸風力發電系統
外文關鍵詞:Life Cycle AssessmentOffshore Wind Power SystemopenLCACMLCED
相關次數:
  • 被引用被引用:2
  • 點閱點閱:467
  • 評分評分:
  • 下載下載:129
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對大彰化東南暨西南風場之8MW風力發電系統進行生命週期盤查,盤查製造、運輸、安裝、營運、除役與廢棄物階段的環境衝擊、材料使用、能源投入。本研究應用生命週期評估軟體「openLCA」的「CML」生命週期衝擊評估方法,評估離岸風力系統的環境衝擊與材料使用,並應用「CED」生命週期衝擊評估方法,評估能源的消耗量,利用生命週期清單盤查(Life cycle inventory, LCI)收集的數據資訊,進行環境衝擊模型建置,並逐步針對產品流量(Flow)、流程(Process)與產品系統(Product System)進行建模。
生命週期衝擊評估的環境衝擊類別包含,非生物資源的消耗、酸化、優養化、全球暖化(溫室氣體排放)、人體毒性、臭氧層破壞、光化學氧化、淡水生態毒性、海洋生態毒性與陸地生態毒性。研究結果顯示,在不同的生命週期階段中,環境衝擊最大為製造階段,環境衝擊類別貢獻最大為海洋生態毒性約0.39kg1,4-DB eq/kWh,其次為全球暖化(溫室氣體排放)約2.86g CO2 eq/ kWh;而廢棄物階段則對於離岸風力發電系統的環境衝擊改善有正面的影響。在不同組件中,環境衝擊最大為水下基礎,其環境衝擊最大為海洋生態毒性,其次為人體毒性,再者為酸化。主要原因在於水下基礎大量使用鋼鐵合金材料。
材料使用方面,大彰化東南暨西南風場材料使用最多為鋼材,占整體材料約61.20%,其次則為混凝土約25.86%,再者為鐵約4.39%。每發一度電所需的鋼材約3.967g、混凝土約1.676g、鐵約0.285g。能源投入方面,製造階段能源投入占比最多約78.65%;每度所需能源投入為26.98 kJ/kWh;能源償付期(EPT)約1.8個月。

This study conducted a life cycle assessment survey of the 8MW wind power system of Greater Changhua 1&2a wind farm, and inventoried the environmental impact, material usage, and energy input during the manufacturing, transportation, installation, operation, decommissioning and disposal stages. This study applied the embedded "CML" life cycle impact assessment method of "openLCA 1.10.2" LCA software to conduct environmental impact assessment by evaluating its environmental impact and material usage, applied "CED" method to evaluate energy input. Based on the data collection from Life cycle inventory, to build an environmental footprint model, and build up the product flow, process and product system for modelling step by step.
The environmental impact categories, includes Abiotic depletion, Acidification, Eutrophication, Global warming, Human toxicity, Marine aquatic ecotoxicity, Ozone layer depletion, Photochemical oxidation and Terrestrial ecotoxicity. The research results show that in different life cycle stages, the largest environmental impact is the manufacturing stage, which contributed most environmental impact is marine eco-toxicity, which about 0.39kg1,4-DB eq/kWh, followed by climate change, which about 2.86g CO2 eq/kWh, however, EOL stage contributes positive environmental benefit. Among the different components, foundation contributes the most environmental impact, which causes marine eco-toxicity impact, followed by human toxicity, and third is acidification. The main reason is foundation consumes huge amount of ferrous metals.
For material usage, the 8MW wind power system of Greater Changhua 1&2a wind farm consumes the most material is ferrous metal, such as steel, which accounts for 61.20%, and the second is concrete around 25.86%, and third is iron around 4.39%. The 8MW wind power system of Greater Changhua 1&2a wind farm requires 3.967g of steel, about 1.676g of concrete, and about 0.285g of iron per kWh. For energy input requires 26.98 kJ per kWh, especially in the manufacturing stage accounts for 78.65%. The energy payback period (EPT) is approximately 1.8 months.

第一章、緒論 1
第一節、研究動機與目的 1
第二節、研究章節架構 5
第二章、文獻回顧 7
第一節、離岸風力發電系統的生命週期評估 7
第二節、環境衝擊類別與能資源投入 11
第三章、研究方法與流程 15
第一節、生命週期評估 15
第二節、研究流程 23
第四章、離岸風力發電系統之生命週期評估 35
第一節、目標與範疇界定 35
第二節、生命週期盤查分析 38
第三節、生命週期衝擊評估 48
第四節、生命週期闡釋 67
第五節、敏感性分析 83
第五章、結論與建議 89
第一節、結論 89
第二節、建議 91
參考文獻 93


中文文獻
1.杨东、刘晶茹、杨建新、丁宁,2015。「基于生命周期评价的风力发电机碳足迹分析」,『环境科学学报』。35(3),927-934。
2.張又升,2000。「建築物生命週期二氧化碳減量評估」。博士論文,國立成功大學建築研究所。
3.陳依庭,2013。「風力發電離岸系統之環境議題評估研究」。碩士論文,國立臺北大學自然資源與環境管理研究所。
4.曾詠恩,2006。「台灣地區風力發電之潛力分析與生命週期評估」。碩士論文,國立台北大學自然資源與環境管理研究所。
5.福海風力發電股份有限公司,2012。『「福海離岸風力發電計畫」環境影響說明書(修正版)』。台北:福海風力發電股份有限公司。
6.財團法人工業技術研究院,2020。『經濟部工業局製造業產品環境足跡與資源永續推動計畫』。新竹:財團法人工業技術研究院。
7.上緯國際投資控股股份有限公司,2015年。『海洋竹南離岸式風力發電計畫環境影響說明書』。台北:上緯國際投資控股股份有限公司。
8.何宜謀,2014。「openLCA-免費生命週期評估軟體」,『科技報』。第290期。
9.林俊傑、黃郁文,2012。「淺談海底電纜輸電設計及試驗技術」,『中華技術』。第95期,第72-84頁。
10.高成康、董家华、祝伟光、王伟,2012。「基于LCA对风力发电机的环境负荷分析」.『东北大学学报(自然科学版)』。33(7):1034-1037。
11.經濟部能源局,2008。「離岸式風力發電與台灣」,『能源報導』。台北:經濟部能源局。

英文文獻

1.Arvesen, A., C. Birkeland and E. G. Hertwich (2013). "The importance of ships and spare parts in LCAs of offshore wind power." Environmental science & technology 47(6): 2948-2956.
2.Ancona, D. and J. McVeigh (2001). "Wind turbine-materials and manufacturing fact sheet." Princeton Energy Resources International, LLC 19.
3.Acero, A. P., C. Rodríguez and A. Ciroth (2016). "LCIA methods." Impact Assessment Methods in Life Cycle Assessment and Their Impact Categories.[Google Scholar].
4.Bonou, A., A. Laurent and S. I. Olsen (2016). "Life cycle assessment of onshore and offshore wind energy-from theory to application." Applied Energy 180: 327-337.
5.Chipindula, J., V. S. V. Botlaguduru, H. Du, R. R. Kommalapati and Z. Huque (2018). "Life cycle environmental impact of onshore and offshore wind farms in Texas." Sustainability 10(6): 2022.
6.Davidsson, S., M. Höök and G. Wall (2012). "A review of life cycle assessments on wind energy systems." The International Journal of Life Cycle Assessment 17(6): 729-742.
7.Dolan SL, Heath GA (2012). "Life cycle greenhouse gas emissions of utility‐scale." Journal of Industrial Ecology,16(S1):S136-S154.
8.Elsam Engineering A/S (2004)." Life Cycle Assessment of offshore and onshore sited wind farms." Denmark: Elsam Engineering A/S
9.Gkantou, Michaela & Rebelo, Carlos & Baniotopoulos, Charalampos. (2020). "Life Cycle Assessment of Tall Onshore Hybrid Steel Wind Turbine Towers." Energies: 6
10.GreenDelta (2019). "openLCA 1.8 Basic Modelling of a Plastic Bottle." Germany: GreenDelta.
11.Guezuraga B et al (2012). "Life cycle assessment of two different 2 MW class wind turbines." Renewable Energy, 37(1):37-44.
12.Haapala, K. R. and P. Prempreeda (2014). "Comparative life cycle assessment of 2.0 MW wind turbines." International Journal of Sustainable Manufacturing 3(2): 170-185.
13.Heithoff J. et al (1998). "Ganzheitliche energetische Bilanzierung von Kohlekraftwerken, Brennstoff Wärme Kraft." Vol. 50, No. 3: pp.36–41.
14.Huang, Y.-F., X.-J. Gan and P.-T. Chiueh (2017). "Life cycle assessment and net energy analysis of offshore wind power systems." Renewable Energy 102: 98-106.
15.ISO, 2006, ISO 14044 (2006). "Environmental management — Life cycle assessment— Requirements and guidelines (first edition,2006-07-01)." Geneva:ISO.
16.Karl R et al., (2014). "Comparative life cycle assessment of 2.0 MW wind turbines." Int. J. Sustainable Manufacturing Vol. 3, No. 2:PP176-177.
17.Lenzen, M. and U. Wachsmann (2004). "Wind turbines in Brazil and Germany: an example of geographical variability in life-cycle assessment." Applied energy 77(2): 119-130.
18.Manfredi, S., K. Allacker, N. Pelletier, K. Chomkhamsri and D. M. de Souza (2012). "Product environmental footprint (PEF) guide."
19.Martínez, E., F. Sanz, S. Pellegrini, E. Jiménez and J. Blanco (2009). "Life-cycle assessment of a 2-MW rated power wind turbine: CML method." The International Journal of Life Cycle Assessment 14(1): 52.
20.Matthew Ozoemena et al., (2018). "Comparative LCA of technology improvement opportunities for a 1.5-MW wind turbine in the context of an onshore wind farm." Clean Technologies and Environmental Policy, 20:173–190.
21.Menoufi, K. (2011). "Life cycle analysis and life cyle impact assessment methodologies: a state of the art." Engineering: PP 10-12.
22.Orsted (2020)."A sustainable build-out of green energy- Orsted sustainability report 2020." Denmark: Orsted.
23.Properzi, S. and H. Herk-Hansen (2002). "Life cycle assessment of a 150 MW offshore wind turbine farm at Nysted/Roedsand, Denmark." International Journal of Environment and Sustainable Development 1(2): 113-121.
24.Ramchandra Bhandari, Bhunesh Kumar, Felix Mayer(2020)."Life cycle greenhouse gas emission from wind farms in reference to turbine sizes and capacity factors." Journal of Cleaner Production, Volume 277,123385.
25.Schleisner, L. (2000). "Life cycle assessment of a wind farm and related externalities." Renewable energy 20(3): 279-288.
26.Spielmann, M. and R. Scholz (2005). "Life cycle inventories of transport services: Background data for freight transport (10 pp)." The International Journal of Life Cycle Assessment 10(1): 85-94.
27.Siemens Gamesa (2019). A clean energy solution - from cradle to grave. German: Siemens Gamesa.
28.Sleeswijk, A. W., van Oers, L. F. C. M., Guinée, J. B., Struijs, J., & Huijbregts, M. A. J. (2008). "Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000." Science of The Total Environment, 390(1), 227-240.
29.Topham, E., & McMillan, D. (2017). "Sustainable decommissioning of an offshore wind farm." Renewable energy, 102, 470-480.
30.Tryfonidou, Rodoula & Wagner, Hermann-Josef. (2004). "Multi-megawatt wind turbines for offshore use: Aspects of Life Cycle Assessment." International Journal of Global Energy Issues. 21. 255-262. 10.1504/IJGEI.2004.005770.
31.Vestas Wind System A/S (Vestas) (2001). "Life cycle assessment of turbine PSO 1999." Denmark: Vestas Wind System A/S.
32.Vestas Wind System A/S (Vestas) (2004). "Life cycle assessment of offshore and onshore sited wind farms." Denmark: Vestas Wind System A/S.
33.VDI (2003). "Energetic Characteristics, Definitions - Terms - Methodology" Germany: VDI, Association of German Engineers.
34.Zampori, L. and R. Pant (2019). "Suggestions for updating the Product Environmental Footprint (PEF) method." European Commission Joint Research Centre, Brussels.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top