跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 08:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳睿珣
研究生(外文):Jui-Hsun Chen
論文名稱:渠道潰壩實驗之潰口形狀與流速斷面影像分析
論文名稱(外文):Cross-sectional imaging of channel shape and flow velocity in half-channel dam breach experiments
指導教授:卡艾瑋
指導教授(外文):Hervé Capart
口試委員:周憲德楊國鑫洪啟耀
口試委員(外文):Hsien-Ter ChouKuo-Hsin YangChi-Yao Hung
口試日期:2021-01-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:68
中文關鍵詞:潰壩實驗斷面測量斷面流速雷射掃描水工試驗模型
外文關鍵詞:dam breach experimentcross-section measurementcross-section velocity fieldlaser scanhydraulic test model
DOI:10.6342/NTU202100876
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在潰壩實驗中,觀測自由水面下渠道幾何變化及流速是相當困難但有意義的,為了達成這個目標,本論文發展出一套方法應用在水工模型之潰壩實驗。
為了能觀察水面下的變化,實驗採用半渠道形狀,側邊為透明壓克力,再用雷射光照亮沿著潰壩渠道的三個斷面。這些斷面可以觀測潰壩過程中沖蝕的形狀演變。也可用來追蹤粒子在斷面彼此間的位置及量測流速。
同時,觀測形狀變化與流速的測量方法可運用在計算潰壩流量,並為此設計出兩種實驗模型,分別是固定壩與土砂壩,先用前者於穩定流的條件測試方法,後者期望能應用此方法來觀測潰壩渠道的變化。採用手動影像處理的方法,能成功測量形狀變化與流速,並估計出相對應的流量。在前者固定霸實驗中,計算出的流量結果與實驗室量測流量值達合理的吻合。實驗中也仍嘗試採用自動估算的方式,然而結果穩定性不足,仍有問題得克服,固最後未予以採用,仍以手動為主。
In dam breach experiments, it is often desirable but difficult to monitor the channel geometry and flow velocity below the water free surface. To achieve this goal, this thesis develops and tests a new approach applicable to laboratory experiments. To gain visual access, the experiments are conducted in a half-channel configuration, with a transparent sidewall taken as a symmetry plane. Next, laser light sheets are used to illuminate three transverse cross-sections along the breaching half-channel. These cross-sections make it possible to monitor the evolving shape of the erodible channel. They also allow the tracking of tracer particles from one cross-section to the next, hence measurements of flow velocity within the channel.
Together, the shape and velocity measurements can be used to estimate the water discharge through the breach. Two sets of experiments are conducted. Rigid dam experiments are first used to test the approach for steady flow conditions. Next, loose dam experiments are pursued to apply the approach to evolving breaching channels. Using manual image processing methods, it is found possible to measure both shape and velocity, and to estimate the corresponding discharge. For the steady rigid dam experiments, the resulting estimates are found to be in reasonable agreement with outflow measurements. Automated algorithms to capture and process particle tracks are also proposed, but problems remain to be solved before these algorithms can be used with confidence.
口試委員審定書 I
誌謝 II
摘要 IV
Abstract V
Outline VII
List of Figures X
Chapter 1. Introduction 1
1.1 Motivation 1
1.2 Past research on dam failure 5
1.3 Previous work on imaging methods 5
Chapter 2. Experimental Apparatus and Materials 7
2.1 Laboratory set-up 7
2.2 Rigid dam model 9
2.3 Loose dam model 11
2.4 Imaging set-up 14
2.4.1 Cameras and lasers 15
2.4.2 Calibration target 16
2.4.3 Pliolite tracer 17
2.5 Procedure 19
Chapter 3. Image processing methods 20
3.1 Camera calibration 20
3.1.1 3D calibration of high-speed oblique camera 21
3.1.2 2D calibration of sideview camera 23
3.2 Cross section measurements 24
3.3 Bed and water level measurements 28
3.3.1 Manual measurement using high speed camera 29
3.3.2 Manual measurement from sideview camera 30
3.4 Manual velocity tracking 32
3.5 Automated velocity tracking 33
3.5.1 Particle identification and tracking 34
3.5.2 Trajectory reconnection method 37
3.5.3 Laser crossing identification using brightness signal 42
3.5.4 Velocity estimation 48
Chapter 4. Results and comparison 49
4.1 Rigid dam results 49
4.2 Loose dam results 52
4.3 Comparison 61
Chapter 5. Conclusion and future work 64
References 66
ASCE EWRI Task Comm Dam. (2011) Earthen Embankment Breaching. Journal of Hydraulic Engineering, 137(12), 1549-1564.
Cao, Z.X., Yue, Z.Y. & Pender, G. (2011) Landslide dam failure and flood hydraulics. Part II: coupled mathematical modelling. Natural Hazards, 59(2), 1021-1045.
Capart, H. (2013) Analytical solutions for gradual dam breaching and downstream river flooding. Water Resources Research, 49, 1968–1987.
Chen, I.-H. (2013) Twin laser sheets scanning of 3D velocity fields in steady open channel flow experiments. MSc thesis, National Taiwan University.
Coleman, S., Andrews, D., & Webby, M. (2002) Overtopping breaching of noncohesive homogeneous embankments. Journal of Hydraulic Engineering-ASCE, 128(9), 829-838.
Evans, J.E., Mackey, S.D., Gottgens, J.F. & Gill, W.M. (2000) Lessons from a Dam failure. Ohio Journal of Science, 100(5), 121-131.
Gallegos, H., Schubert, J., & Sanders, B. (2009) Two-dimensional, high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills, California. Advances in Water Resources, 32(8), 1323-1335.
IAHR Working Grp Dam-Break Flows. (2012) Dam-break flows over mobile beds: experiments and benchmark tests for numerical models. Journal of Hydraulic Research, 50(4), 364-375.
Kang, C., Chen, S.C., Chan, D. & Tfwala, S. (2020) Numerical modeling of large-scale dam breach experiment. Landslides, 17(12), 2737-2754.
Ni, W.-J. (2005) Groundwater drainage and recharge by geomorphically active gullies. MSc thesis, National Taiwan University.
Ni, W.-J. & Capart, H. (2006) Groundwater drainage and recharge by networks of irregular channels. Journal of Geophysical Research: Earth Surface, 111(F3): F02014
Ni, W.-J. & Capart, H. (2015) Cross-sectional imaging of refractive-index-matched liquid-granular flows. Experiments in Fluids, 56(8), 163.
Pan, S. & Loukola, E. (1993) Chinese-Finnish Cooperative Research Work on Dam Break Hydrodynamics. Publications of the Water and Environment Administration – series A 167 (P.O. Box 516), 3-39
Spinewine, B., and Zech, Y. (2007) Small-scale laboratory dam-break waves on movable beds. Journal of Hydraulic Research, 45(SI), 73-86.
Walder, J.S., Iverson, R.M., Godt, J.W., Logan, M. & Solovitz, S.A. (2015) Controls on the breach geometry and flood hydrograph during overtopping of noncohesive earthen dams. Water Resources Research, 51(8), 6701-6724.
Wang, Z.G. & Bowles, D.S. (2006) Three-dimensional non-cohesive earthen dam breach model. Part 1: Theory and methodology. Advances in Water Resources, 29(10), 1528-1545.
Xu, Q., Fan, X.-M., Huang, R.-Q., & Van Westen, C. (2009) Landslide dams triggered by the Wenchuan Earthquake, Sichuan Province, south west China. Bulletin of Engineering Geology and the Environment, 68(3), 373-386.
Zhang, J.Y., Li, Y., Xuan, G.X., Wang, X.G. & Li, J. (2009) Overtopping breaching of cohesive homogeneous earth dam with different cohesive strength. Science in China Series E-Technological Sciences, 52(10), 3024-3029.
Zhang, L.M. & Chen, Q. (2006) Seepage failure mechanism of the Gouhou rockfill dam during reservoir water infiltration. Soils and Foundations, 46(5), 557-568.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top