跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/06 18:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:杜成功
研究生(外文):Cong Thanh Do
論文名稱:動態複雜窗戶系統之日照性能分析
論文名稱(外文):Daylighting Performance Analysis of Dynamic Complex Fenestration Systems
指導教授:詹瀅潔
指導教授(外文):Ying-Chieh Chan
口試委員:張書瑋陳柏翰曾惠斌林之謙謝尚賢黃國倉
口試委員(外文):Shu-Wei ChangPo-Han ChenHui-Ping TserngJe-Chian LinShang-Hsien Patrick HsiehKuo-Tsang Huang
口試日期:2021-08-27
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:104
中文關鍵詞:動態復合開窗系統捲簾百葉窗Radiance 的三階段法立面控制策略日光重定向膜日光室外景觀光電傳感器
外文關鍵詞:Dynamic complex fenestration systemRoller shadeVenetian blindRadiance’s three-phase methodFacade control strategiesFacade control strategiesDaylightingOutdoor viewsPhotosensor
DOI:10.6342/NTU202103189
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
採光為建築物和居住者提供了廣泛的好處,包括節能和與室外的直接連接。使用自動控制的捲簾可以消除過多的陽光,並且可以通過使用日光重定向設備將光線發送到房間的後面來改善分佈。這些技術可以結合在動態復雜開窗系統 (DCFS) 中,以最大限度地發揮其在不同功能(節能、防眩光和視野)方面的潛力。本論文首先旨在通過分析日光可用性、防眩光和通過立面的可見性來評估日光重定向膜與自動控制的捲簾相結合的有效性。提供了設計 DCFS 的指南。此外,還評估了具有捲簾和百葉窗組合的 DCFS 的有效性。為兩個不同的 DCFS 設計了兩種控制策略,並為評估開發了一個工作流程。此工作流程對每個著色狀態應用 Radiance 的三相方法來模擬可移動的著色。為了在 DCFS 的影響下控制住戶活動的電照明,研究了天花板安裝的光電傳感器的五種配置和四個位置。
使用基於 Radiance 三階段方法的工作流程進行參數研究方案。評估的設計元素包括日光重定向膜的尺寸,以及兩個玻璃系統(頂部和中間部分)和遮光織物的特性。除了採光可用性和眩光外,還創建了一個視圖指數來評估立面全年的“透明”。結果表明,膜壁比是該方案中最關鍵的設計元素。頂部的玻璃透射率增加可能會導致更高的日光可用性,而中間部分的玻璃透射率降低則可以提供更多的戶外景觀。
與僅使用受控捲簾的情況相比,捲簾、百葉窗和適當的控制演算法的組合大大增加了後牆附近的日光,並且不會引起眩光。頂部的固定百葉窗和受控捲簾以及中間部分的另一個受控捲簾的組合非常適合臺北和紐約的朝南或朝西立面的後部空間。
此外,與傳統立面相比,DCFS 的使用增加了天花板和工作平面之間的照度相關性。它可以使用安裝在天花板上的光電傳感器對工作平面上的電燈進行精確控制。光電傳感器與下方工作平面的相關性最高;但是,它與不在正下方的工作平面的相關性也很好。
Daylighting provides a wide range of benefits for buildings and occupants, including light energy saving and a direct connection to the outdoors. Excessive sunlight can be eliminated using automatically controlled roller shades, and distribution can be improved by sending light to the back of a room using daylight-redirecting devices. These technologies can be combined in a dynamic complex fenestration system (DCFS) to maximize its potential in serving different functions (light energy saving, glare prevention, and views). This dissertation firstly aims to evaluate daylight redirecting film’s effectiveness when combined with automatically controlled roller shades by analyzing daylight availability, glare prevention, and visibility through the facade. Guidelines for designing a DCFS is provided. Moreover, the effectiveness of a DCFS with roller shade and blind combination is evaluated. Two control strategies are designed for two different DCFSs, with a workflow developed for the evaluation. This workflow applies Radiance’s three-phase method for each shading state to model movable shades. To control electric lighting for occupants’ activity under the impact of a DCFS, five configurations and four positions of ceiling-mounted photosensors are investigated.
A parametric study scheme is conducted using a workflow based on Radiance’s three-phase method. The evaluated design elements include the dimensions of the daylight redirecting film, and the properties of two glazing systems (top and middle sections) and shading fabrics. Besides daylighting availability and glare, a view index is created to evaluate the facade’s "see-through" throughout a year. The results indicated that the film-to-wall ratio is the most critical design element in the scheme. An increased glass transmittance in the top section could result in higher daylight availability, while a decreased glass transmittance in the middle section could provide more outdoor views.
The combinations of roller shades, blinds, and proper control algorithms greatly increase daylight near a rear wall compared to cases with only controlled roller shades, and do not cause glare. The combination with fixed blinds and controlled roller shades at the top section and another controlled roller shade at the middle section works well for rear spaces with south-facing or west-facing facades in both Taipei and New York.
In addition, the use of a DCFS increases the illuminance correlation between ceiling and work plane compared to a conventional facade. It enables an accurate control of electric lighting on the work plane using a ceiling-mounted photosensor. The photosensor has the highest correlation with the underneath work plane; however, its correlation with work plane not directly below is also good.
ACKNOWLEDGEMENTS ii
ABSTRACT iii
LIST OF TABLES viii
LIST OF FIGURES ix
LIST OF ACRONYMS xiv
Chapter 1 INTRODUCTION 1
1.1. Background 1
1.2. Motivation 2
1.3. Objectives 3
1.4. Limitations 3
1.5. Dissertation Overview 4
Chapter 2 LITERATURE REVIEW 6
2.1. Elements of a dynamic complex fenestration system 6
2.1.1. Dynamic shading devices 6
2.1.2. Daylight-redirecting devices 8
2.1.3. Combination of shading and daylight-redirecting devices 9
2.2. Shading control strategies 10
2.3. Photosensor installation for electric lighting control 11
2.4. Annual simulation of dynamic complex fenestration systems 13
2.5. Annual daylighting metrics 16
Chapter 3 METHODOLOGY 18
3.1. Daylighting simulation workflow 18
3.1.1. Model definition and conventional materials 21
3.1.2. Bidirectional scattering distribution function materials 22
3.1.3. The three-phase method in Radiance 22
3.2. Parametric study 23
3.2.1. Key design elements and properties 23
3.2.2. Case study 25
3.2.3. Annual daylighting quantification 27
3.2.4. Shading control strategy 29
3.3. Combinations between Venetian blind and roller shade 29
3.3.1. Locations 29
3.3.2. Case study 30
3.3.3. Configurations of dynamic complex fenestration systems 32
3.3.4. Slat angle design for a Venetian blind 33
3.3.5. Venetian blinds and roller shades’ control strategies 36
3.4. Photosensor configurations and positions 38
Chapter 4 PARAMETRIC STUDY OF A DYNAMIC COMPLEX FENESTRATION SYSTEM 41
4.1. The use of daylight redirecting film at different orientations 41
4.2. Combination of daylight redirecting film and roller shade on specific days 45
4.3. Analysis of film-to-wall ratios 48
4.4. Analysis of glass visible transmittance 50
4.5. Analysis of shading materials 52
4.6. Summary 54
4.7. Guidelines for dynamic complex fenestration system design 55
4.8. Discussion 58
4.8.1. Impact of daylit zones on the depth of spaces 58
4.8.2. Color and visual clarity 60
4.8.3. Design elements’ impact on heat gain 60
4.8.4. Limitations 61
Chapter 5 A DYNAMIC COMPLEX FENESTRATION SYSTEM DESIGN USING VENETIAN BLINDS AND ROLLER SHADES 63
5.1. Evaluation on sunny and cloudy days 63
5.2. Annual evaluation 70
5.3. Summary 76
5.4. Limitations 76
5.4.1. Sensor placement 76
5.4.2. Daylight glare simulation 77
5.4.3. Slats’ curvature 78
Chapter 6 PHOTOSENSOR CONFIGURATIONS AND POSITIONS FOR A DYNAMIC COMPLEX FENESTRATION SYSTEM 80
6.1. The impact of a roller shade on light levels 80
6.2. The impact of a roller shade and daylight redirecting film on light levels 86
6.3. Evaluation of controlling multiple work plane points by a photosensor 89
6.4. Summary 91
Chapter 7 CONCLUSIONS 92
REFERENCES 95
Andersen, M., Michel, L., Roecker, C., Scartezzini, J.-L., 2001. Experimental assessment of bi-directional transmission distribution functions using digital imaging techniques. Energy and Buildings 33(5), 417-431.
Andersen, M., Stokes, E., Gayeski, N., Browne, C., 2010. Using digital imaging to assess spectral solar-optical properties of complex fenestration materials: A new approach in video–goniophotometry. Solar Energy 84(4), 549-562.
Aries, M.B.C., Veitch, J.A., Newsham, G.R., 2010. Windows, view, and office characteristics predict physical and psychological discomfort. Journal of Environmental Psychology 30(4), 533-541.
Basurto Dávila, C., 2014. On advanced daylighting simulations and integrated performance assessment of complex fenestration systems for sunny climates. EPFL.
Bellia, L., Fragliasso, F., Stefanizzi, E., 2016. Why are daylight-linked controls (DLCs) not so spread? A literature review. Building and Environment 106, 301-312.
Bourgeois, D., Reinhart, C.F., Ward, G., 2008. Standard daylight coefficient model for dynamic daylighting simulations. Building Research & Information 36(1), 68-82.
Chan, Y.-C., Tzempelikos, A., 2013. Efficient venetian blind control strategies considering daylight utilization and glare protection. Solar Energy 98, 241-254.
Chan, Y.-C., Tzempelikos, A., 2015. Daylighting and Energy Analysis of Multi-sectional Facades. Energy Procedia 78, 189-194.
Chan, Y.-C., Tzempelikos, A., Konstantzos, I., 2015. A systematic method for selecting roller shade properties for glare protection. Energy and Buildings 92, 81-94.
Chantrasrisalai, C., Fisher, D.E., 2004. Comparative analysis of one-dimensional slat-type blind models. Proceedings of SimBuild 1(1).
Claros, S.-T., Soler, A., 2002. Indoor daylight climate–influence of light shelf and model reflectance on light shelf performance in Madrid for hours with unit sunshine fraction. Building and Environment 37(6), 587-598.
Davidson, S., 2021. Grasshopper. https://www.grasshopper3d.com/.
Defoe, P.S., Thompson, A., 2020. BS EN 17037: 2018 Daylight in Buildings-A Critical Review. Daylighting Magazine 24, 12-18.
Doulos, L.T., Kontadakis, A., Madias, E.N., Sinou, M., Tsangrassoulis, A., 2019. Minimizing energy consumption for artificial lighting in a typical classroom of a Hellenic public school aiming for near Zero Energy Building using LED DC luminaires and daylight harvesting systems. Energy and Buildings 194, 201-217.
Edmonds, I.R., 1993. Performance of laser cut light deflecting panels in daylighting applications. Solar Energy Materials and Solar Cells 29(1), 1-26.
Edmonds, I.R., Greenup, P.J., 2002. Daylighting in the tropics. Solar Energy 73(2), 111-121.
Eltaweel, A., Su, Y., 2017. Controlling venetian blinds based on parametric design; via implementing Grasshopper’s plugins: A case study of an office building in Cairo. Energy and Buildings 139, 31-43.
EnergyPlus, 2021. Weather Data. https://energyplus.net/weather.
Fernandes, L.L., Lee, E.S., Thanachareonkit, A., Selkowitz, S.E., 2020. Potential annual daylighting performance of a high-efficiency daylight redirecting slat system. Building Simulation.
Fernandes, L.L., Lee, E.S., Ward, G., 2013. Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort. Energy and Buildings 61, 8-20.
Giovannini, L., Favoino, F., Lo Verso, V.R.M., Serra, V., Pellegrino, A., 2020. GLANCE (GLare ANnual Classes Evaluation): An approach for a simplified spatial glare evaluation. Building and Environment 186, 107375.
Hee, W.J., Alghoul, M.A., Bakhtyar, B., Elayeb, O., Shameri, M.A., Alrubaih, M.S., Sopian, K., 2015. The role of window glazing on daylighting and energy saving in buildings. Renewable and Sustainable Energy Reviews 42, 323-343.
Huang, T.-Y., Hocheng, H., Chou, T.-H., Yang, W.-H., Ting, C.-J., Cheng, K.-Y., Hsieh, C.-W., 2015. Design and fabrication of sunlight-redirecting and infrared-insulating microstructure. Energy and Buildings 90, 114-126.
IESNA, 2012. LM-83-12 IES Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE). New York, NY, USA: IESNA Lighting Measurement.
Jakubiec, J.A., Reinhart, C., 2012. Overview and introduction to DAYSIM and current research developments.
https://radiance-online.lbl.gov/community/workshops/2012-copenhagen/Day1/Jakubiec/jakubiec,reinhart_radiance-workshop-presentation_daysim.pdf.
Jones, N.L., 2019. Fast climate-based glare analysis and spatial mapping, Proceedings of building simulation 2019: 16th Conference of IBPSA. pp. pp. 982-989.
Kazanasmaz, T., Grobe, L.O., Bauer, C., Krehel, M., Wittkopf, S., 2016. Three approaches to optimize optical properties and size of a South-facing window for spatial Daylight Autonomy. Building and Environment 102, 243-256.
Kim, G.Y., Mistrick, R.G., 2009. Performance analysis and design guidelines for lightshelves. Pennsylvania State University, [University Park, Pa.], p. 1 electronic document (54 p.).
Kim, K., Kim, B.S., Park, S., 2007. Analysis of design approaches to improve the comfort level of a small glazed-envelope building during summer. Solar Energy 81(1), 39-51.
Kirimtat, A., Koyunbaba, B.K., Chatzikonstantinou, I., Sariyildiz, S., 2016. Review of simulation modeling for shading devices in buildings. Renewable and Sustainable Energy Reviews 53, 23-49.
Klems, J.H., Warner, J.L., 1995. Measurement of bidirectional optical properties of complex shading devices. Lawrence Berkeley Lab., CA (United States).
Konstantoglou, M., Tsangrassoulis, A., 2016. Dynamic operation of daylighting and shading systems: A literature review. Renewable and Sustainable Energy Reviews 60, 268-283.
Konstantzos, I., Chan, Y.-C., Seibold, J.C., Tzempelikos, A., Proctor, R.W., Protzman, J.B., 2015. View clarity index: A new metric to evaluate clarity of view through window shades. Building and Environment 90, 206-214.
Konstantzos, I., Tzempelikos, A., 2014. Daylight glare probability measurements and correlation with indoor illuminances in a full-scale office with dynamic shading controls, International High Performance Buildings Conference.
Konstantzos, I., Tzempelikos, A., 2017. Daylight glare evaluation with the sun in the field of view through window shades. Building and Environment 113, 65-77.
Kotey, N.A., Wright, J.L., Collins, M.R., 2009. Determining off-normal solar optical properties of roller blinds, ASHRAE Transactions. pp. 145-154.
Kunwar, N., Cetin, K.S., Passe, U., Zhou, X., Li, Y., 2019. Full-scale experimental testing of integrated dynamically-operated roller shades and lighting in perimeter office spaces. Solar Energy 186, 17-28.
LBNL, 2021. WINDOW Software. https://windows.lbl.gov/software/window.
Leslie, R.P., 2003. Capturing the daylight dividend in buildings: why and how? Building and Environment 38(2), 381-385.
Lin, P., Tian, Z., Jonsson, J.C., 2020. Analysis of the performance of prism daylight redirecting systems with bi-directional scattering distribution functions. Building Simulation 13(2), 305-316.
Littlefair, P.J., Motin, A., 2001. Lighting controls in areas with innovative daylighting systems: a study of sensor type. Lighting Research & Technology 33(1), 59-73.
MathWorks, 2021. MATLAB. https://www.mathworks.com/products/matlab.html.
McNeel, R., Associates, 2021. Rhinoceros. https://www.rhino3d.com/.
McNeil, A., 2010. The Three-Phase Method for Simulating Complex Fenestration with Radiance.
https://www.radiance-online.org/learning/tutorials/Tutorial-ThreePhaseMethod.pdf.
McNeil, A., 2013. The five-phase method for simulating complex fenestration with radiance.
https://www.radiance-online.org//learning/tutorials/fivephasetutorialfiles/Tutorial-FivePhaseMethod_v2.pdf.
McNeil, A., 2016. BSDF Viewer.
https://www.radiance-online.org/download-install/third-party-utilities/bsdf-viewer. (Accessed 12/24 2020).
McNeil, A., Lee, E.S., 2013. A validation of the Radiance three-phase simulation method for modelling annual daylight performance of optically complex fenestration systems. Journal of Building Performance Simulation 6(1), 24-37.
McNeil, A., Lee, E.S., Jonsson, J.C., 2017. Daylight performance of a microstructured prismatic window film in deep open plan offices. Building and Environment 113, 280-297.
Meresi, A., 2016. Evaluating daylight performance of light shelves combined with external blinds in south-facing classrooms in Athens, Greece. Energy and Buildings 116, 190-205.
Mistrick, R., Chen, C.-H., Bierman, A., Felts, D., 2000. A Comparison of Photosensor-Controlled Electronic Dimming Systems in a Small Office. Journal of the Illuminating Engineering Society 29(1), 66-80.
Mistrick, R., Sarkar, A., 2005. A Study of Daylight-Responsive Photosensor Control in Five Daylighted Classrooms. LEUKOS 1(3), 51-74.
Mitchell, R., 2008. WINDOW 6.2/THERM 6.2 Research Version User Manual. https://escholarship.org/uc/item/4rx784fq.
Moon, J.W., Baik, Y.-K., Kim, S., 2020. Operation guidelines for daylight dimming control systems in an office with lightshelf configurations. Building and Environment 180, 106968.
Nilsson, A.M., Jonsson, J.C., 2010. Light-scattering properties of a Venetian blind slat used for daylighting applications. Solar Energy 84(12), 2103-2111.
O'Brien, W., Kapsis, K., Athienitis, A.K., 2013. Manually-operated window shade patterns in office buildings: A critical review. Building and Environment 60, 319-338.
Olbina, S., Hu, J., 2012. Daylighting and thermal performance of automated split-controlled blinds. Building and Environment 56, 127-138.
Park, D., Kim, P., Alvarenga, J., Jin, K., Aizenberg, J., Bechthold, M., 2014. Dynamic daylight control system implementing thin cast arrays of polydimethylsiloxane-based millimeter-scale transparent louvers. Building and Environment 82, 87-96.
Rao, S., 2011. Thermal and daylighting analysis of building perimeter zones equipped with combined dynamic shading systems. Purdue University, Ann Arbor, p. 177.
Rea, M.S., 2000. The IESNA lighting handbook: reference & application.
Reinhart, C.F., Mardaljevic, J., Rogers, Z., 2006. Dynamic Daylight Performance Metrics for Sustainable Building Design. LEUKOS 3(1), 7-31.
Reinhart, C.F., Walkenhorst, O., 2001. Validation of dynamic RADIANCE-based daylight simulations for a test office with external blinds. Energy and Buildings 33(7), 683-697.
Roudsari, M.S., 2017. Honeybee[+] 0.0.3 Release Notes for Grasshopper and Dynamo. https://www.grasshopper3d.com/group/ladybug/forum/topics/honeybee-0-0-3-release-notes-for-grasshopper-and-dynamo.
Roudsari, M.S., Pak, M., Smith, A., 2013. Ladybug: a parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design, Proceedings of the 13th international IBPSA conference held in Lyon, France Aug. pp. 3128-3135.
Santos, L., Leitão, A., Caldas, L., 2018. A comparison of two light-redirecting fenestration systems using a modified modeling technique for Radiance 3-phase method simulations. Solar Energy 161, 47-63.
Shen, H., Tzempelikos, A., 2012. Daylighting and energy analysis of private offices with automated interior roller shades. Solar Energy 86(2), 681-704.
Shin, J.Y., Yun, G.Y., Kim, J.T., 2012. View types and luminance effects on discomfort glare assessment from windows. Energy and Buildings 46, 139-145.
Solargis, 2020. Solar resource maps of World. https://solargis.com/maps-and-gis-data/download/world. (Accessed 12/22 2020).
Tabadkani, A., Roetzel, A., Li, H.X., Tsangrassoulis, A., 2020. A review of automatic control strategies based on simulations for adaptive facades. Building and Environment 175, 106801.
Thanachareonkit, A., Lee, E.S., McNeil, A., 2014. Empirical Assessment of a Prismatic Daylight-Redirecting Window Film in a Full-Scale Office Testbed. LEUKOS 10(1), 19-45.
Tian, Z., Lei, Y., Jonsson, J.C., 2019. Daylight luminous environment with prismatic film glazing in deep depth manufacture buildings. Building Simulation 12(1), 129-140.
Tian, Z., Lin, P., He, Y., Jonsson, J.C., 2020. A study of luminous environment with prism daylight redirecting fenestrations in classrooms. Indoor and Built Environment 30(4), 461-475.
Tuaycharoen, N., Tregenza, P.R., 2007. View and discomfort glare from windows. Lighting Research & Technology 39(2), 185-200.
Tzempelikos, A., 2008a. The impact of venetian blind geometry and tilt angle on view, direct light transmission and interior illuminance. Solar Energy 82(12), 1172-1191.
Tzempelikos, A., 2008b. A Review of Optical Properties of Shading Devices. Advances in Building Energy Research 2(1), 211-239.
Tzempelikos, A., Athienitis, A.K., 2007. The impact of shading design and control on building cooling and lighting demand. Solar Energy 81(3), 369-382.
Tzempelikos, A., Athienitis, A.K., Karava, P., 2007. Simulation of façade and envelope design options for a new institutional building. Solar Energy 81(9), 1088-1103.
Tzempelikos, A., Chan, Y.-C., 2016. Estimating detailed optical properties of window shades from basic available data and modeling implications on daylighting and visual comfort. Energy and Buildings 126, 396-407.
Tzempelikos, A., Shen, H., 2013. Comparative control strategies for roller shades with respect to daylighting and energy performance. Building and Environment 67, 179-192.
USGB, 2021. LEED BD+C v4.1. https://www.usgbc.org/credits/new-construction-schools-new-construction-retail-new-construction-data-centers-new-constru-4.
Wang, Y., Chen, Y., 2016. Modeling and calculation of solar gains through multi-glazing facades with specular reflection of venetian blind. Solar Energy 130, 33-45.
Ward, G., 2005a. GENKLEMSAMP.https://floyd.lbl.gov/radiance/man_html/genklemsamp.1.html.
Ward, G., 2005b. RCONTRIB. https://www.radiance-online.org/learning/documentation/manual-pages/pdfs/rcontrib.pdf.
Ward, G., 2010. GENBSDF. https://floyd.lbl.gov/radiance/man_html/genBSDF.1.html.
Ward, G., 2014. KLEMS_FULL.CAL. https://github.com/NREL/Radiance/blob/master/src/util/klems_full.cal.
Ward, G., Shakespeare, R., 1998. Rendering with Radiance: the art and science of lighting visualization.
Wienold, J., 2007. Dynamic simulation of blind control strategies for visual comfort and energy balance analysis, Building Simulation. pp. 1197-1204.
Wienold, J., 2013. Glare analysis and metrics.https://www.radiance-online.org/community/workshops/2013-golden-co/wienold_glare_rad_ws2013.pdf.
Wienold, J., Christoffersen, J., 2006. Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras. Energy and Buildings 38(7), 743-757.
Wienold, J., Iwata, T., Sarey Khanie, M., Erell, E., Kaftan, E., Rodriguez, R.G., Yamin Garreton, J.A., Tzempelikos, T., Konstantzos, I., Christoffersen, J., Kuhn, T.E., Pierson, C., Andersen, M., 2019. Cross-validation and robustness of daylight glare metrics. Lighting Research & Technology 51(7), 983-1013.
Xu, L., Pan, Y., Yao, Y., Cai, D., Huang, Z., Linder, N., 2017. Lighting energy efficiency in offices under different control strategies. Energy and Buildings 138, 127-139.
Yao, J., 2014. An investigation into the impact of movable solar shades on energy, indoor thermal and visual comfort improvements. Building and Environment 71, 24-32.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top