|
1.Alfieri, L. (2013). GloFAS – global ensemble streamflow forecasting and flood early warning. Hydrology and Earth System Sciences, 17(3), 1161-1175. doi:10.5194/hess-17-1161-2013 2.Benke, K. K., Lowell, K. E., & Hamilton, A. J. (2008). Parameter uncertainty, sensitivity analysis and prediction error in a water-balance hydrological model. Mathematical and Computer Modelling, 47(11-12), 1134-1149. doi:10.1016/j.mcm.2007.05.017 3.Beven, K., & Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 6(3), 279-8. doi:10.1002/hyp.3360060305 4.Bouzeria, H., Ghenim, A. N., & Khanchoul, K. (2017). Using artificial neural network (ANN) for prediction of sediment loads, application to the Mellah catchment, northeast Algeria. Journal of Water and Land Development, 33(1), 47-55. doi:10.1515/jwld-2017-0018 5.Butts et.al (2004). An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. Journal of Hydrology, 298(1-4), 242-266. doi:10.1016/j.jhydrol.2004.03.042 6.Chiang, Y. et.al (2017). Evaluating the contribution of multi-model combination to streamflow hindcasting by empirical and conceptual models. Hydrological Sciences Journal, 62(9), 1456-1468. doi:10.1080/02626667.2017.1330543 7.Freer, J., Beven, K., & Ambroise, B. (1996). Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach. Water Resources Research, 32(7), 2161-2173. doi:10.1029/95wr03723 8.Gneiting, T. (2005). ATMOSPHERIC SCIENCE: Weather Forecasting with Ensemble Methods. Science, 310(5746), 248-249. doi:10.1126/science.1115255 9.Hsiao et.al (2013). Ensemble forecasting of typhoon rainfall and floods over a mountainous watershed in Taiwan. Journal of Hydrology, 506, 55-68. doi:10.1016/j.jhydrol.2013.08.046 10.Hu, C., Wu, Q., Li, H., Jian, S., Li, N., & Lou, Z. (2018). Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water, 10(11), 1543. doi:10.3390/w10111543 11.Jiang, S., Ren, L., & Yang, X. (2014). Multi-model ensemble hydrologic prediction and uncertainties analysis. Proceedings of the International Association of Hydrological Sciences, 364, 249-254. doi:10.5194/piahs-364-249-2014 12.Lai, Y. G., & Wu, K. (2014). Combined Vertical And Lateral Channel Evolution Numerical Modeling.Water 13.Lopes, V. L. (1996). On the effect of uncertainty in spatial distribution of rainfall on catchment modelling. Catena, 28(1-2), 107-119. doi:10.1016/s0341-8162(96)00030-6 14.Melo, G. A. (2019). A new approach to river flow forecasting: LSTM and GRU multivariate models. IEEE Latin America Transactions, 17(12), 1978-1986. doi:10.1109/tla.2019.9011542 15.Napolitano, G., Serinaldi, F., & See, L. (2011). Impact of EMD decomposition and random initialisation of weights in ANN hindcasting of daily stream flow series: An empirical examination. Journal of Hydrology, 406(3-4), 199-214. doi:10.1016/j.jhydrol.2011.06.015 16.Pappenberger, F., & Beven, K. J. (2004). Functional classification and evaluation of hydrographs based on Multicomponent Mapping (Mx). International Journal of River Basin Management, 2(2), 89-100. doi:10.1080/15715124.2004.9635224 17.Perrin, C., Michel, C., & Andréassian, V. (2001). Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. Journal of Hydrology, 242(3-4), 275-301. doi:10.1016/s0022-1694(00)00393-0 18.Reichle, R. H., McLaughlin, D. B., & Entekhabi, D. (2002). Hydrologic Data Assimilation with the Ensemble Kalman Filter. American Meteorological Society, 130(1), 103-114.doi:10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2 19.Song, X., Zhan, C., Kong, F., & Xia, J. (2011). Advances in the study of uncertainty quantification of large-scale hydrological modeling system. Journal of Geographical Sciences, 21(5), 801-819. doi:10.1007/s11442-011-0881-2 20.Supharatid, S. (2003). Tidal-Level Forecasting and Filtering by Neural Network Model. Coastal Engineering Journal, 45(1), 119-137. doi:10.1142/s0578563403000695 21.Tiwari, M. K., & Chatterjee, C. (2010). Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). Journal of Hydrology, 382(1-4), 20-33. doi:10.1016/j.jhydrol.2009.12.013 22.Wu, Yeh, & Lai. (2019). A Combined Field and Numerical Modeling Study to Assess the Longitudinal Channel Slope Evolution in a Mixed Alluvial and Soft Bedrock Stream. Water, 11(4), 735. doi:10.3390/w11040735 23.Xu, W. et.al.(2020). Using long short-term memory networks for river flow prediction. Hydrology Research, 51(6), 1358-1376. doi:10.2166/nh.2020.026 24.尹雄銳等(2006) 水文模擬與預測中的不確定性研究現狀與展望 25.王瀅婷(2010) 巴陵壩潰壩後對上游河床變遷影響之研究 26.李文獻(2012) 二維水理輸砂模式於壩體移除分析應用之探討 27.江宙君、陳嬿竹、吳德榮(2012) 定量降雨系集演算加值分析–以2012年6月梅雨鋒面為例,天氣分析與演算研討會論文彙編:171-175 28.陳憲宗、游保杉(2007) 洪水位之即時機率預報-結合支撐向量機與模糊推理 29.堂榮華、周復雄(2017) 基於Riverflow2D的來賓市城區洪水淹沒分析 30.經濟部水利署北區水資源局(2009) 石門水庫集水區泥沙推估與處置綜合評析計畫 31.黃麗文(2014) 序率水文模擬及二維水理輸砂模式於壩移除後河川形貌變遷分析應用
|