跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 01:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃鈞鼎
研究生(外文):Chun-Ting Huang
論文名稱:三面圍束磚牆耐震評估模型開發與驗證
論文名稱(外文):Development and Verification of Seismic Evaluation Model for Partially Confined Masonry Walls
指導教授:鍾立來鍾立來引用關係邱聰智邱聰智引用關係吳賴雲
指導教授(外文):Lap-Loi ChungTsung-Chih ChiouLai-Yun Wu
口試委員:黃世建陳奕信杜怡萱袁宇秉
口試委員(外文):Shyh-Jiann HwangYi-Hsin ChenYi-Hsuan TuYu-Ping Yuen
口試日期:2021-02-08
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:284
中文關鍵詞:三面圍束磚牆簡易側推分析現地試驗TEASPA V4.0ASCE/SEI 41–17
外文關鍵詞:partially confined masonry wallssimplified pushover analysisin-situ pushover testTEASPA V4.0ASCE/SEI 41–17
DOI:10.6342/NTU202100861
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣很多現存低矮樓層街屋及校舍多為民國70年以前所興建之加強磚造建築物,距今已40年,早已超過使用年限,且老舊加強磚造建築物普遍耐震能力無法達到規範之規定,但全台目前40年以上的老舊加強磚造建築物仍超過30%,目前仍有很多人居住及使用。為避免地震來時造成老舊加強磚造建築物受損倒塌,仍需先對老屋進行耐震評估及補強,故耐震評估工具極為重要,若評估結果能有效掌握既有老舊加強磚造建築物之耐震能力,補強經費對民眾來講也較有說服力。
老舊加強磚造建築物因有採光及通風進出需求,需設置高寬比2以上之三面圍束磚牆以利門窗設置,而這些高寬比2以上之三面圍束磚牆於地震來時也能提供強度及勁度來抵抗地震力,然而工程師因為不瞭解高寬比2以上之三面圍束磚牆特性,常將高寬比2以上之三面圍束磚牆忽略不計,導致低估既有老舊加強磚造建築物之耐震能力,進而增加補強經費。
為瞭解高寬比2以上之三面圍束磚牆耐震行為,國震中心於2005年起執行一系列高寬比2以上之三面圍束磚牆相關側推試驗及現地試驗。包含有高寬比為2.25至4.5之足尺寸柱側含三面圍束磚牆構件試體、含高寬比為2.25之足尺寸三面圍束磚牆RC構架試體及含高寬比2.72至8.29之足尺寸三面圍束磚牆RC校舍試體,以瞭解高寬比2以上之三面圍束磚牆耐震行為。經試驗結果發現高寬比2以上之三面圍束磚牆不論是在近力側或遠力側皆能提供側向強度及側向勁度。
國震中心耐震補強技術手冊TEASPA V2.0三面圍束磚牆耐震評估模型係參考台灣磚構造規範之三面圍束磚牆耐震評估模型所建立,在同時考慮近力側及遠力側三面圍束磚牆下,經驗證高寬比為2.25至4.5含三面圍束磚牆RC構件及RC構架試體側推試驗,強度為試驗值之55%至95%,勁度為試驗值之9%至39%。驗證含高寬比2.72至8.29三面圍束磚牆校舍現地試驗,強度為試驗值110%,勁度為試驗值34%,強度高估及勁度低估原因為TEASPA V2.0三面圍束磚牆耐震評估模型有高寬比不得大於2之限制。
國震中心為改善TEASPA V2.0三面圍束磚牆耐震評估模型勁度偏軟問題,提出TEASPA V4.0三面圍束磚牆耐震評估模型,該模型勁度採用ASCE/SEI 41–17複合柱勁度扣掉柱勁度,強度方面比TEASPA V2.0多了一項磚牆劈裂強度,經驗證高寬比為2.25至4.5含三面圍束磚牆RC構件及RC構架試體側推試驗,強度為試驗值之88%至118%,勁度為試驗值之32%至174%。驗證含高寬比2.72至8.29三面圍束磚牆校舍現地試驗,強度為試驗值131%,勁度為試驗值64%。TEASPA V4.0雖然精進TEASPA V2.0三面圍束磚牆耐震評估模型,但對於高寬比大於2.25以上之三面圍束磚牆,仍有強度高估及勁度偏軟問題。
為了解決TEASPA V4.0的問題,本文將TEASPA V4.0三面圍束磚牆耐震評估模型單曲率勁度提升為雙曲率勁度,並依照三面圍束磚牆高寬比超過1.5,對角裂縫越少之概念,縮短TEASPA V4.0三面圍束磚牆耐震評估模型水平滑移裂縫及豎向灰縫劈裂裂縫等對角破壞路徑,並給予一個較小的磚牆劈裂強度,本文提出之三面圍束磚牆耐震評估模型,經驗證高寬比為2.25至4.5含三面圍束磚牆RC構件及RC構架試體側推試驗,強度為試驗值之84%至95%,勁度為試驗值之53%至167%。驗證含高寬比2.72至8.29三面圍束磚牆校舍現地試驗,強度為試驗值95%,勁度為試驗值96%,故本文提出之三面圍束磚牆耐震評估模型有效改善TEASPA V4.0強度高估及勁度偏軟的問題,且可適用於高寬比大於2以上之三面圍束磚牆,能有效掌握既有老舊加強磚造建築物之耐震能力,可提供工程師作為套裝軟體評估結果之參考。
Many existing street houses and school buildings in Taiwan are low-rise buildings and mostly constructed by reinforced brick before 1980, and over its service life. The seismic capacity of these old reinforced brick buildings cannot be confirmed to meet the seismic standards. At present, more than 30% of reinforced brick buildings in Taiwan have been over 40 years old and there are still many people living in and using it., therefore, it is still necessary to retrofited these old reinforced brick buildings to avoid damage or collapse in next earthquake damage or collapse. At this time, the seismic capacity evaluation of these old reinforced brick buildings are very important. If the evaluation results can effectively grasp the seismic capacity of these old reinforced brick buildings, the supplementary funds of government will be more convincing to the public.
For lighting, ventilation, and accessibility of this these old reinforced brick buildings, it is necessary to construct a partially confined masonry walls with an aspect ratio of 2 or more. It can also provide on the column side to assist the door and window configuration. These partially confined masonry walls with an aspect ratio of 2 or more can also provide strength and stiffness to resist the earthquake. However, because engineers do not understand the seismic behavior of these partially confined masonry walls with an aspect ratio of 2 or more, they usually ignore it during seismic capacity evaluation. This leads to underestimation of seismic capacity of these old reinforced brick buildings, which increases the retrofit funds.
In view of the lack of data of partially confined masonry walls with an aspect ratio of 2 or more, the National Center for Research on Earthquake Engineering(NCREE) in Taiwan carried out a series of pushover tests on partially confined masonry walls with an aspect ratio of 2 or more. The test specimens include a full-size column side with partially confined masonry walls with an aspect ratio of 2.25 to 4.00, a full-size partially confined masonry walls RC frame with an aspect ratio of 2.25 and a full-size low-rise school building with partially confined masonry walls with an aspect ratio of 2.72 to 8.29 for an in-situ pushover test to understand the seismic behavior of partially confined masonry walls during earthquakes. The test results found that partially confined masonry walls can provide lateral strength and lateral stiffness no matter on the near force side or the far force side.
In TEASPA V2.0(NCREE) partially confined masonry walls seismic evaluation model is established by design and construction specifications of brick structures for buildings in Taiwan. Under consideration of both the near force side and the far force side of the partially confined masonry walls, the predicted lateral force and lateral stiffness values for pushover tests of a full-size column side and RC frame with partially confined masonry walls with an aspect ratio of 2.25 to 4.00 are 55% to 95% and 9% to 39%, respectively. The predicted maximum base shear and initial stiffness values for an in-situ pushover test of full-size low-rise school building with partially confined masonry walls with an aspect ratio of 2.72 to 8.29 are 110% and 34% respectively. The reasons for overestimation of strength and underestimation of stiffness are that TEASPA V2.0 has a restriction that the aspect ratio of partially confined masonry walls should not be greater than 2.
In order to improve the stiffness of the TEASPA V2.0 partially confined masonry walls seismic evaluation model, NCREE proposed the TEASPA V4.0 partially confined masonry walls seismic evaluation model. The partially confined masonry walls model stiffness uses ASCE/SEI 41-17 composite column stiffness and the column stiffness is subtracted. In terms of strength, there is one more brick wall splitting strength than TEASPA V2.0. TEASPA V4.0 predicted lateral force and lateral stiffness values for pushover tests of a full-size column side and RC frame with partially confined masonry walls with an aspect ratio of 2.25 to 4.00 are 88% to 118% and 32% to 174%, respectively. The predicted maximum base shear and initial stiffness values for an in-situ pushover test of full-size low-rise school building with partially confined masonry walls with an aspect ratio of 2.72 to 8.29 are 131% and 64% respectively.
Although TEASPA V4.0 upgraded the TEASPA V2.0 partially confined masonry walls seismic evaluation model with an aspect ratio greater than 2.25, but, there are still problems of overestimation of strength and underestimation of stiffness. In order to solve TEASPA V4.0 issues, for the problem of underestimation of stiffness, this paper uses TEASPA V4.0 as the main partially confined masonry walls evaluation model and improve TEASPA V4.0 columns from single-curvature stiffness to double-curvature stiffness. For the problem of overestimation of strength, in accordance with the concept that when the aspect ratio of the partially confined masonry walls exceeds 1.5, the diagonal cracks is are fewer, and the diagonal damage paths of TEASPA V4.0 of partially confined masonry walls can be shortened, such as horizontal slip cracks and vertical gray splitting cracks, and also give a smaller masonry wall splitting strength. The partially confined masonry wall evaluation model proposed in this paper can predict lateral force and lateral stiffness values for a full-size column side and RC frame with partially confined masonry walls with an aspect ratio of 2.25 to 4.00 pushover tests are, 84 to 95% and 53% to 167%, respectively. The predicted maximum base shear and initial stiffness values for full-size low-rise school building with partially confined masonry walls with an aspect ratio of 2.72 to 8.29 for an in-situ pushover test are 95% and 96% respectively.
Therefore, the partially confined masonry wall evaluation model proposed in this paper can effectively improve overestimation of strength and underestimation of stiffness of TEASPA V4.0, and can be applied to partially confined masonry walls with an aspect ratio greater than 2. The proposed model can effectively predict the seismic behavior of the old reinforced brick buildings, and also can provide engineers a reference for the evaluation results of the package software.
目錄
口試委員會審定書 ...........................i
誌謝...................................... iii
中文摘要....................................vi
ABSTRACT ................................. viii
目錄.........................................xi
表目錄...................................... xvii
圖目錄.......................................xxvi
第一章 緒論..................................1
1.1 研究動機與目的............................1
1.2 文獻回顧.................................5
1.2.1 國內三面圍束磚牆耐震評估模型..............5
1.2.2 國外含開口磚牆RC 構架耐震評估模型..........6
1.2.3 國內既有高型三面圍束磚牆側推試驗...........7
1.2.4 國外既有開口磚牆RC 構架側推試驗...........8
第二章 台灣既有含三面圍束磚牆RC 構架耐震評估......11
2.1 TEASPA V2.0 柱耐震評估模型................12
2.2 TEASPA V2.0 三面圍束磚牆耐震評估模型.........15
2.3 簡易側推分析基本假設.........................17
2.4 各樓層容量曲線之建立2.5 結構容量曲線之建立........................18
第三章 ASCE-41 含三面圍束磚牆RC 構架耐震評估法...........19
3.1 ASCE/SEI 41–17 開口複合柱耐震評估模型...............19
3.2 ASCE/SEI 41–17 柱耐震評估模型......................27
第四章 國內既有與三面圍束磚牆有關之側推試驗..............30
4.1 口湖含磚牆校舍現地試驗.....................30
4.1.1 口湖含磚牆校舍試體介紹..................................31
4.1.2 口湖含磚牆校舍柱斷面細節..............................34
4.1.3 口湖含磚牆校舍測試佈置....................................35
4.1.4 口湖含磚牆校舍材料試驗結果...............................37
4.1.5 口湖含磚牆校舍現地試驗結果..............................38
4.2 口湖空構架校舍現地試驗..............................41
4.2.1 口湖空構架校舍試體介紹................................41
4.2.2 口湖空構架校舍柱斷面細節....................................44
4.2.3 口湖空構架校舍材料試驗結果...............................46
4.2.4 口湖空構架校舍現地試驗結果...............................46
4.3 柱單側或雙側含足尺寸三面圍束磚牆側推試驗..................48
4.3.1 柱單側或雙側含足尺寸三面圍束磚牆試體介紹.................48
4.3.2 柱單側或雙側含足尺寸三面圍束磚牆試體柱斷面配筋細節.........52
4.3.3 柱單側或雙側含足尺寸三面圍束磚牆試體材料試驗結果.............52
4.3.4 柱單側或雙側含足尺寸三面圍束磚牆試體試驗結果.....................53
4.4 含足尺寸三面圍束磚牆RC 構架側推試驗............................55
4.4.1 含足尺寸三面圍束磚牆RC 構架試體介紹.................56
4.4.2 含足尺寸三面圍束磚牆RC 構架柱斷面配筋細節.............61
4.4.3 含足尺寸三面圍束磚牆RC 構架材料試驗.......................62
4.4.4 含足尺寸三面圍束磚牆RC 構架側推試驗結果...............63
第五章 國內外柱側含三面圍束磚牆評估方法之驗證...........................67
5.1 TEASPA V2.0 驗證口湖含磚牆校舍現地試驗.........................67
5.1.1 TEASPA V2.0 口湖含磚牆校舍垂直構件容量曲線之建立............68
5.1.2 TEASPA V2.0 口湖含磚牆校舍容量曲線之建立...................76
5.1.3 TEASPA V2.0 對口湖含磚牆校舍分析值與試驗值比較................78
5.1.4 小結..................................................79
5.2 TEASPA V2.0 驗證口湖空構架校舍現地試驗............................80
5.2.1 TEASPA V2.0 對口湖空構架校舍分析值與試驗值比較................84
5.2.2 小結..................................................85
5.3 TEASPA V2.0 驗證柱側含三面圍束磚牆側推試驗......................85
5.3.1 TEASPA V2.0 對柱側含三面圍束磚牆分析值與試驗值比較........89
5.3.2 小結.......................................91
5.4 TEASPA V2.0 驗證含三面圍束磚牆RC 構架側推試驗....................93
5.4.1 TEASPA V2.0 對含三面圍束磚牆RC 構架試體分析與試驗比較.98
5.4.2 小結......................................................99
5.5 ASCE/SEI 41–17 驗證口湖國小含磚牆校舍現地試驗...........................101
5.5.1 ASCE/SEI 41–17 對口湖含磚牆校舍分析值與試驗值比較.........110
5.5.2 小結..............................................111
5.6 ASCE/SEI 41–17 驗證口湖空構架校舍現地試驗..........................113
5.6.1 ASCE/SEI 41–17 對口湖空構架校舍分析與試驗比較...........116
5.6.2 小結................................................................117
5.7 ASCE/SEI 41–17 驗證含三面圍束磚牆RC 構架側推試驗....................117
5.7.1 ASCE/SEI 41–17 對含三面圍束磚牆RC 構架試體分析與試驗比較127
5.7.2 小結....................................130
第六章 TEASPA 及ASCE/SEI 41–17 評估法精進.........................133
6.1 前語..............................................133
6.2 TEASPA V4.0 三面圍束磚牆耐震評估模型...............................133
6.2.1 TEASPA V4.0 對口湖含磚牆校舍分析值與試驗值比較..............144
6.2.2 小結..........................................................144
6.3 ASCE/SEI 41–17 URM 純磚牆耐震評估模型............................145
6.4 ASCE/SEI 41–17+URM 對口湖含磚牆校舍驗證結果......................147
6.4.1 ASCE/SEI 41–17+URM 得口湖含磚牆校舍分析值與試驗值比較149
6.4.2 小結................................................150
第七章 三面圍束磚牆耐震評估方法開法與驗證.....................................152
7.1 前語.................................................................152
7.2 TEASAP V4.0 三面圍束磚牆耐震評估模型勁度修正...........................156
7.2.1 TEASAP V4.0 三面圍束磚牆耐震評估模型勁度修正試體驗證..160
7.2.2 小結......................................................168
7.3 TEASAP V4.0 三面圍束磚牆耐震評估模型強度修正...........................170
7.3.1 不同高寬比三面圍束磚牆破壞路徑及臨界破壞角之建立...........172
7.3.2 TEASPA V4.0 三面圍束磚牆水平滑移強度及磚牆劈裂強度修正200
7.4 不同高寬比三面圍束磚牆耐震評估模型....................202
7.4.1 高寬比2 以上小於5 之三面圍束磚牆耐震評估模型...................202
7.4.2 高寬比5 以上之三面圍束磚牆耐震評估模型...............................209
7.4.3 柱雙側不對稱三面圍束磚牆計算方式.........................213
7.5 本文三面圍束磚牆耐震評估模型驗證構件側推試驗............................217
7.5.1 本文三面圍束磚牆評估模型得構件容量曲線分析與試驗比較...221
7.5.2 小結....................................................222
7.6 本文三面圍束磚牆耐震評估模型驗證構架側推試驗............................222
7.6.1 本文三面圍束磚牆評估模型得構架容量曲線分析與試驗比較...224
7.6.2 小結............................................................225
7.7 本文三面圍束磚牆耐震評估模型驗證校舍現地試驗............................225
7.7.1 本文三面圍束磚牆評估模型得校舍容量曲線分析與試驗比較...237
7.7.2 小結..............................................................238
7.8 TEASPA V2.0、TEASPA V4.0 及本文評估模型比較.............................239
第八章 結論與展望.........................................................241
8.1 結論.............................................................241
8.2 未來展望.................................................243
參考文獻.........................................245
附錄A TEASPA V2.0 三面圍束磚牆耐震評估模型..........................252
附錄B ASCE/SEI 41–17 複合柱耐震評估模型.............................255
附錄C TEASPA V4.0 三面圍束磚牆耐震評估模型........................262
附錄D 本文建議三面圍束磚牆耐震評估模型..............................268
附錄E 陳奕信三面圍束磚牆耐震評估模型初始勁度.........................282
[1]許茂雄、劉白梅、杜怡萱、劉宜珮、胡采琦,「加強磚造建築物耐震診斷與補強對策之研究」,內政部建築研究所研究報告,臺北,2003。
[2]邱聰智,「低矮型鋼筋混凝土住宅結構耐震快速評估法之開發與驗證」,國立台灣大學土木工程學系,博士論文,臺北,2015。
[3]羅慧嫻、翁樸文、沈文成,「地震防災:臺灣校舍的耐震處方箋」,國家實驗研究院,科學發展期刊,第498期,臺北,2014。
[4]鍾立來、黃鈞鼎、楊耀昇、林聖學、賴勇安、吳賴雲,「以現地試驗驗證口湖國小含磚牆校舍之簡易側推分析」,中國土木水利工程,第二十七卷,第一期,第59-68頁,2015。
[5]鍾立來、吳賴雲、林琨偉、楊耀昇、連冠華、蘇耕立、黃世建,「國中小校舍結構耐震能力初步評估之統計分析及現地驗證」,國家地震工程研究中心,研究報告No. NCREE-11-033,臺北,2011。
[6]林呈、孫洪福,「見證921集集大地震(下)」,美商麥格羅‧希爾,臺北,2000。
[7]行政院(89年)台八十九內第17610號函。
[8]鍾立來、葉勇凱、簡文郁、柴駿甫、蕭輔沛、沈文成、邱聰智、周德光、趙宜峰、楊耀昇、黃世建,「校舍結構耐震評估與補強技術手冊」,國家地震工程研究中心,研究報告No. NCREE-08-023,臺北,2008。
[9]內政部(97年)內授營建管字第0970196910號函。
[10]Applied Technology Council, “Seismic Evaluation and Retrofit of Concrete Buildings”, Applied Technology Council, ATC-40, Vol.1, Redwood City, CA., 1996.
[11]內政部營建署,「建築物耐震設計規範與解說」,內政部營建署,臺北,2011。
[12]江文卿、邱聰智、蕭輔沛、杜怡萱、簡文郁、葉勇凱、鍾立來、黃世建,「雲林縣口湖國小校舍現地靜態推垮實驗」,國家地震工程研究中心,研究報告No. NCREE-08-044,臺北,2008。
[13]鍾立來、葉勇凱、簡文郁、蕭輔沛、沈文成、邱聰智、周德光、趙宜峰、楊耀昇、涂耀賢、黃世建、孫啟祥,「校舍結構耐震評估與補強技術手冊(第二版)」,國家地震工程研究中心,研究報告No. NCREE-09-023,臺北,2009。
[14]劉子暐,「簡化推垮分析法驗證之研究」,碩士論文,國立成功大學建築研究所,臺南,2008。
[15]內政部營建署,「建築物磚構造設計及施工規範」,內政部營建署,臺北,2007。
[16]中華民國不動產估價師公會全國聯合會,「109年11月不動產估價月刊」,臺北,2020。
[17]內政部不動產資訊平台,「109年第三季房屋稅籍住宅類數量依屋齡區分表」,內政部,臺北,2020。
[18]私有建築物耐震階段性補強資訊網,「私有建築物耐震階段性補強問答集」國家地震工程研究中心,臺北,2020。
[19]陳奕信,「含磚牆RC建築結構之耐震診斷」,博士論文,國立成功大學建築研究所,臺南,2003。
[20]莊宗樺,「部分圍束加強磚造高型磚牆面內受力行為研究」,博士論文,國立成功大學建築研究所,臺南,2013。
[21]ASCE/SEI 41-17 “Seismic Evaluation and Retrofit of Existing Buildings”, American Society of Civil Engineers, Reston, Virginia, 2017.
[22]FEMA-356, “Prestandard and Commentary for the Seismic Rehabilitation of Buildings”, Federal Emergency Management Agency, Washington, D.C., 2000.
[23]張文德,「磚牆及含磚牆RC構架之耐震試驗分析與應用」,博士論文,國立成功大學建築研究所,臺南,1997。
[24]羅婷頤,「RC構架內填高型磚牆面內側向加載試驗與分析」,碩士論文,國立成功大學建築研究所,臺南,2010。
[25]林柏成,「加強磚造翼牆面內側向加載試驗與分析」,碩士論文,國立成功大學建築研究所,臺南,2011。
[26]許元馨,「不同開口形式加強磚造磚牆面內側向加載試驗」,碩士論文,國立成功大學建築研究所,臺南,2014。
[27]林育瑄,「RC構架內含偏心開口不同構法磚牆面內側向加載試驗」,碩士論文,國立成功大學建築研究所,臺南,2016。
[28]楊廷文,「RC構架內含偏心門窗開口加強磚造磚牆面內側推試驗」,碩士論文,國立成功大學建築研究所,臺南,2017。
[29]Al-Chaar, G., Lamb G.E. and Abrams, D.P., “Effect of Openings on Structural Performance of Unreinforced Masonry Infilled Frames”, ACI Special Publications, 211, 247-262, 2003.
[30]Kakaletsis, D. and Karayannis, C., “Experimental Investigation of Infilled R/C Frames with Eccentric Openings”, J. Earthq. Eng. Mech., 26(3), 231-250, 2007.
[31]Stavridis, A., Koutromanos, I. and Shing, P., “Shake‐Table Tests of a Three‐Story Reinforced Concrete Frame with Masonry Infill Walls”, Earth Eng Struct Dynam., 41(6), 1089-1108, 2012.
[32]Sigmund, V. and Penava, D., “Experimental Study of Masonry Infilled R/C Frames with Opening”, Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, September, 2012.
[33]Balik, F.S., Korkmaz, H.H., Kamanli, M., Bahadir, F., Korkmaz, S.Z. and Unal, A., “An Experimental Study on Reinforced Concrete Infilled Frames with Openings”, Advanced Materials Research., 747, 429-432, 2013.
[34]Ali Mansour, Mohammad S., Marefat and Mohammad Khanmohammadi, “Experimental Evaluation of Seismic Performance of Low-Shear Strength Masonry Infills with Openings in Reinforced Concrete Frames with Deficient Seismic Details”, Struct. Design Tall Spec. Build., 23(15), pp.1190-1210 (2013).
[35]Mai Diawati, Jafril Tanjung, Hamdeni Medriosa, “Experimental Study on the Influence of the Opening in Brick-Masonry Wall to Seismic Performance of Reinforced Concrete Frame Structures”, Proceedings of the International Conference of Global Network for Innovative Technology and AWAM International Conference in Civil Engineering, 2017.
[36]Hamide Tekeli,” An Experimental Study of the Seismic Behavior of Infilled RC Frames with Opening” , Scientia Iranica A, 24(5), 2271-2282, 2017.
[37]Elshan Ahani, Mir Naghi Mousavi, Ali Ahani, and Mohammad Kheirollah., “The Effects of Amount and Location of Openings on Lateral Behavior of Masonry Infilled RC Frames”, KSCE Journal of Civil Engineering., 23(5), 2175-2187, 2019.
[38]Shah, S.A.A., Khan, J.S., Ali, S.M., Shahzada, K., Ahmad, W. and Shah, J., “Shake Table Response of Unreinforced Masonry and Reinforced Concrete Elements of Special Moment Resisting Frame“, Advances in Civil Engineering, 2019.
[39]蕭輔沛、鍾立來、葉勇凱、簡文郁、沈文成、邱聰智、周德光、趙宜峰、翁樸文、楊耀昇、褚有倫、涂耀賢、柴駿甫、黃世建,「校舍結構耐震評估與補強技術手冊(第三版)」,國家地震工程研究中心,研究報告No. NCREE-13-023,臺北,2013。
[40]邱聰智、鍾立來、涂耀賢、賴昱志、曾建創、翁樸文、莊明介、葉勇凱、李其航、林敏郎、王佳憲、沈文成、蕭輔沛、薛強、黃世建,「臺灣結構耐震評估與補強技術手冊 (TEASPA V4.0)」,國家地震工程研究中心,研究報告No. NCREE-20-005,臺北,2020。
[41]Sezen, H. and Moehle, J.P., “Shear Strength Model for Lightly Reinforced Concrete Columns,” Journal of Structural Engineering, ASCE, Vol. 130, No. 11, pp. 1692-1703, 2004.
[42]ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary”, American Concrete Institute, Farmington Hills, MI, 503 pp, 2011.
[43]Elwood, K.J. and Moehle, J.P., “Drift Capacity of Reinforced Concrete Columns with Light Transverse Reinforcement,” Earthquake Spectra, Vol. 21, No. 1, pp. 71-89, 2005.
[44]Elwood, K.J. and Moehle, J.P., “Axial Capacity Model for Shear-Damaged Columns,” ACI Structural Journal, Vol. 102, No. 4, pp. 578-587, 2005.
[45]彭瑞龍,「RC構架含開口填充磚牆之耐震評估模型」,碩士論文,中原大學土木工程研究所,桃園,2019。
[46]W. Mann, “Statistical Evaluation of Tests on Masonry by Potential Functions”, Proceedings of the Sixth International Brick Masonry Conference, Rome, Italy, May,1982, pp. 86–98.
[47]ASTM C1531, “Standard Test Methods for In Situ Measurement of Masonry Mortar Joint Shear Strength Index”, American Society for Testing and Materials, 2016.
[48]Stavridis, A., Tempestti, J.M. and Bose, S., “Updating the ASCE 41 Provisions for Infilled RC Frames”, Proceedings of 2017 SEAOC Convention, San Diego, USA, September, 2017.
[49]Chun-Ting Huang, Tsung-Chih Chiou, Lap-Loi Chung, Shyh-Jiann Hwang and Wen-Ching Jaung, ” Verifying ASCE 41 the Evaluation Model via Field Tests of Masonry Infilled RC Frames with Openings” , Proceedings of Earthquakes and Structures, Vol. 19, pp. 157-174, 2020.
[50]翁元滔、林克強、黃世建、邱聰智,「桃園瑞埔國小校舍耐震性能現地試驗-標準構架試體擬動態與反覆側推試驗」,國家地震工程研究中心,研究報告No. NCREE-08-004,臺北,2008。
[51]Fiorato, A.E., Sozen, M.A., and Gamble, W.L., “An Investigation of the Interaction of Reinforced Concrete Frames with Masonry Filler Walls”, Research Report No. UILU-ENG 70–100; Department of Civil Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 1970.
[52]內政部營建署,「建築技術規則建築構造篇」,內政部營建署,臺北,2011。
[53]郭俊翔、溫國樑、謝宏灝、林哲民、張道明,「近地表剪力波速性質之研究」,國家地震工程研究中心,研究報告No. NCREE-11-022,臺北,2011。
[54]Stavridis, A., Tempestti, J.M. and Bose, S., “Updating the ASCE 41 Provisions for Infilled RC Frames”, Proceedings of 2017 SEAOC Convention, San Diego, USA, September, 2017.
[55]Magenes, G, Calvi, GM., “In-Plane Seismic Response of Brick Masonry Walls”, Earthquake Eng Struct Dyn 1997; 26: 1091–1112.
[56]G. MOHAMAD, F. S. FONSECA, A. T. VERMELTFOORT, A. LUBECK. (2018), “Stiffness plasticity degradation of masonry mortar under compression: preliminar results”, Proceedings of Journal of IBRACON Structures and Materials, Vol. 11, NO.7, pp. 279-295, 2018.
[57]Arifa Iffat Zerin, Akira Hosoda, Hamed Salem, Khan Mahmud Amanat. (2017) ” Seismic Performance Evaluation of Masonry Infilled Reinforced Concrete Buildings Utilizing Verified Masonry Properties in Applied Element Method”, Proceedings of Journal of Advanced Concrete Technology, , Vol. 15, NO.6, pp. 227-243, 2017.
[58]Domenico Liberatore, F. Alessandra Marotta, Luigi Sorrentino. (2014), “Estimation of solid clay brick unreinforced masonry compressive strength based on mortar and unit mechanical parameters”, Proceedings of Conference: 9th International Masonry Conference, Guimarães, Portugal, 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊