跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/10 00:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭冠昱
研究生(外文):Kuan-Yu Zheng
論文名稱:泥質底床對於水波通過障礙物之影響性的模擬與分析
論文名稱(外文):Simulation and analysis of the effects of a muddy seabed on water waves through obstacles
指導教授:詹益齊
指導教授(外文):I-Chi Chan
口試委員:林孟郁楊智傑
口試委員(外文):Meng-yu LinChih-Chieh Yang
口試日期:2021-10-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:176
中文關鍵詞:水中障礙物泥質底床OpenFOAMolaFlow數值模擬
外文關鍵詞:underwater obstaclesmuddy bottom bedOpenFOAMOlaFlownumerical simulation
DOI:10.6342/NTU202104444
相關次數:
  • 被引用被引用:1
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
關於波浪通過不同位置障礙物之問題,在學術界與工程界一直以來備受關注。眾所周知,障礙物的設置會影響波浪通過的行為,而波浪同時也會對障礙物產生循環往復的作用力。而波浪與障礙物之交互作用會受到底床條件的影響,同時亦會改變底泥之運動情形,本文將上述三者之間的交互作用稱為「波浪-障礙物-底泥交互作用」。由於目前關於此三者間的交互作用的理論、實驗、數值模擬較少,因此本研究欲建立一個數值水槽來模擬三者間的影響行為。
本研究通過開放數值模擬軟體OpenFOAM之求解器multiphaseInterFoam並配合OlaFlow所提供之靜態造波邊界條件建立一個可以同時描述週期波與多相流的數值水槽。透過模擬波浪通過水面上浮式障礙物、底床上潛式障礙物、水中潛式障礙物、含底泥底槽,再與其相對應的解析解或實驗測量值進行比較,以驗證本文模式。
最後,本文進行了上述三種障礙物配置方式並加入含底泥之底槽來進行數值實驗,分析比較其自由液面波高、流場、速度剖面、障礙物受力。其中波浪通過含底泥底槽之水面上障礙物之模擬結果與張(2021)所推導之解析解進行比較,結果具有一致性。由數值實驗之結果可以發現底泥底床條件會造成波浪衰減導致反射波與透射波之減小,亦會造成障礙物垂直受力下降,但對於障礙物水平力影響不大。
The issue of waves passing through obstacles at different locations has always attracted much attention in the academic and engineering circles. As we all know, the setting of obstacles affects the behavior of waves passing through, and the waves will also produce a cyclical force on the obstacles. The interaction between waves and obstacles will be affected by the conditions of the bottom bed, and it will also affect the transportation of sediment. This article refers to the interaction between the above three as "wave-obstacle-sediment interaction" . Since there are few theories, experiments, and numerical simulations about the interaction between the three, this research intends to establish a numerical flume to simulate the influence behavior between the three.
In this study, the open numerical simulation software OpenFOAM's solver multiphaseInterFoam and the static wave-making boundary conditions provided by OlaFlow are used to establish a numerical tank that can describe periodic waves and multiphase flows. By simulating waves, it passes through floating obstacles on the water surface, submerged obstacles on the bottom, underwater submerged obstacles, and bottom troughs containing sediment. Then compare with the corresponding analytical solutions or experimental measurements to verify the model in this article.
Finally, this paper carried out the above-mentioned three obstacle configuration methods to add the bottom groove containing sediment to carry out the numerical experiment, and analyzed and compared the free surface wave height, flow field, velocity profile, and obstacle force. Among them, the simulation results of waves passing through obstacles on the water surface in the bottom trough containing sediment are compared with the analytical solutions derived by Chang (2021), and the results are quite consistent. From the results of numerical experiments, it can be found that the conditions of the bottom mud bottom bed will cause wave attenuation, resulting in a decrease in reflected waves and transmitted waves, and will cause the vertical force of the obstacle to decrease, but it has little effect on the horizontal force of the obstacle.
口試委員審定書 I
致謝 II
摘要 III
Abstract IV
目錄 V
圖目錄 IX
表目錄 XV
符號表 XVI
第1章 緒論 1
1.1研究背景與意義 1
1.2文獻回顧 4
1.2.1 波浪通過障礙物之問題 5
1.2.2 底泥問題 8
1.3研究方法 11
1.4論文架構 12
第2章 數值模式 14
2.1 OpenFOAM概要 14
2.2 控制方程式 15
2.2.1 VARANS方程式介紹 15
2.2.2 流體體積法(VOF) 16
2.3 邊界條件 16
2.4造波原理 17
2.4.1 olaFlow造波概要 17
2.4.2 槳式造波器 18
第3章 數值波浪水槽的建立與驗證 21
3.1 造波測試 21
3.1.1數值水槽之建立 22
3.1.2 造波結果呈現 23
3.2 波浪通過水面上浮式障礙物驗證 29
3.2.1 數值水槽之建立 30
3.2.2 物理參數計算方法 36
3.2.3 結果呈現 39
3.2.4 結果驗證 51
3.3 波浪通過底床上潛式障礙物驗證 54
3.3.1 數值水槽之建立 54
3.3.2 結果呈現 57
3.3.3 結果驗證 69
3.4 波浪通過水中障礙物驗證 72
3.4.1 數值水槽之建立 72
3.4.2 物理參數 75
3.4.3 結果呈現 76
3.4.4 驗證結果 90
3.5波浪通過泥質底床之驗證:與實驗值比較 95
3.5.1 數值水槽之建立 96
3.5.2 驗證結果 97
3.6波浪通過泥質底床之驗證:與理論值比較 104
3.6.1 數值水槽之建立 104
3.6.2 驗證結果 105
第4章 底泥條件對於水波通過障礙物影響性之討論 112
4.1波浪通過水面上浮式障礙物 112
4.1.1 數值水槽之建立 112
4.1.2 與解析解比較分析 114
4.1.3 自由液面分析 120
4.1.4 流場比較 122
4.1.5 水域水平最大速度剖面比較 124
4.1.6 障礙物受力分析 127
4.2 波浪通過底床上潛式障礙物 129
4.2.1 數值水槽之建立 129
4.2.2 自由液面之比較分析 130
4.2.3 流場比較分析 130
4.2.4 水域水平最大速度剖面比較分析 132
4.2.5 受力分析 135
4.3 波浪通過水中浮式障礙物 137
4.3.1 數值水槽建立 138
4.3.2 自由液面比較 139
4.3.3 流場比較分析 139
4.3.4 水域水平最大速度剖面比較 141
4.3.5 受力分析 144
第5章 結論與建議 147
5.1 結論 147
5.1.1模型測試 147
5.1.2數值實驗 147
5.2 建議 148
參考文獻 150
附錄 152
Bai, K. J. (1975). Diffraction of oblique waves by an infinite cylinder. Journal of Fluid Mechanics, 68(3), 513-535. doi:10.1017/S0022112075001802
Burke, J. E. (1964). Scattering of Surface Waves on an Infinitely Deep Fluid. Journal of Mathematical Physics, 5, 805.
Cheong, H.-F., Shankar, N. J., & Nallayarasu, S. (1996). Analysis of submerged platform breakwater by Eigenfunction expansion method. Ocean Engineering, 23(8), 649-666. doi:https://doi.org/10.1016/0029-8018(96)84407-6
Dalrymple, R. A., & Liu, P. L. (1978). Waves over soft muds: a two-layer fluid model. Journal of Physical Oceanography, 8(6), 1121-1131.
Gade, H. G. (1958). Effects of a nonrigid, impermeable bottom on plane surface waves in shallow water. Journal of Marine Research, 16, 61-81.
Hayter, E. J., & Mehta, A. J. (1982). Modeling of estuarial fine sediment transport for tracking pollutant movement. Coastal and Oceanographic Engineering Department, University of Florida.
Heins, A. E. (1948). Water Waves Over a Channel of Finite Depth with a Dock. American Journal of Mathematics, 70(4), 730-748. doi:10.2307/2372209
Heins, A. E. (1950). Water Waves Over a Channel of Finite Depth With a Submerged Plane Barrier. Canadian Journal of Mathematics, 2, 210-222. doi:10.4153/CJM-1950-019-2
Higuera, P. (2020). Enhancing active wave absorption in RANS models. Applied Ocean Research, 94, 102000.
Higuera, P., Lara, J., & Losada, I. (2013). Realistic wave generation and active wave absorption for Navie’ Stokes models: Application to OpenFOAM®. Coastal Engineering, 71, 102-118.
Ijima, T., Shigeo, O., Yasuhiko, E., & Akire, K. (1970). BREAKWATER AND QUAY WELL BY HORIZONTAL PLATES. Coastal Engineering Proceedings, 1(12). doi:10.9753/icce.v12.94
Kim, Y., Son, S., Jung, T., & Gallien, T. (2021). An analytical and numerical study of a vertically discretized multi-paddle wavemaker for generating free surface and internal waves. Coastal Engineering, 165, 103840. doi:https://doi.org/10.1016/j.coastaleng.2021.103840
Macpherson, H. (1980). The attenuation of water waves over a non-rigid bed. Journal of Fluid Mechanics, 97(4), 721-742. doi:10.1017/S0022112080002777
Mei, C. C., & Black, J. L. (1969). Scattering of surface waves by rectangular obstacles in waters of finite depth. Journal of Fluid Mechanics, 38(3), 499-511.
Ng, C.-O. (2000). Water waves over a muddy bed: a two-layer Stokes' boundary layer model. Coastal Engineering, 40(3), 221-242. doi:https://doi.org/10.1016/S0378-3839(00)00012-0
Samsami, F., Soltanpour, M., & Shibayama, T. (2015). Spectral analysis of irregular waves in wave–mud and wave–current–mud interactions. Ocean Dynamics, 65(9), 1305-1320.
Shamsnia, S. H., Soltanpour, M., Bavandpour, M., & Gualtieri, C. (2019). A study of wave dissipation rate and particles velocity in muddy beds. Geosciences, 9(5), 212.
Soltanpour, M. (1999). Two dimensional modeling of mud profile processes (Doctoral dissertation, 橫濱國立大學).
Soltanpour, M., Shamsnia, S. H., Shibayama, T., & Nakamura, R. (2018). A study on mud particle velocities and mass transport in wave-current-mud interaction. Applied Ocean Research, 78, 267-280. doi:https://doi.org/10.1016/j.apor.2018.06.019
Tubman, M. W., & Suhayda, J. N. (1977). Wave action and bottom movements in fine sediments. In Coastal Engineering 1976 (pp. 1168-1183).
Niu, X., & Yu, X. (2011). A numerical model for wave propagation over muddy slope. Coastal Engineering Proceedings, (32), 27-27.
Zhang, D.-H., & Ng, C.-O. (2006). A numerical study on wave-mud interaction. China Ocean Engineering, 20(3), 383-394.
Goda, Y., & Suzuki, Y. (1977). Estimation of incident and reflected waves in random wave experiments. In Coastal Engineering 1976 (pp. 828-845).
Isaacson, M. (1991). Measurement of regular wave reflection. Journal of Waterway, Port, Coastal, and Ocean Engineering, 117(6), 553-569.
Mansard, E. P., & Funke, E. (1980). The measurement of incident and reflected spectra using a least squares method. In Coastal Engineering 1980 (pp. 154-172).
蔡立宏. (2007). 系列潛堤應用於海岸保護之研究 (2/4) (Vol. 1009600779). 中華民國政府出版品
張振緯(2021) 波浪通過泥質底床上之水面結構物的理論分析(未出版碩士論文)國立臺灣大學
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top