|
辛在勤, 2010: 天然災害災防問答集. 臺北市: 交通部中央氣象局. 李清勝, 陳佳莉, 2019:颱風強度及暴風圈預報技術開發(2/2). 交通部中央氣象局委託研究計畫, MOTC-CWB-108-M-01, 120 p. 周昆炫, 吳聖宇, and 林書正, 2018: 颱風壯度與大小對台灣風雨之影響. 大氣科學, 46, 222-246. 郭昱德, 2020: 低層平均流場對颱風初期發展之影響, 大氣科學研究所, 國立臺灣大學, 63p. 黃麗蓉, 2001: 信風爆發對熱帶氣旋形成之影響, 大氣科學研究所, 國立臺灣大學, 105p. Brennan, M. J., C. C. Hennon, and R. D. Knabb, 2009: The Operational Use of QuikSCAT Ocean Surface Vector Winds at the National Hurricane Center. Wea. Forecasting, 24, 621-645. Carr III, L. E., and R. L. Elsberry, 1995: Monsoonal interactions leading to sudden tropical cyclone track changes. Mon. Wea. Rev., 123, 265-290. Challa, M., and R. L. Pfeffer, 1980: Effects of eddy fluxes of angular momentum on model hurricane development. J. Atmos. Sci., 37, 1603-1618. Chan, K. T. F., and J. C. L. Chan, 2012: Size and Strength of Tropical Cyclones as Inferred from QuikSCAT Data. Mon. Wea. Rev., 140, 811-824. ——, and ——, 2013: Angular Momentum Transports and Synoptic Flow Patterns Associated with Tropical Cyclone Size Change. Mon. Wea. Rev., 141, 3985-4007. Chavas, D. R., and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816. ——, N. Lin, and K. A. Emanuel, 2015: A Model for the Complete Radial Structure of the Tropical Cyclone Wind Field. Part I: Comparison with Observed Structure*. J. Atmos. Sci., 72, 3647-3662. Chen, B.-F., C.-S. Lee, and R. L. Elsberry, 2014: On tropical cyclone size and intensity changes associated with two types of long-lasting rainbands in monsoonal environments. Geophys. Res. Lett., 41, 2575-2581. ——, C. A. Davis, and Y.-H. Kuo, 2018: Effects of Low-Level Flow Orientation and Vertical Shear on the Structure and Intensity of Tropical Cyclones. Mon. Wea. Rev., 146, 2447-2467. ——, 2019a: An Idealized Numerical Study of Shear-Relative Low-Level Mean Flow on Tropical Cyclone Intensity and Size. J. Atmos. Sci., 76, 2309-2334. ——, B. Y. Chen, H. T. Lin, and R. L. Elsberry, 2019b: Estimating Tropical Cyclone Intensity by Satellite Imagery Utilizing Convolutional Neural Networks. Wea. Forecasting, 34, 447-465. Chen, D. Y.-C., K. K. W. Cheung, and C.-S. Lee, 2012: A Study on the Synoptic-Dynamical Characteristics of Compact Tropical Cyclones in the Western North Pacific. Mon. Wea. Rev., 140, 4046-4065. Cocks, S. B., and W. M. Gray, 2002: Variability of the Outer Wind Profiles of Western North Pacific Typhoons: Classifications and Techniques for Analysis and Forecasting. Mon. Wea. Rev., 130, 1989-2005. Davis, C., C. Snyder, and A. C. Didlake Jr, 2008: A vortex-based perspective of eastern Pacific tropical cyclone formation. Mon. Wea. Rev., 136, 2461-2477. Dunion, J. P., C. D. Thorncroft, and C. S. Velden, 2014: The Tropical Cyclone Diurnal Cycle of Mature Hurricanes. Mon. Wea. Rev., 142, 3900-3919. Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420-430. Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental Control of Tropical Cyclone Intensity. J. Atmos. Sci., 61, 843-858. ——, 1986: An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady-State Maintenance. Journal of Atmospheric Sciences, 43, 585-605. ——, 1988: The Maximum Intensity of Hurricanes. Journal of Atmospheric Sciences, 45, 1143-1155. Figa-Saldaña, J., J. J. Wilson, E. Attema, R. Gelsthorpe, M. R. Drinkwater, and A. Stoffelen, 2002: The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers. Can. J. Remote Sens., 28, 404-412. Frank, W. M., 1982: Large-scale characteristics of tropical cyclones. Mon. Wea. Rev., 110, 572-586. ——, and E. A. Ritchie, 2001: Effects of Vertical Wind Shear on the Intensity and Structure of Numerically Simulated Hurricanes. Mon. Wea. Rev., 129, 2249-2269. Franklin, J. L., M. L. Black, and K. Valde, 2003: GPS Dropwindsonde Wind Profiles in Hurricanes and Their Operational Implications. Wea. Forecasting, 18, 32-44. Fu, B., M. S. Peng, T. Li, and D. E. Stevens, 2012: Developing versus Nondeveloping Disturbances for Tropical Cyclone Formation. Part II: Western North Pacific. Mon. Wea. Rev., 140, 1067-1080. Herndon, D., and C. Velden, 2008: CIMSS TC intensity satellite consensus (SATCON). 62nd Interdepartmental Hurricane Conference, Charleston, SC. Hill, K. A., and G. M. Lackmann, 2009: Influence of Environmental Humidity on Tropical Cyclone Size. Mon. Wea. Rev., 137, 3294-3315. Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Q. J. R. Meteorolog. Soc., 146, 1999-2049. Holland, G. J., 1983: Angular momentum transports in tropical cyclones. Q. J. R. Meteorolog. Soc., 109, 187-209. ——, 1995: Scale interaction in the western Pacific monsoon. Meteorol. Atmos. Phys., 56, 57-79. ——, 1997: The Maximum Potential Intensity of Tropical Cyclones. J. Atmos. Sci., 54, 2519-2541. ——, and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Q. J. R. Meteorolog. Soc., 110, 723-745. Hsieh, Y.-H., C.-S. Lee, and C.-H. Sui, 2017: A study on the influences of low-frequency vorticity on tropical cyclone formation in the western North Pacific. Mon. Wea. Rev., 145, 4151-4169. Knaff, J. A., and M. DeMaria, 2006: A multi-platform satellite tropical cyclone wind analysis system. AMS 14th Conference on Satellite Meteorology and Oceanography. ——, C. J. Slocum, K. D. Musgrave, C. R. Sampson, and B. R. Strahl, 2016: Using Routinely Available Information to Estimate Tropical Cyclone Wind Structure. Mon. Wea. Rev., 144, 1233-1247. Kruk, M. C., K. R. Knapp, and D. H. Levinson, 2010: A Technique for Combining Global Tropical Cyclone Best Track Data. J. Atmos. Oceanic Technol., 27, 680-692. Lee, C.-S., K. K. Cheung, W.-T. Fang, and R. L. Elsberry, 2010: Initial maintenance of tropical cyclone size in the western North Pacific. Mon. Wea. Rev., 138, 3207-3223. ——, 1989a: Observational analysis of tropical cyclogenesis in the western North Pacific. Part II: Budget analysis. J. Atmos. Sci., 46, 2599-2616. ——, 1989b: Observational Analysis of Tropical Cyclogenesis in the Western North Pacific. Part I: Structural Evolution of Cloud Clusters. J. Atmos. Sci., 46, 2580-2598. Leppert, K. D., and D. J. Cecil, 2016: Tropical Cyclone Diurnal Cycle as Observed by TRMM. Mon. Wea. Rev., 144, 2793-2808. Lin, Y., M. Zhao, and M. Zhang, 2015: Tropical cyclone rainfall area controlled by relative sea surface temperature. Nat Commun, 6, 6591. Maclay, K. S., M. DeMaria, and T. H. Vonder Haar, 2008: Tropical Cyclone Inner-Core Kinetic Energy Evolution. Mon. Wea. Rev., 136, 4882-4898. Martinez, J., C. C. Nam, and M. M. Bell, 2020: On the Contributions of Incipient Vortex Circulation and Environmental Moisture to Tropical Cyclone Expansion. Journal of Geophysical Research: Atmospheres, 125. McBride, J. L., and R. Zehr, 1981: Observational Analysis of Tropical Cyclone Formation. Part II: Comparison of Non-Developing versus Developing Systems. J. Atmos. Sci., 38, 1132-1151. Merrill, R. T., 1984: A Comparison of Large and Small Tropical Cyclones. Mon. Wea. Rev., 112, 1408-1418. Miller, B. I., 1958: On the maximum intensity of hurricanes. J. Meteor., 15, 184-195. Morris, M., and C. S. Ruf, 2017: Determining Tropical Cyclone Surface Wind Speed Structure and Intensity with the CYGNSS Satellite Constellation. J. Appl. Meteor. Climatol., 56, 1847-1865. Olander, T. L., and C. S. Velden, 2007: The advanced Dvorak technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22, 287-298. Powell, M. D., E. W. Uhlhorn, and J. D. Kepert, 2009: Estimating Maximum Surface Winds from Hurricane Reconnaissance Measurements. Wea. Forecasting, 24, 868-883. Ricciardulli, L., and F. J. Wentz, 2016: Remote Sensing Systems ASCAT C-2015 Daily Ocean Vector Winds on 0.25 deg grid, Version 02.1, Santa Rosa, CA: Remote Sensing Systems. Available at www.remss.com/missions/ascat. Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 2027-2043. Sampson, C. R., E. M. Fukada, J. A. Knaff, B. R. Strahl, M. J. Brennan, and T. Marchok, 2017: Tropical cyclone gale wind radii estimates for the western North Pacific. Wea. Forecasting, 32, 1029-1040. Schenkel, B. A., N. Lin, D. Chavas, M. Oppenheimer, and A. Brammer, 2017: Evaluating Outer Tropical Cyclone Size in Reanalysis Datasets Using QuikSCAT Data. J. Clim., 30, 8745-8762. Smith, R. K., and M. T. Montgomery, 2016: The efficiency of diabatic heating and tropical cyclone intensification. Q. J. R. Meteorolog. Soc., 142, 2081-2086. Song, J., and P. J. Klotzbach, 2016: Wind structure discrepancies between two best track datasets for western north Pacific tropical cyclones. Mon. Wea. Rev., 144, 4533-4551. Tao, D., and F. Zhang, 2014: Effect of environmental shear, sea-surface temperature, and ambient moisture on the formation and predictability of tropical cyclones: An ensemble-mean perspective. J. Adv. Model. Earth Syst., 6, 384-404. Touma, D., S. Stevenson, S. J. Camargo, D. E. Horton, and N. S. Diffenbaugh, 2019: Variations in the Intensity and Spatial Extent of Tropical Cyclone Precipitation. Geophys. Res. Lett., 46, 13992-14002. Tsuji, H., and K. Nakajima, 2019: Relationship Between the Change in Size of Tropical Cyclones and Spatial Patterns of Precipitation. Journal of Geophysical Research: Atmospheres, 124, 9948-9962. Vickery, P. J., D. Wadhera, M. D. Powell, and Y. Chen, 2009: A Hurricane Boundary Layer and Wind Field Model for Use in Engineering Applications. J. Appl. Meteor. Climatol., 48, 381-405. Weatherford, C. L., and W. M. Gray, 1988a: Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology. Mon. Wea. Rev., 116, 1032-1043. ——, and ——, 1988b: Typhoon Structure as Revealed by Aircraft Reconnaissance. Part II: Structural Variability. Mon. Wea. Rev., 116, 1044-1056. Wentz, F. J.,C. Gentemann, K.A. Hilburn, 2015a: Remote Sensing Systems TRMM TMI, 3-Day Environmental Suite on 0.25 deg grid, Version 7.1, Remote Sensing Systems, Santa Rosa, CA. Available online at www.remss.com/missions/tmi. ——, T. Meissner, J. Scott, K.A. Hilburn, 2015b: Remote Sensing Systems GPM GMI 3-Day Environmental Suite on 0.25 deg grid, Version 8.2, Remote Sensing Systems, Santa Rosa, CA. Available online at www.remss.com/missions/gmi. Wong, M. L. M., and J. C. L. Chan, 2004: Tropical Cyclone Intensity in Vertical Wind Shear. J. Atmos. Sci., 61, 1859-1876. Wu, C.-C., and Coauthors, 2005: Dropwindsonde observations for typhoon surveillance near the Taiwan Region (DOTSTAR). Bull. Am. Meteorol. Soc., 86, 787-790.
|