跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 16:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張翊群
研究生(外文):Yi-Chun Chang
論文名稱:利用雙胞反應器產氨及整治廢水的可行性評估
論文名稱(外文):Feasibility Exploration of Photocatalytic Production of Ammonia and Remediation of Wastewater in Twin Reactor System
指導教授:吳紀聖
指導教授(外文):Chi-Sheng Wu
口試委員:游文岳曾怡享
口試委員(外文):Wen-Yueh YuI-Hsiang Tseng
口試日期:2020-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:100
中文關鍵詞:光催化固氮雙胞反應器有機廢水異丙醇
外文關鍵詞:photocatalysisammonia productiontwin reactorwastewater remediationisopropyl alcohol
DOI:10.6342/NTU202100885
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自從哈伯法於一世紀前發明以來,固氮反應完全改變了世界的樣貌。全球超過90%的人口仰賴哈伯法所生產的氨過活。然而,哈伯法的嚴苛反應條件對於偏遠地區來說著實不可行,且在化石燃料價格上漲的未來,哈伯法的操作成本也會增加。在半導體產業蓬勃發展的臺灣,排放量漸增的廢水已成為人民所關注之焦點。利用光催化產氨及分解廢水或將是上述問題之解方。本研究提議使用雙胞反應器同時達成上述兩目的。本研究衡量了觸媒在雙胞反應器初期條件及末期條件的表現。實驗中測試了鐵相關觸媒產氨的活性以及以商用觸媒為基底的材料降解廢水的效果。觸媒經過X光繞射光譜、可見光吸收光譜、掃描式電子顯微鏡、能量色散X射線譜以及比表面積與孔隙度分析儀鑑定。結果顯示Fe-BiOBr產氨的表現優異。P25 (TiO2) 相關觸媒能有效降解廢水。然而,同一觸媒在雙胞初期及後期條件的表現並不一致。Pd-P25在初期有最突出表現,但P25在後期的表現則最突出。
Since the Haber-Bosch process was invented a century ago, the majority of the global population has relied on Haber-Bosch nitrogen to carry on their lives. The fierce operating conditions is not possible in rural areas, and rising fossil fuel prices may impose higher cost of operation in the future.
Wastewater discharge from booming semiconductor industries in Taiwan has grown into an issue as the production chain grows. Hence, photocatalytic production of ammonia accompanied by wastewater degradation in a twin reactor has been proposed. In this work, the conditions in the initial phase and the final phase of the twin reactor operation have been investigated. Iron-related catalysts have been tested for their capabilities of nitrogen reduction. Modified commercial catalysts were tested for their wastewater degradation capabilities. The catalysts were characterized by XRD, UV-Vis, SEM, EDX, and BET surface area analysis. Results showed that Fe-BiOBr exhibited much improved ammonium production rate, and P25 (TiO2) series catalysts demonstrated impressive oxidative power. However, the tested catalysts did not always perform well in every phase of the simulated twin reactor operation. Fe-BiOBr had higher efficiency when reaction was carried out in pure water instead of solution containing electron mediators. Pd-P25 showed superior degradation power in the early phase while P25 performed the best in the late-phase conditions.
Acknowledgement i
摘要 iii
Abstract iv
Table of Contents v
List of Figures x
List of Tables xiii
Chapter 1 Preface 1
Chapter 2 Introduction 3
2.1 Photocatalysis 3
2.1.1 Principles 3
2.1.2 Applications 4
2.1.3 Limitations 4
2.2 Nitrogen fixation 5
2.2.1 Nitrogen cycle in nature 5
2.2.2 Haber-Bosch process 7
2.2.3 Fertilizers, clean energy and sustainability 8
2.2.4 Photocatalytic nitrogen fixation 9
2.2.5 BiOBr and iron-doped BiOBr photocatalyst for nitrogen fixation 10
2.3 Wastewater Remediation 11
2.3.1 Isopropyl alcohol in semiconductor industry discharge 11
2.3.2 Photocatalytic wastewater remediation 12
2.4 Twin reactor system 12
2.4.1 Z-scheme system 12
2.4.2 Electron mediator 13
2.4.3 Ion-exchange membrane 13
2.4.4 Twin reactor design for nitrogen fixation and wastewater oxidation 14
Chapter 3 Experimental Section 17
3.1 Chemicals and Instruments 17
3.1.1 Chemicals 17
3.1.2 Instruments 18
3.2 Photocatalyst preparation 19
3.2.1 BiOBr photocatalyst series for nitrogen reduction 19
3.2.2 Fe2O3 photocatalyst series for nitrogen reduction and isopropyl alcohol degradation 21
3.2.3 C3N4 photocatalyst series for nitrogen reduction 22
3.2.4 WO3 photocatalyst series for IPA oxidation 23
3.2.5 TiO2 (P25) photocatalyst series for nitrogen reduction and wastewater oxidation 24
3.3 Photocatalyst characterization 25
3.3.1 Ultraviolet-visible spectroscopy (UV-Vis) 25
3.3.2 X-ray diffraction (XRD) 26
3.3.3 Scanning electron microscopy (SEM) 27
3.3.4 BET surface area analysis 28
3.3.5 Energy dispersive X-ray spectroscopy (EDX) 29
3.3.6 X-ray photoelectron spectroscopy (XPS) 29
3.4 Experiment Setup 30
3.4.1 Single-chamber reactor for feasibility exploration 30
3.5 Detection of experiment products 32
3.5.1 Nessler’s reagent 32
3.5.2 Ion chromatography 33
3.5.3 Gas chromatography 33
Chapter 4 Results and Discussions 35
4.1 Catalyst characterization 35
4.1.1 Fe2O3, C3N4, TiO2 series 35
4.1.1.1 XRD 35
4.1.1.2 UV-Vis 37
4.1.1.3 XPS 39
4.1.2 BiOBr series 41
4.1.2.1 XRD 41
4.1.2.2 UV-Vis 42
4.1.2.3 SEM 44
4.1.2.4 EDX 46
4.1.2.5 BET surface area analysis 51
4.1.2.6 XPS 52
4.2 Ammonium quantitative analysis 54
4.2.1 Nessler’s reagent 54
4.2.1.1 Effect of iron ions 54
4.2.1.2 Effect of iodide and iodate 56
4.3 Ammonium production 58
4.3.1 Fe2O3, C3N4, TiO2 series 58
4.3.2 BiOBr series in pure water 59
4.3.2.1 Effect of doping 60
4.3.2.2 Effect of illumination power 63
4.3.2.3 Effect of gas feed 65
4.3.2.4 Long-duration tests 69
4.3.3 BiOBr series with electron mediators 71
4.3.3.1 Effect of mediator type and concentration 71
4.3.3.2 Ammonium production in simulated late-phase conditions 73
4.3.4 Summary 75
4.4 IPA wastewater remediation 77
4.4.1 Comparison of TiO2 and WO3 based catalysts 77
4.4.2 Effect of loaded metal type 79
4.4.3 Effect of loaded metal amount 82
4.4.4 Pd-P25 performance in simulated late-phase conditions in a twin reactor 83
4.4.5 Comparison of performance in early-phase and late-phase conditions 85
4.4.6 Summary 87
4.5 Vision for ammonium production and wastewater remediation in a twin reactor 88
Chapter 5 Conclusions 91
References 93
Autobiography 99
[1] O. Ola, M.M. Maroto-Valer, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24 2015 16-42.
[2] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, nature, 238 1972 37-38.
[3] Y.-T. Lin, C.-W. Huang, Y.-H. Wang, J.C. Wu, High Effective Composite RGO/TiO 2 Photocatalysts to Degrade Isopropanol Pollutant in Semiconductor Industry, Topics in Catalysis, 1-11.
[4] J. Lasek, Y.-H. Yu, J.C. Wu, Removal of NOx by photocatalytic processes, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 14 2013 29-52.
[5] C. Joseph, V.-H. Nguyen, J. Lasek, S.-W. Chiang, D.X. Li, J.C. Wu, NOx abatement from stationary emission sources by photo-assisted SCR: Lab-scale to pilot-scale studies, Applied Catalysis A: General, 523 2016 294-303.
[6] Y. Lu, X. Zhao, M. Wang, Z. Yang, X. Zhang, C. Yang, Feasibility analysis on photocatalytic removal of gaseous ozone in aircraft cabins, Building and Environment, 81 2014 42-50.
[7] I.-H. Tseng, J.C. Wu, H.-Y. Chou, Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction, Journal of Catalysis, 221 2004 432-440.
[8] J.C. Wu, H.-M. Lin, C.-L. Lai, Photo reduction of CO2 to methanol using optical-fiber photoreactor, Applied Catalysis A: General, 296 2005 194-200.
[9] K. Doudrick, T. Yang, K. Hristovski, P. Westerhoff, Photocatalytic nitrate reduction in water: Managing the hole scavenger and reaction by-product selectivity, Applied Catalysis B: Environmental, 136 2013 40-47.
[10] F. Liu, H. Liu, X. Li, H. Zhao, D. Zhu, Y. Zheng, C. Li, Nano-TiO2@ Ag/PVC film with enhanced antibacterial activities and photocatalytic properties, Applied Surface Science, 258 2012 4667-4671.
[11] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, science, 293 2001 269-271.
[12] T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, S. Sugihara, Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Applied Catalysis B: Environmental, 42 2003 403-409.
[13] M. Anpo, Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV–visible light irradiation: approaches in realizing high efficiency in the use of visible light, Bulletin of the Chemical Society of Japan, 77 2004 1427-1442.
[14] S. Pavasupree, S. Ngamsinlapasathian, Y. Suzuki, S. Yoshikawa, Synthesis and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 from high surface area nanosheet TiO2, Journal of nanoscience and nanotechnology, 6 2006 3685-3692.
[15] Y. Huo, J. Zhang, M. Miao, Y. Jin, Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances, Applied Catalysis B: Environmental, 111 2012 334-341.
[16] R.P. Antony, T. Mathews, A. Dasgupta, S. Dash, A. Tyagi, B. Raj, Rapid breakdown anodization technique for the synthesis of high aspect ratio and high surface area anatase TiO2 nanotube powders, Journal of Solid State Chemistry, 184 2011 624-632.
[17] W. Stewart, D. Dibb, A. Johnston, T. Smyth, The contribution of commercial fertilizer nutrients to food production, Agronomy Journal, 97 2005 1-6.
[18] J.W. Erisman, M.A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, How a century of ammonia synthesis changed the world, Nature Geoscience, 1 2008 636-639.
[19] o.A.a. Engineering ToolBox, Ammonia - Properties at Gas-Liquid Equilibrium Conditions., https://www.engineeringtoolbox.com/ammonia-gas-liquid-equilibrium-condition-properties-temperature-pressure-boiling-curve-d_2013.html [Accessed 10.07.2020].
[20] M. Lashgari, P. Zeinalkhani, Photocatalytic N2 conversion to ammonia using efficient nanostructured solar-energy-materials in aqueous media: A novel hydrogenation strategy and basic understanding of the phenomenon, Applied Catalysis A: General, 529 2017 91-97.
[21] S. Liu, S. Wang, Y. Jiang, Z. Zhao, G. Jiang, Z. Sun, Synthesis of Fe2O3 loaded porous g-C3N4 photocatalyst for photocatalytic reduction of dinitrogen to ammonia, Chemical Engineering Journal, 373 2019 572-579.
[22] W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?, Chemical reviews, 116 2016 7159-7329.
[23] H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide, Journal of the American Chemical Society, 139 2017 10929-10936.
[24] H. Li, J. Shang, Z. Ai, L. Zhang, Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets, Journal of the American Chemical Society, 137 2015 6393-6399.
[25] Y. Liu, Z. Hu, J.C. Yu, Fe Enhanced Visible-Light-Driven Nitrogen Fixation on BiOBr Nanosheets, Chemistry of Materials, 32 2020 1488-1494.
[26] X. Chen, N. Li, Z. Kong, W.-J. Ong, X. Zhao, Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects, Materials Horizons, 5 2018 9-27.
[27] L.M. Azofra, N. Li, D.R. MacFarlane, C. Sun, Promising prospects for 2D d 2–d 4 M 3 C 2 transition metal carbides (MXenes) in N 2 capture and conversion into ammonia, Energy & Environmental Science, 9 2016 2545-2549.
[28] H. Li, J. Shang, J. Shi, K. Zhao, L. Zhang, Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway, Nanoscale, 8 2016 1986-1993.
[29] Y. Bai, L. Ye, T. Chen, L. Wang, X. Shi, X. Zhang, D. Chen, Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets, ACS applied materials & interfaces, 8 2016 27661-27668.
[30] X. Gao, Y. Wen, D. Qu, L. An, S. Luan, W. Jiang, X. Zong, X. Liu, Z. Sun, Interference effect of alcohol on Nessler’s reagent in photocatalytic nitrogen fixation, ACS Sustainable Chemistry & Engineering, 6 2018 5342-5348.
[31] M. Yuan, F. Tian, G. Li, H. Zhao, Y. Liu, R. Chen, Fe (III)-modified BiOBr hierarchitectures for improved photocatalytic benzyl alcohol oxidation and organic pollutants degradation, Industrial & Engineering Chemistry Research, 56 2017 5935-5943.
[32] W. Yang, Y. Zhu, F. You, L. Yan, Y. Ma, C. Lu, P. Gao, Q. Hao, W. Li, Insights into the surface-defect dependence of molecular oxygen activation over birnessite-type MnO2, Applied Catalysis B: Environmental, 233 2018 184-193.
[33] J. Li, H. Li, G. Zhan, L. Zhang, Solar water splitting and nitrogen fixation with layered bismuth oxyhalides, Accounts of chemical research, 50 2017 112-121.
[34] H. Shi, X. Li, H. Iwai, Z. Zou, J. Ye, 2-Propanol photodegradation over nitrogen-doped NaNbO3 powders under visible-light irradiation, Journal of Physics and Chemistry of Solids, 70 2009 931-935.
[35] A. Bouzaza, C. Vallet, A. Laplanche, Photocatalytic degradation of some VOCs in the gas phase using an annular flow reactor: determination of the contribution of mass transfer and chemical reaction steps in the photodegradation process, Journal of Photochemistry and Photobiology A: Chemistry, 177 2006 212-217.
[36] Y. Ku, L.C. Wang, C.M. Ma, Photocatalytic oxidation of isopropanol in aqueous solution using perovskite‐structured La2Ti2O7, Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 30 2007 895-900.
[37] P. Zhou, J. Yu, M. Jaroniec, All‐solid‐state Z‐scheme photocatalytic systems, Advanced Materials, 26 2014 4920-4935.
[38] C.-C. Lo, C.-W. Huang, C.-H. Liao, J.C. Wu, Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting, international journal of hydrogen energy, 35 2010 1523-1529.
[39] Y. Qi, S. Chen, J. Cui, Z. Wang, F. Zhang, C. Li, Inhibiting competing reactions of iodate/iodide redox mediators by surface modification of photocatalysts to enable Z-scheme overall water splitting, Applied Catalysis B: Environmental, 224 2018 579-585.
[40] K. Maeda, M. Higashi, D. Lu, R. Abe, K. Domen, Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst, Journal of the American Chemical Society, 132 2010 5858-5868.
[41] K. Maeda, R. Abe, K. Domen, Role and function of ruthenium species as promoters with TaON-based photocatalysts for oxygen evolution in two-step water splitting under visible light, The Journal of Physical Chemistry C, 115 2011 3057-3064.
[42] M. Tabata, K. Maeda, M. Higashi, D. Lu, T. Takata, R. Abe, K. Domen, Modified Ta3N5 powder as a photocatalyst for O2 evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light, Langmuir, 26 2010 9161-9165.
[43] A.a. HACH Support, What are the interferences for the Nitrogen, Ammonia-Nessler Method 8038 [online], https://support.hach.com/app/answers/answer_view/a_id/1000064/~/what-are-the-interferences-for-the-nitrogen%2C-ammonia-nessler-method-8038%3F- [Accessed 11.07.2020].
[44] S.-H. Yu, C.-W. Chiu, Y.-T. Wu, C.-H. Liao, V.-H. Nguyen, J.C. Wu, Photocatalytic water splitting and hydrogenation of CO2 in a novel twin photoreactor with IO3−/I− shuttle redox mediator, Applied Catalysis A: General, 518 2016 158-166.
[45] S.-C. Yu, C.-W. Huang, C.-H. Liao, J.C. Wu, S.-T. Chang, K.-H. Chen, A novel membrane reactor for separating hydrogen and oxygen in photocatalytic water splitting, Journal of membrane science, 382 2011 291-299.
[46] L. Bazinet, C.l. Cossec, H.l.n. Gaudreau, Y. Desjardins, Production of a phenolic antioxidant enriched cranberry juice by electrodialysis with filtration membrane, Journal of agricultural and food chemistry, 57 2009 10245-10251.
[47] D.S. García-Zaleta, A. Torres-Huerta, M. Domínguez-Crespo, A. García-Murillo, R. Silva-Rodrigo, R.L. González, Influence of phases content on Pt/TiO2, Pd/TiO2 catalysts for degradation of 4-chlorophenol at room temperature, Journal of Nanomaterials, 2016 2016.
[48] K. Kočí, L. Matějová, M. Reli, L. Čapek, V. Matějka, Z. Lacný, P. Kustrowski, L. Obalová, Sol–gel derived Pd supported TiO2-ZrO2 and TiO2 photocatalysts; their examination in photocatalytic reduction of carbon dioxide, Catalysis Today, 230 2014 20-26.
[49] M. Brun, A. Berthet, J. Bertolini, XPS, AES and Auger parameter of Pd and PdO, Journal of electron spectroscopy and related phenomena, 104 1999 55-60.
[50] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano‐photocatalytic materials: possibilities and challenges, Advanced materials, 24 2012 229-251.
[51] M. Wang, L. Cai, Y. Wang, F. Zhou, K. Xu, X. Tao, Y. Chai, Graphene-draped semiconductors for enhanced photocorrosion resistance and photocatalytic properties, Journal of the American Chemical Society, 139 2017 4144-4151.
[52] K.-L. Zhang, C.-M. Liu, F.-Q. Huang, C. Zheng, W.-D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst, Applied Catalysis B: Environmental, 68 2006 125-129.
[53] A. Huizhong, D. Yi, W. Tianmin, W. Cong, H. Weichang, J. ZHANG, Photocatalytic properties of biox (X= Cl, Br, and I), Rare Metals, 27 2008 243-250.
[54] W. Wang, F. Huang, X. Lin, J. Yang, Visible-light-responsive photocatalysts xBiOBr–(1− x) BiOI, Catalysis Communications, 9 2008 8-12.
[55] S. Shenawi-Khalil, V. Uvarov, S. Fronton, I. Popov, Y. Sasson, A novel heterojunction BiOBr/bismuth oxyhydrate photocatalyst with highly enhanced visible light photocatalytic properties, The Journal of Physical Chemistry C, 116 2012 11004-11012.
[56] Z. Yu, N. Vlachopoulos, M. Gorlov, L. Kloo, Liquid electrolytes for dye-sensitized solar cells, Dalton transactions, 40 2011 10289-10303.
[57] K. Afroz, M. Moniruddin, N. Bakranov, S. Kudaibergenov, N. Nuraje, A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials, Journal of Materials Chemistry A, 6 2018 21696-21718.
[58] Engineering ToolBox, Solubility of Gases in Water. [online] Available at:.
[59] R. Abe, M. Higashi, K. Domen, Overall Water Splitting under Visible Light through a Two‐Step Photoexcitation between TaON and WO3 in the Presence of an Iodate–Iodide Shuttle Redox Mediator, ChemSusChem, 4 2011 228-237.
[60] A. Yamakata, T.-a. Ishibashi, H. Onishi, Electron-and hole-capture reactions on Pt/TiO2 photocatalyst exposed to methanol vapor studied with time-resolved infrared absorption spectroscopy, The Journal of Physical Chemistry B, 106 2002 9122-9125.
[61] J. Yu, L. Qi, M. Jaroniec, Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets, The Journal of Physical Chemistry C, 114 2010 13118-13125.
[62] J.R. Bolton, Solar photoproduction of hydrogen: a review, Solar energy, 57 1996 37-50.
[63] A.J. Bard, Design of semiconductor photoelectrochemical systems for solar energy conversion, The Journal of Physical Chemistry, 86 1982 172-177.
[64] A.V. Korzhak, N.I. Ermokhina, A.L. Stroyuk, V.K. Bukhtiyarov, A.E. Raevskaya, V.I. Litvin, S.Y. Kuchmiy, V.G. Ilyin, P.A. Manorik, Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites, Journal of Photochemistry and Photobiology A: Chemistry, 198 2008 126-134.
[65] o.A.a. Evonik
[66] O.T. Alaoui, A. Herissan, C. Le Quoc, M. el Mehdi Zekri, S. Sorgues, H. Remita, C. Colbeau-Justin, Elaboration, charge-carrier lifetimes and activity of Pd-TiO2 photocatalysts obtained by gamma radiolysis, Journal of Photochemistry and Photobiology A: Chemistry, 242 2012 34-43.
[67] J.B. Zhong, Y. Lu, W.D. Jiang, Q.M. Meng, X.Y. He, J.Z. Li, Y.Q. Chen, Characterization and photocatalytic property of Pd/TiO2 with the oxidation of gaseous benzene, Journal of Hazardous Materials, 168 2009 1632-1635.
[68] H. Einaga, S. Futamura, T. Ibusuki, Complete oxidation of benzene in gas phase by platinized titania photocatalysts, Environmental science & technology, 35 2001 1880-1884.
[69] E. Hussain, I. Majeed, M.A. Nadeem, A. Badshah, Y. Chen, M.A. Nadeem, R. Jin, Titania-supported palladium/strontium nanoparticles (Pd/Sr-NPs@ P25) for photocatalytic H2 production from water splitting, The Journal of Physical Chemistry C, 120 2016 17205-17213.
[70] Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light, The Journal of Physical Chemistry C, 111 2007 1042-1048.
[71] R. Abe, K. Sayama, K. Domen, H. Arakawa, A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3−/I− shuttle redox mediator, Chemical physics letters, 344 2001 339-344.
[72] K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3−/I− shuttle redox mediator under visible light irradiation, Chemical Communications, 2001 2416-2417.
[73] M. Higashi, R. Abe, K. Teramura, T. Takata, B. Ohtani, K. Domen, Two step water splitting into H2 and O2 under visible light by ATaO2N (A= Ca, Sr, Ba) and WO3 with IO3-/I-shuttle redox mediator, Chemical Physics Letters, 452 2008 120-123.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top