|
[1] O. Ola, M.M. Maroto-Valer, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24 2015 16-42. [2] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, nature, 238 1972 37-38. [3] Y.-T. Lin, C.-W. Huang, Y.-H. Wang, J.C. Wu, High Effective Composite RGO/TiO 2 Photocatalysts to Degrade Isopropanol Pollutant in Semiconductor Industry, Topics in Catalysis, 1-11. [4] J. Lasek, Y.-H. Yu, J.C. Wu, Removal of NOx by photocatalytic processes, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 14 2013 29-52. [5] C. Joseph, V.-H. Nguyen, J. Lasek, S.-W. Chiang, D.X. Li, J.C. Wu, NOx abatement from stationary emission sources by photo-assisted SCR: Lab-scale to pilot-scale studies, Applied Catalysis A: General, 523 2016 294-303. [6] Y. Lu, X. Zhao, M. Wang, Z. Yang, X. Zhang, C. Yang, Feasibility analysis on photocatalytic removal of gaseous ozone in aircraft cabins, Building and Environment, 81 2014 42-50. [7] I.-H. Tseng, J.C. Wu, H.-Y. Chou, Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction, Journal of Catalysis, 221 2004 432-440. [8] J.C. Wu, H.-M. Lin, C.-L. Lai, Photo reduction of CO2 to methanol using optical-fiber photoreactor, Applied Catalysis A: General, 296 2005 194-200. [9] K. Doudrick, T. Yang, K. Hristovski, P. Westerhoff, Photocatalytic nitrate reduction in water: Managing the hole scavenger and reaction by-product selectivity, Applied Catalysis B: Environmental, 136 2013 40-47. [10] F. Liu, H. Liu, X. Li, H. Zhao, D. Zhu, Y. Zheng, C. Li, Nano-TiO2@ Ag/PVC film with enhanced antibacterial activities and photocatalytic properties, Applied Surface Science, 258 2012 4667-4671. [11] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, science, 293 2001 269-271. [12] T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, S. Sugihara, Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Applied Catalysis B: Environmental, 42 2003 403-409. [13] M. Anpo, Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV–visible light irradiation: approaches in realizing high efficiency in the use of visible light, Bulletin of the Chemical Society of Japan, 77 2004 1427-1442. [14] S. Pavasupree, S. Ngamsinlapasathian, Y. Suzuki, S. Yoshikawa, Synthesis and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 from high surface area nanosheet TiO2, Journal of nanoscience and nanotechnology, 6 2006 3685-3692. [15] Y. Huo, J. Zhang, M. Miao, Y. Jin, Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances, Applied Catalysis B: Environmental, 111 2012 334-341. [16] R.P. Antony, T. Mathews, A. Dasgupta, S. Dash, A. Tyagi, B. Raj, Rapid breakdown anodization technique for the synthesis of high aspect ratio and high surface area anatase TiO2 nanotube powders, Journal of Solid State Chemistry, 184 2011 624-632. [17] W. Stewart, D. Dibb, A. Johnston, T. Smyth, The contribution of commercial fertilizer nutrients to food production, Agronomy Journal, 97 2005 1-6. [18] J.W. Erisman, M.A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, How a century of ammonia synthesis changed the world, Nature Geoscience, 1 2008 636-639. [19] o.A.a. Engineering ToolBox, Ammonia - Properties at Gas-Liquid Equilibrium Conditions., https://www.engineeringtoolbox.com/ammonia-gas-liquid-equilibrium-condition-properties-temperature-pressure-boiling-curve-d_2013.html [Accessed 10.07.2020]. [20] M. Lashgari, P. Zeinalkhani, Photocatalytic N2 conversion to ammonia using efficient nanostructured solar-energy-materials in aqueous media: A novel hydrogenation strategy and basic understanding of the phenomenon, Applied Catalysis A: General, 529 2017 91-97. [21] S. Liu, S. Wang, Y. Jiang, Z. Zhao, G. Jiang, Z. Sun, Synthesis of Fe2O3 loaded porous g-C3N4 photocatalyst for photocatalytic reduction of dinitrogen to ammonia, Chemical Engineering Journal, 373 2019 572-579. [22] W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?, Chemical reviews, 116 2016 7159-7329. [23] H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide, Journal of the American Chemical Society, 139 2017 10929-10936. [24] H. Li, J. Shang, Z. Ai, L. Zhang, Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets, Journal of the American Chemical Society, 137 2015 6393-6399. [25] Y. Liu, Z. Hu, J.C. Yu, Fe Enhanced Visible-Light-Driven Nitrogen Fixation on BiOBr Nanosheets, Chemistry of Materials, 32 2020 1488-1494. [26] X. Chen, N. Li, Z. Kong, W.-J. Ong, X. Zhao, Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects, Materials Horizons, 5 2018 9-27. [27] L.M. Azofra, N. Li, D.R. MacFarlane, C. Sun, Promising prospects for 2D d 2–d 4 M 3 C 2 transition metal carbides (MXenes) in N 2 capture and conversion into ammonia, Energy & Environmental Science, 9 2016 2545-2549. [28] H. Li, J. Shang, J. Shi, K. Zhao, L. Zhang, Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway, Nanoscale, 8 2016 1986-1993. [29] Y. Bai, L. Ye, T. Chen, L. Wang, X. Shi, X. Zhang, D. Chen, Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets, ACS applied materials & interfaces, 8 2016 27661-27668. [30] X. Gao, Y. Wen, D. Qu, L. An, S. Luan, W. Jiang, X. Zong, X. Liu, Z. Sun, Interference effect of alcohol on Nessler’s reagent in photocatalytic nitrogen fixation, ACS Sustainable Chemistry & Engineering, 6 2018 5342-5348. [31] M. Yuan, F. Tian, G. Li, H. Zhao, Y. Liu, R. Chen, Fe (III)-modified BiOBr hierarchitectures for improved photocatalytic benzyl alcohol oxidation and organic pollutants degradation, Industrial & Engineering Chemistry Research, 56 2017 5935-5943. [32] W. Yang, Y. Zhu, F. You, L. Yan, Y. Ma, C. Lu, P. Gao, Q. Hao, W. Li, Insights into the surface-defect dependence of molecular oxygen activation over birnessite-type MnO2, Applied Catalysis B: Environmental, 233 2018 184-193. [33] J. Li, H. Li, G. Zhan, L. Zhang, Solar water splitting and nitrogen fixation with layered bismuth oxyhalides, Accounts of chemical research, 50 2017 112-121. [34] H. Shi, X. Li, H. Iwai, Z. Zou, J. Ye, 2-Propanol photodegradation over nitrogen-doped NaNbO3 powders under visible-light irradiation, Journal of Physics and Chemistry of Solids, 70 2009 931-935. [35] A. Bouzaza, C. Vallet, A. Laplanche, Photocatalytic degradation of some VOCs in the gas phase using an annular flow reactor: determination of the contribution of mass transfer and chemical reaction steps in the photodegradation process, Journal of Photochemistry and Photobiology A: Chemistry, 177 2006 212-217. [36] Y. Ku, L.C. Wang, C.M. Ma, Photocatalytic oxidation of isopropanol in aqueous solution using perovskite‐structured La2Ti2O7, Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 30 2007 895-900. [37] P. Zhou, J. Yu, M. Jaroniec, All‐solid‐state Z‐scheme photocatalytic systems, Advanced Materials, 26 2014 4920-4935. [38] C.-C. Lo, C.-W. Huang, C.-H. Liao, J.C. Wu, Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting, international journal of hydrogen energy, 35 2010 1523-1529. [39] Y. Qi, S. Chen, J. Cui, Z. Wang, F. Zhang, C. Li, Inhibiting competing reactions of iodate/iodide redox mediators by surface modification of photocatalysts to enable Z-scheme overall water splitting, Applied Catalysis B: Environmental, 224 2018 579-585. [40] K. Maeda, M. Higashi, D. Lu, R. Abe, K. Domen, Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst, Journal of the American Chemical Society, 132 2010 5858-5868. [41] K. Maeda, R. Abe, K. Domen, Role and function of ruthenium species as promoters with TaON-based photocatalysts for oxygen evolution in two-step water splitting under visible light, The Journal of Physical Chemistry C, 115 2011 3057-3064. [42] M. Tabata, K. Maeda, M. Higashi, D. Lu, T. Takata, R. Abe, K. Domen, Modified Ta3N5 powder as a photocatalyst for O2 evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light, Langmuir, 26 2010 9161-9165. [43] A.a. HACH Support, What are the interferences for the Nitrogen, Ammonia-Nessler Method 8038 [online], https://support.hach.com/app/answers/answer_view/a_id/1000064/~/what-are-the-interferences-for-the-nitrogen%2C-ammonia-nessler-method-8038%3F- [Accessed 11.07.2020]. [44] S.-H. Yu, C.-W. Chiu, Y.-T. Wu, C.-H. Liao, V.-H. Nguyen, J.C. Wu, Photocatalytic water splitting and hydrogenation of CO2 in a novel twin photoreactor with IO3−/I− shuttle redox mediator, Applied Catalysis A: General, 518 2016 158-166. [45] S.-C. Yu, C.-W. Huang, C.-H. Liao, J.C. Wu, S.-T. Chang, K.-H. Chen, A novel membrane reactor for separating hydrogen and oxygen in photocatalytic water splitting, Journal of membrane science, 382 2011 291-299. [46] L. Bazinet, C.l. Cossec, H.l.n. Gaudreau, Y. Desjardins, Production of a phenolic antioxidant enriched cranberry juice by electrodialysis with filtration membrane, Journal of agricultural and food chemistry, 57 2009 10245-10251. [47] D.S. García-Zaleta, A. Torres-Huerta, M. Domínguez-Crespo, A. García-Murillo, R. Silva-Rodrigo, R.L. González, Influence of phases content on Pt/TiO2, Pd/TiO2 catalysts for degradation of 4-chlorophenol at room temperature, Journal of Nanomaterials, 2016 2016. [48] K. Kočí, L. Matějová, M. Reli, L. Čapek, V. Matějka, Z. Lacný, P. Kustrowski, L. Obalová, Sol–gel derived Pd supported TiO2-ZrO2 and TiO2 photocatalysts; their examination in photocatalytic reduction of carbon dioxide, Catalysis Today, 230 2014 20-26. [49] M. Brun, A. Berthet, J. Bertolini, XPS, AES and Auger parameter of Pd and PdO, Journal of electron spectroscopy and related phenomena, 104 1999 55-60. [50] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano‐photocatalytic materials: possibilities and challenges, Advanced materials, 24 2012 229-251. [51] M. Wang, L. Cai, Y. Wang, F. Zhou, K. Xu, X. Tao, Y. Chai, Graphene-draped semiconductors for enhanced photocorrosion resistance and photocatalytic properties, Journal of the American Chemical Society, 139 2017 4144-4151. [52] K.-L. Zhang, C.-M. Liu, F.-Q. Huang, C. Zheng, W.-D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst, Applied Catalysis B: Environmental, 68 2006 125-129. [53] A. Huizhong, D. Yi, W. Tianmin, W. Cong, H. Weichang, J. ZHANG, Photocatalytic properties of biox (X= Cl, Br, and I), Rare Metals, 27 2008 243-250. [54] W. Wang, F. Huang, X. Lin, J. Yang, Visible-light-responsive photocatalysts xBiOBr–(1− x) BiOI, Catalysis Communications, 9 2008 8-12. [55] S. Shenawi-Khalil, V. Uvarov, S. Fronton, I. Popov, Y. Sasson, A novel heterojunction BiOBr/bismuth oxyhydrate photocatalyst with highly enhanced visible light photocatalytic properties, The Journal of Physical Chemistry C, 116 2012 11004-11012. [56] Z. Yu, N. Vlachopoulos, M. Gorlov, L. Kloo, Liquid electrolytes for dye-sensitized solar cells, Dalton transactions, 40 2011 10289-10303. [57] K. Afroz, M. Moniruddin, N. Bakranov, S. Kudaibergenov, N. Nuraje, A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials, Journal of Materials Chemistry A, 6 2018 21696-21718. [58] Engineering ToolBox, Solubility of Gases in Water. [online] Available at:. [59] R. Abe, M. Higashi, K. Domen, Overall Water Splitting under Visible Light through a Two‐Step Photoexcitation between TaON and WO3 in the Presence of an Iodate–Iodide Shuttle Redox Mediator, ChemSusChem, 4 2011 228-237. [60] A. Yamakata, T.-a. Ishibashi, H. Onishi, Electron-and hole-capture reactions on Pt/TiO2 photocatalyst exposed to methanol vapor studied with time-resolved infrared absorption spectroscopy, The Journal of Physical Chemistry B, 106 2002 9122-9125. [61] J. Yu, L. Qi, M. Jaroniec, Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets, The Journal of Physical Chemistry C, 114 2010 13118-13125. [62] J.R. Bolton, Solar photoproduction of hydrogen: a review, Solar energy, 57 1996 37-50. [63] A.J. Bard, Design of semiconductor photoelectrochemical systems for solar energy conversion, The Journal of Physical Chemistry, 86 1982 172-177. [64] A.V. Korzhak, N.I. Ermokhina, A.L. Stroyuk, V.K. Bukhtiyarov, A.E. Raevskaya, V.I. Litvin, S.Y. Kuchmiy, V.G. Ilyin, P.A. Manorik, Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites, Journal of Photochemistry and Photobiology A: Chemistry, 198 2008 126-134. [65] o.A.a. Evonik [66] O.T. Alaoui, A. Herissan, C. Le Quoc, M. el Mehdi Zekri, S. Sorgues, H. Remita, C. Colbeau-Justin, Elaboration, charge-carrier lifetimes and activity of Pd-TiO2 photocatalysts obtained by gamma radiolysis, Journal of Photochemistry and Photobiology A: Chemistry, 242 2012 34-43. [67] J.B. Zhong, Y. Lu, W.D. Jiang, Q.M. Meng, X.Y. He, J.Z. Li, Y.Q. Chen, Characterization and photocatalytic property of Pd/TiO2 with the oxidation of gaseous benzene, Journal of Hazardous Materials, 168 2009 1632-1635. [68] H. Einaga, S. Futamura, T. Ibusuki, Complete oxidation of benzene in gas phase by platinized titania photocatalysts, Environmental science & technology, 35 2001 1880-1884. [69] E. Hussain, I. Majeed, M.A. Nadeem, A. Badshah, Y. Chen, M.A. Nadeem, R. Jin, Titania-supported palladium/strontium nanoparticles (Pd/Sr-NPs@ P25) for photocatalytic H2 production from water splitting, The Journal of Physical Chemistry C, 120 2016 17205-17213. [70] Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light, The Journal of Physical Chemistry C, 111 2007 1042-1048. [71] R. Abe, K. Sayama, K. Domen, H. Arakawa, A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3−/I− shuttle redox mediator, Chemical physics letters, 344 2001 339-344. [72] K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3−/I− shuttle redox mediator under visible light irradiation, Chemical Communications, 2001 2416-2417. [73] M. Higashi, R. Abe, K. Teramura, T. Takata, B. Ohtani, K. Domen, Two step water splitting into H2 and O2 under visible light by ATaO2N (A= Ca, Sr, Ba) and WO3 with IO3-/I-shuttle redox mediator, Chemical Physics Letters, 452 2008 120-123.
|