跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/16 23:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳仕綸
研究生(外文):Shih-Lun Wu
論文名稱:積層製造製備改良機械性質及高透光度之生物相容性之人工角膜複合水膠材料
論文名稱(外文):Biocompatible Hybrid Hydrogels with Improved Mechanical Property and Transparency for Artificial Corneas by Additive Manufacturing
指導教授:戴子安戴子安引用關係
指導教授(外文):Chi-An Dai
口試委員:邱文英游佳欣施博仁鄭智嘉
口試委員(外文):Wen-Yen ChiuJiashing YuPo-Jen ShihChih-Chia Cheng
口試日期:2021-08-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:126
中文關鍵詞:複合網路水膠人工角膜3D列印泊洛沙姆液態膠態轉換
外文關鍵詞:hybrid hydrogelartificial cornea3D printingPoloxamersol-gel transition
DOI:10.6342/NTU202103661
相關次數:
  • 被引用被引用:0
  • 點閱點閱:16
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 I
ABSTRACT II
目錄 IV
圖目錄 VIII
表目錄 XVI
第一章 緒論 1
第二章 文獻回顧 2
2.1 人眼角膜 2
2.1.1角膜上皮層(Corneal epithelium) 3
2.1.2前彈力層(Bowman’s layer) 3
2.1.3角膜基質層(Corneal stroma) 4
2.1.4後彈力層(Descemet’s membrane) 4
2.1.5角膜內皮層(Corneal endothelium) 4
2.2 人工角膜 5
2.2.1 波士頓人工角膜(Boston Keratoprosthesis) 5
2.2.2 AlphaCor人工角膜 7
2.2.3 CorNeat KPro人工角膜 8
2.3 水膠 9
2.3.1 泊洛沙姆407 (Poloxamer 407) 10
2.3.2 甲基丙烯酸羥乙酯 (2-hydroxyethylmethacrylate, or HEMA) 12
2.3.3 丙烯酸(Acrylic acid, or AA) 13
2.3.4 奈米黏土顆粒(nanoclay) - Laponite 14
2.3.5 聚乙烯醇(polyvinyl alcohol, or PVA) 16
2.4 小角度X光散射SAXS原理 17
2.5 3D列印 20
2.5.1 熔融沉積(Fused Deposition Modeling, or FDM) 22
2.5.2 選擇性雷射燒結(Selective Laser Sintering, or SLS) 23
2.5.3 光敏樹脂選擇性固化(Stereo Lithography Apparatus, or SLA) 24
第三章 實驗方法 25
3.1 實驗藥品與儀器 25
3.1.1 實驗藥品 25
3.1.2 實驗儀器 27
3.2 親核醯基取代反應合成末端雙烯化之泊洛沙姆 28
3.2.1 合成末端雙烯化之泊洛沙姆407(P407DA) 28
3.3 兩階段式水膠製備 30
3.3.1 兩階段式製備泊洛沙姆/甲基丙烯酸羥乙酯互穿網路水膠 30
3.3.2 兩階段式製備泊洛沙姆/丙烯酸和甲基丙烯酸羥乙酯互穿網路水膠 32
3.4 一階段式製備有機/無機複合水膠 34
3.4.1 一階段式製備泊洛沙姆/奈米黏土顆粒複合水膠 34
3.4.2 一階段式製備泊洛沙姆/奈米黏土顆粒/聚丙烯酸複合水膠 35
3.5 一階段式製備有機高分子複合水膠 36
3.5.1 一階段式製備泊洛沙姆/聚乙烯醇複合水膠 36
3.6 水膠性質量測 37
3.6.1 氫核磁共振光譜 37
3.6.2 水膠前置溶液之熱流變性質測試 37
3.6.3 自組裝結構測定 37
3.6.4 透光度測試 38
3.6.5 機械性質測試 38
3.6.6 含水率測試 38
3.6.7 折射率測試 38
3.6.8 水膠細胞貼附實驗 39
3.7 利用3D列印印製人工角膜 42
第四章 結果與討論 43
4.1 兩階段式製備泊洛沙姆/HEMA互穿網路水膠 43
4.1.1 氫核磁共振光譜分析P407之末端烯化反應 43
4.1.2 水膠前置液熱流變性質探討 46
4.1.3 機械性質 48
4.1.4 透光度 51
4.1.5 含水率 53
4.1.6 折射率 54
4.2 兩階段式製備泊洛沙姆/AA與HEMA互穿網路水膠 55
4.2.1 透光度 55
4.2.2 含水率 56
4.2.3 機械性質 57
4.2.4 折射率 59
4.3 泊洛沙姆水膠性質探討 60
4.3.1 熱流變性質探討 60
4.3.2 泊洛沙姆自組裝結構 61
4.3.3 機械性質 64
4.3.4 透光度 66
4.3.5 含水率 67
4.3.6 折射率 68
4.3.7 細胞貼附實驗 69
4.4 一階段式製備泊洛沙姆/奈米黏土顆粒複合水膠 72
4.4.1 熱流變性質探討 72
4.4.2 自組裝結構 75
4.4.3 機械性質 77
4.4.4 透光度 81
4.4.5 含水率 83
4.4.6折射率 84
4.5 一階段式製備泊洛沙姆/奈米黏土顆粒/PAA複合水膠 86
4.5.1 熱流變性質探討 86
4.5.2自組裝結構 87
4.5.3透光度 89
4.5.4機械性質 91
4.5.5含水率 93
4.5.6折射率 94
4.5.7細胞貼附實驗 95
4.6 一階段式製備泊洛沙姆/PVA複合水膠 98
4.6.1熱流變性質探討 98
4.6.2自組裝結構 98
4.6.3透光度 100
4.6.4機械性質 101
4.6.5含水率 103
4.6.6折射率 104
4.6.7細胞貼附實驗 105
4.7 3D列印製作人工角膜 107
4.7.1 兩階段式製備人工角膜 107
4.7.2 一階段式製備人工角膜 109
第五章 結論 111
Reference 113
Appendix 120
明膠-泊洛沙姆 IPN水膠動物實驗 120
IAH水膠組成分析 125
[1] G. Wollensak, E. Spoerl, T. Seiler, “Stress-strain Measurements of Human and Porcine Corneas after Riboflavin-ultraviolet-A-induced Cross-linking,” Journal of Cataract and Refractive Surgery, vol. 29, pp. 1780, 2003.
[2] M.S. Sridhar, “Anatomy of Cornea and Ocular Surface,” Indian J Ophthalmology, vol. 66, pp.190, 2018.
[3] J. Liu, C. J. Roberts, “Influence of Corneal Biomechanical Properties on Intraocular Pressure Measurement - Quantitative Analysis,” Journal of Cataract and Refractive Surgery, vol 31, pp.146, 2005.
[4] K. Cholkar et al., “Novel Nanomicellar Formulation Approaches for Anterior and Posterior Segment Ocular Drug Delivery,” Recent Patents on Nanomedicine, vol. 2, 2012.
[5] Z. Chen et al., “Biomaterials for Corneal Bioengineering,” Biomedical Materials, vol. 13, pp. 032002, 2018.
[6] N. Lagali, J. Germundsson, P. Fagerholm, “The Role of Bowman's Layer in Corneal Regeneration after Phototherapeutic Keratectomy: A Prospective Study Using In vivo Confocal Microscopy,” Investigative Ophthalmology & Visual ScieNCe, vol. 50, pp. 4192, 2009.
[7] I. Jalbert et al., “In vivo Confocal Microscopy of The Human Cornea,” British Journal of Ophthalmology, vol. 87. , pp. 225, 2003.
[8] Y. Tamura et al., “Tissue Distribution of Type VIII Collagen in Human Adult and Fetal Eyes,” Investigative Ophthalmology & Visual ScieNCe, vol. 32, pp. 2636, 1991.
[9] C. R. Kicks et al., “Keratoprostheses: AdvaNCing toward A True Artificial Cornea,” Survey of Ophthalmology, vol. 42, pp. 175, 1997.
[10] V. Avadhanam, H. Smith, C. Liu, “Keratoprostheses for Corneal Blindness: A Review of Contemporary Devices,” Clin Ophthalmol, vol. 9, pp. 697, 2015.
[11] A. Gomaa, O. Comyn, and C. Liu, “Keratoprostheses in Clinical Practice – A Review,” Clinical & Experimental Ophthalmology, vol. 38, no. 2, pp. 211-224, 2010/03/01, 2010.
[12] J.J. Ma et al., “Repeat Penetrating Keratoplasty versus The Boston Keratoprosthesis in Graft Failure,” International Ophthalmology Clinics, vol. 45, pp. 49, 2005.
[13] B.F. Khan et al., “"The Boston Keratoprosthesis in Herpetic Keratitis,” Archives of Ophthalmology, vol. 125, pp. 745, 2007.
[14] E.K. Akpek et al., “Outcomes of Boston Keratoprosthesis in Aniridia: A Retrospective Multicenter Study” American Journal of Ophthalmology, vol. 144, pp. 227, 2007.
[15] B. Salvador-Culla, and P. E. Kolovou, “Keratoprosthesis: A Review of Recent AdvaNCes in the Field,” Journal of Functional Biomaterials, vol. 7, no. 2, pp. 13, 2016.
[16] C.R. Hicks et al., “Corneal Replacement Using A Synthetic Hydrogel Cornea, AlphaCor (TM) Device, Preliminary Outcomes and Complications,” Eye, vol. 17, pp. 385, 2003.
[17] G. Litvin, 2016, “Keratoprosthesis and Uses Thereof,” 2016199139A1.
[18] W. Cai et al., “Hydrogel,” Kirk-Othmer Encyclopedia of Chemical Technology, vol. 13, pp. 729, 2012.
[19] A. S. Hoffman, “Hydrogels for Biomedical Applications,” AdvaNCed Drug Delivery Reviews, vol. 64, pp. 18, 2012.
[20] Y. Qiu, K. Park, “Environment-Sensitive Hydrogels for Drug Delivery,” AdvaNCed Drug Delivery Reviews, vol. 53, pp.321, 2001.
[21] P. Zarrintaj et al., “Poloxamer: A Versatile Tri-Block Copolymer for Biomedical Applications,” Acta Biomaterialia, vol. 110, pp. 37, 2020.
[22] H. R. Patel, R. P. Patel, M. M. Patel, “Poloxamers: A Pharmaceutical Excipients with Therapeutic Behaviors,” International Journal of PharmTech Research, vol. 1, pp. 299, 2009.
[23] C. L. Domínguez-Delgado et al., “Chitosan and Pluronic® F-127: Pharmaceutical Applications,” Encyclopedia of Biomedical Polymers and Polymeric Biomaterials, pp. 1513, 2016.
[24] J. J. Escobar-Chávez et al., “Applications of Thermo-Reversible Pluronic® F-127 Gels in Pharmaceutical Formulations,” Journal of Pharmacy and Pharmaceutical ScieNCes, vol. 9, pp. 339, 2006.
[25] J. Texler, “Fouling Release and Antifouling Coatings Derived from Thermoreversible Gels,” Abstracts of Papers of The American Chemical Society, vol. 230, pp. U4335, 2005.
[26] Y. Fukano et al., “Characterization of An In vitro Model for Evaluating The Interface between Skin and Percutaneous Biomaterials,” Wound Repair and Regeneration, vol. 14, pp. 484, 2006.
[27] Z. S. Nurkeeva et al., “Polycomplexes of Poly(Acrylic Acid) with Streptomycin Sulfate and Their Antibacterial Activity,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 57, pp. 245, 2004.
[28] S. S. Das et al., “Laponite-based Nanomaterials for Biomedical Applications: A Review,” Current Pharmaceutical Design, vol. 25, pp. 424, 2019.
[29] J. L. Dávila, M. A. d’Ávila, “Laponite as A Rheology Modifier of Alginate Solutions: Physical Gelation and Aging Evolution,” Carbohydrate Polymers, vol. 157, pp. 1, 2017.
[30] W. Wu et al., “Transparent Cellulose/Laponite Nanocomposite Films,” Journal of Materials Science, vol.51. pp.4125, 2016.
[31] J. M. Fraile et al., “Laponite as Carrier for Controlled in vitro Delivery of Dexamethasone in Vitreous Humor Models,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 108, pp. 83, 2016.
[32] C. Wang et al., “Preparation of Laponite Bioceramics for Potential Bone Tissue Engineering Applications,” PLoS ONE, vol. 9, pp. e99585, 2014.
[33] K. Haraguchi, T. Takehisa, “Nanocomposite Hydrogels: A Unique Organic–Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties,” Advanced Materials, vol. 14, pp. 1120, 2002.
[34] C. J. Wu et al., “Mechanically Tough Pluronic F127/Laponite Nanocomposite Hydrogels from Covalently and Physically Cross-Linked Networks” Macromolecules, vol. 44, pp. 8215, 2011.
[35] P. Kensbock et al., “Peptizing Mechanism at the Molecular Level of Laponite Nanoclay Gels,” Langmuir, vol. 33, pp. 64, 2017.
[36] A. J. Renouprez, “Small-Angle X-Ray Scattering,” Catalyst Characterization,” vol. 6, pp. 445, 1994.
[37] F. T. L. Muniz et al., “The Scherrer Equation and The Dynamical Theory Of X-Ray Diffraction,” Acta Crystallographica Section A Foundations and Advances, vol. 72, pp. 385, 2016.
[38] X. Chen et al., “Simultaneous SAXS/WAXS/UV–Vis Study of the Nucleation and Growth of Nanoparticles: A Test of Classical Nucleation Theory,” Langmuir, vol. 31, pp. 11678, 2015.
[39] L. F. Dumée et al., “Control of Partial CoalesceNCe of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design,” Nanomaterials, vol. 5, pp. 1766, 2015.
[40] A. G. Kikhney, D. I. Svergun, “A Practical Guide to Small Angle X-ray Scattering (SAXS) of Flexibleand Intrinsically Disordered Proteins,” FEBS Letters, vol. 589, pp. 2570, 2015.
[41] H. S. Jang et al., “Single-walled Carbon Nanotube Induced Re-entrant Hexagonal Phases in A Pluronic Block Copolymer System,” Soft Matter, vol. 9, pp. 3050, 2013.
[42] Y. W. D. Tay, M. Y. Li, M. J. Tan, “Effect of Printing Parameters in 3D Concrete Printing: Printing Region and Support Structures,” Journal of Materials Processing Technology, vol. 271, pp. 261, 2019.
[43] H. Kodama, “Automatic Method for Fabricating A Three-dimensional Plastic Model with Photo-hardening Polymer,” Review of Scientific Instruments, vol. 52, pp. 1770, 1981.
[44] D. H. Freedman, “Layer By Layer,” Technology Review, vol. 115, pp.50, 2012.
[45] A. S. Haselhuhn et al., “Substrate Release Mechanisms for Gas Metal Arc 3-D Aluminum Metal Printing,” 3D Printing and Additive Manufacturing, vol. 1, pp.204, 2014.
[46] B. Wittbrodt, J. M. Pearce, “The Effects of PLA Color on Material Properties of 3-D Printed Components,” Additive Manufacturing, vol. 8, pp. 110, 2015.
[47] R. Jerez-Mesa et al., “Finite Element Analysis of The Thermal Behavior Of A RepRap 3D Printer Liquefier,” Mechatronics, vol. 36, pp.119, 2016.
[48] M. Mohseni et al., “Independent Evaluation of Medical-Grade Bioresorbable Filaments for Fused Deposition Modelling/Fused Filament Fabrication of Tissue Engineered Constructs,” Polymers, vol. 10, pp. 40, 2018.
[49] Q. Yang et al., “The Synthesis of Epoxy Resin Coated Al2O3 Composites for Selective Laser Sintering 3D Printing,” Rapid Prototyping Journal, vol. 24, pp. 1059, 2018.
[50] L. Jiao et al., “Femtosecond Laser Produced Hydrophobic Hierarchical Structures on Additive Manufacturing Parts,” Nanomaterials, vol. 8, pp. 601, 2018.
[51] C. W. Hull, 1984, “Apparatus for Production of Three-dimensional Objects by Stereolithography,” US4575330A.
[52] I. S. Reddy Bathula, Virupakshi, H. Mali, “3D Printing for Foot,” MOJ Proteomics & Bioinformatics, vol. 5, pp. 165, 2017.
[53] X. Xu et al., “3D Printed Polyvinyl Alcohol Tablets with Multiple Release Profiles,” Scientific Reports, vol. 9, pp. 12487, 2019.
[54] F. Kawai, X. Hu, “Biochemistry of Microbial Polyvinyl Alcohol Degradation,” Applied Microbiology and Biotechnology, vol. 84, pp. 227, 2009.
[55] S. Shahangian, K. O. Ash, D. E. Rollins, “An Enzymatic Method for the Analysis of Formate in Human Plasma,” Journal of Analytical Toxicology, vol. 8, pp. 273, 1984.
[56] M. V. Lancaster, R. D. Fields, 1995, “Antibiotic and Cytotoxic Drug Susceptibility Assays Using Resazurin and Poising Agents,” US5501959A.
[57] G. G. Niu et al., “Synthesis and Characterization of Reactive Poloxamer 407s for Biomedical Applications,” Journal of Controlled Release, vol. 138, pp. 49, 2009.
[58] K. E. Hamilton, D. C. Pye, “Young’s Modulus in Normal Corneas and the Effect on Applanation Tonometry,” Optometry and Vision ScieNCe, vol. 85, pp. 445, 2008.
[59] Z. Liu et al., “Corneal Reinforcement Using An Acellular Dermal Matrix for an Analysis of Biocompatibility, Mechanical Properties, and Transparency,” Acta Biomaterialia, vol. 8, pp. 3326, 2012.
[60] J. A. Van Best, J. G. Bollemeijer, C. C. Sterk, “Corneal Transmission in Whole Human Eyes,” Experimental Eye Research, vol. 46, pp. 765, 1988.
[61] M. Ramamurthy, V. Lakshminarayanan, “Human Vision and Perception,” Handbook of Advanced Lighting Technology, pp. 1, 2015.
[62] Z. D. Taylor et al., “THz and mm-Wave Sensing of Corneal Tissue Water Content: Electromagnetic Modeling and Analysis,” IEEE Transactions on Terahertz Science and Technology, vol. 5, pp. 170, 2015.
[63] S. Patela, L. Tutchenko, “The Refractive Index of The Human Cornea: A Review,” Contact Lens and Anterior Eye, vol. 42, pp. 575, 2019.
[64] Polymer Science, Polymer Properties Database, Refractive Index of Amorphous Polymers. Retrieved from https://polymerdatabase.com/polymer%20physics/Ref%20Index%20Table%20.html
[65] M. J. Schnepf et al., “Nanorattles with Tailored Electric Field Enhancement,” Nanoscale, vol. 9, pp. 9376, 2017.
[66] J. C. Courtenay et al., “Mechanically Robust Cationic Cellulose Nanofibril 3D Scaffolds with Tuneable Biomimetic Porosity for Cell Culture,” Journal of Materials Chemistry B, vol. 7, pp. 53, 2019.
[67] I. Rainaldi et al., “Copolymerization of Acrylic Acid and 2-hydroxyethyl Methacrylate onto Poly(N-Vinylpyrrolidone): Template InflueNCe on Comonomer Reactivity,” Macromolecular Chemistry and Physics, vol. 201, pp. 2424, 2000.
[68] C.W. Xu, “Gelatin/Poloxamer Interpenetrating Network Hydrogel for Biocompatible Artificial Corneas by Using Additive Manufacturing Method,” 2020.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top