|
1.Torre, L.A., et al., Global cancer statistics, 2012. CA: a cancer journal for clinicians, 2015. 65(2): p. 87-108. 2.2019 Cause of Death Statistics. Available from: https://www.mohw.gov.tw/cp-4964-55572-2.html. 3.Tsai, H.-Y., R.N.-C. Kuo, and K.-p. Chung, Quality of life of breast cancer survivors following breast-conserving therapy versus mastectomy: a multicenter study in Taiwan. Japanese journal of clinical oncology, 2017. 47(10): p. 909-918. 4.Parise, C.A., et al., Breast cancer subtypes as defined by the estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2) among women with invasive breast cancer in California, 1999–2004. The breast journal, 2009. 15(6): p. 593-602. 5.Lovitt, C.J., T.B. Shelper, and V.M. Avery, Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC cancer, 2018. 18(1): p. 1-11. 6.Bacus, S.S., et al., Differentiation of cultured human breast cancer cells (AU‐565 and MCF‐7) associated with loss of cell surface HER‐2/neu antigen. Molecular carcinogenesis, 1990. 3(6): p. 350-362. 7.Tagliabue, E., et al., Role of HER2 in wound-induced breast carcinoma proliferation. The Lancet, 2003. 362(9383): p. 527-533. 8.Fisher, B., et al., Presence of a growth-stimulating factor in serum following primary tumor removal in mice. Cancer research, 1989. 49(8): p. 1996-2001. 9.Ding, H., et al., HER2-positive breast cancer targeting and treatment by a peptide-conjugated mini nanodrug. Nanomedicine: Nanotechnology, Biology and Medicine, 2017. 13(2): p. 631-639. 10.Kümler, I., M.K. Tuxen, and D.L. Nielsen, A systematic review of dual targeting in HER2-positive breast cancer. Cancer treatment reviews, 2014. 40(2): p. 259-270. 11.Blasco-Benito, S., et al., Therapeutic targeting of HER2–CB2R heteromers in HER2-positive breast cancer. Proceedings of the National Academy of Sciences, 2019. 116(9): p. 3863-3872. 12.Zhao, J., et al., Fructose-coated nanoparticles: a promising drug nanocarrier for triple-negative breast cancer therapy. Chemical Communications, 2014. 50(100): p. 15928-15931. 13.Shafei, A., et al., A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomedicine & pharmacotherapy, 2017. 95: p. 1209-1218. 14.Hortobagyi, G., Anthracyclines in the treatment of cancer. Drugs, 1997. 54(4): p. 1-7. 15.Zhao, F.-Q. and A.F. Keating, Functional properties and genomics of glucose transporters. Current genomics, 2007. 8(2): p. 113-128. 16.Mueckler, M. and B. Thorens, The SLC2 (GLUT) family of membrane transporters. Molecular aspects of medicine, 2013. 34(2-3): p. 121-138. 17.Nomura, N., et al., Structure and mechanism of the mammalian fructose transporter GLUT5. Nature, 2015. 526(7573): p. 397-401. 18.Burant, C.F. and M. Saxena, Rapid reversible substrate regulation of fructose transporter expression in rat small intestine and kidney. American Journal of Physiology-Gastrointestinal and Liver Physiology, 1994. 267(1): p. G71-G79. 19.Burant, C., et al., Fructose transporter in human spermatozoa and small intestine is GLUT5. Journal of Biological Chemistry, 1992. 267(21): p. 14523-14526. 20.Manolescu, A.R., et al., Facilitated hexose transporters: new perspectives on form and function. Physiology, 2007. 22(4): p. 234-240. 21.Blakemore, S., et al., The GLUT5 hexose transporter is also localized to the basolateral membrane of the human jejunum. Biochemical Journal, 1995. 309(1): p. 7-12. 22.DOEGE, H., et al., Characterization of human glucose transporter (GLUT) 11 (encoded by SLC2A11), a novel sugar-transport facilitator specifically expressed in heart and skeletal muscle. Biochemical Journal, 2001. 359(2): p. 443-449. 23.Manolescu, A., et al., Identification of a hydrophobic residue as a key determinant of fructose transport by the facilitative hexose transporter SLC2A7 (GLUT7). Journal of Biological Chemistry, 2005. 280(52): p. 42978-42983. 24.Douard, V. and R.P. Ferraris, Regulation of the fructose transporter GLUT5 in health and disease. American Journal of Physiology-Endocrinology and Metabolism, 2008. 295(2): p. E227-E237. 25.Kane, S., M.J. Seatter, and G.W. Gould, Functional studies of human GLUT5: effect of pH on substrate selection and an analysis of substrate interactions. Biochemical and biophysical research communications, 1997. 238(2): p. 503-505. 26.Rand, E., et al., Sequence, tissue distribution, and functional characterization of the rat fructose transporter GLUT5. American Journal of Physiology-Gastrointestinal and Liver Physiology, 1993. 264(6): p. G1169-G1176. 27.Shepherd, P.R., et al., Human small intestine facilitative fructose/glucose transporter (GLUT5) is also present in insulin-responsive tissues and brain: Investigation of biochemical characteristics and translocation. Diabetes, 1992. 41(10): p. 1360-1365. 28.Stuart, C.A., M.E. Howell, and D. Yin, Overexpression of GLUT5 in diabetic muscle is reversed by pioglitazone. Diabetes Care, 2007. 30(4): p. 925-931. 29.Zamora-León, S.P., et al., Expression of the fructose transporter GLUT5 in human breast cancer. Proceedings of the National Academy of Sciences, 1996. 93(5): p. 1847-1852. 30.Levi, J., et al., Fluorescent fructose derivatives for imaging breast cancer cells. Bioconjugate chemistry, 2007. 18(3): p. 628-634. 31.Wuest, M., et al., Radiopharmacological evaluation of 6-deoxy-6-[18F] fluoro-D-fructose as a radiotracer for PET imaging of GLUT5 in breast cancer. Nuclear medicine and biology, 2011. 38(4): p. 461-475. 32.Jadvar, H., A. Alavi, and S.S. Gambhir, 18F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization. Journal of Nuclear Medicine, 2009. 50(11): p. 1820-1827. 33.Jin, C., X. Gong, and Y. Shang, GLUT5 increases fructose utilization in ovarian cancer. OncoTargets and therapy, 2019. 12: p. 5425. 34.House, S.W., et al., On respiratory impairment in cancer cells. Science, 1956. 124(3215): p. 267-272. 35.Zhao, J., et al., Fructose-coated nanodiamonds: promising platforms for treatment of human breast cancer. Biomacromolecules, 2016. 17(9): p. 2946-2955. 36.Zhou, L., et al., Two branched fructose modification improves tumor targeting delivery of liposomes to breast cancer in intro and in vivo. Journal of Drug Delivery Science and Technology, 2021. 61: p. 102312. 37.Fang, J., T. Sawa, and H. Maeda, Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Polymer Drugs in the Clinical Stage, 2004: p. 29-49. 38.Folkman, J., Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature medicine, 1995. 1(1): p. 27-30. 39.Skinner, S.A., P.J. Tutton, and P.E. O'Brien, Microvascular architecture of experimental colon tumors in the rat. Cancer research, 1990. 50(8): p. 2411-2417. 40.Greish, K., et al., Enhanced permeability and retention (EPR) effect and tumor-selective delivery of anticancer drugs. Delivery of protein and peptide drugs in cancer, 2006. 10: p. 14. 41.Maeda, H. and Y. Matsumura, Tumoritropic and lymphotropic principles of macromolecular drugs. Critical reviews in therapeutic drug carrier systems, 1989. 6(3): p. 193-210. 42.Iyer, A.K., et al., Exploiting the enhanced permeability and retention effect for tumor targeting. Drug discovery today, 2006. 11(17-18): p. 812-818. 43.Torchilin, V., Tumor delivery of macromolecular drugs based on the EPR effect. Advanced drug delivery reviews, 2011. 63(3): p. 131-135. 44.Kobayashi, H., R. Watanabe, and P.L. Choyke, Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics, 2014. 4(1): p. 81. 45.Chithrani, B.D., A.A. Ghazani, and W.C. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano letters, 2006. 6(4): p. 662-668. 46.Minotti, G., et al., Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological reviews, 2004. 56(2): p. 185-229. 47.Weiss, R.B. The anthracyclines: will we ever find a better doxorubicin? in Seminars in oncology. 1992. 48.Giordano, S.H., et al., Decline in the use of anthracyclines for breast cancer. Journal of clinical oncology, 2012. 30(18): p. 2232. 49.Shaul, P., et al., The structure of anthracycline derivatives determines their subcellular localization and cytotoxic activity. ACS medicinal chemistry letters, 2013. 4(3): p. 323-328. 50.Berger, J.M., et al., Structure and mechanism of DNA topoisomerase II. Nature, 1996. 379(6562): p. 225-232. 51.Corremans, R., et al., Update on pathophysiology and preventive strategies of anthracycline‐induced cardiotoxicity. Clinical and Experimental Pharmacology and Physiology, 2019. 46(3): p. 204-215. 52.Yang, F., et al., Doxorubicin, DNA torsion, and chromatin dynamics. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2014. 1845(1): p. 84-89. 53.Berlin, V. and W. Haseltine, Reduction of adriamycin to a semiquinone-free radical by NADPH cytochrome P-450 reductase produces DNA cleavage in a reaction mediated by molecular oxygen. Journal of Biological Chemistry, 1981. 256(10): p. 4747-4756. 54.Rabbani, A., R.M. Finn, and J. Ausio, The anthracycline antibiotics: antitumor drugs that alter chromatin structure. Bioessays, 2005. 27(1): p. 50-56. 55.Salazar-Mendiguchía, J., et al., Anthracycline-mediated cardiomyopathy: basic molecular knowledge for the cardiologist. Archivos de cardiología de México, 2014. 84(3): p. 218-223. 56.Dorr, R.T. Cytoprotective agents for anthracyclines. in Seminars in oncology. 1996. 57.Wu, Y.-P., et al., Folate-conjugated halloysite nanotubes, an efficient drug carrier, deliver doxorubicin for targeted therapy of breast cancer. ACS Applied Nano Materials, 2018. 1(2): p. 595-608. 58.Lee, C.C., et al., A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proceedings of the National Academy of Sciences, 2006. 103(45): p. 16649-16654. 59.Chan, M.K., et al., New molecular biologist perspective and insight: DNA topoisomerases production by recombinant DNA technology for medical laboratory application and pharmaceutical industry. Electronic Journal of Biotechnology, 2013. 16(6): p. 18-18. 60.Majorek, K.A., et al., Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Molecular immunology, 2012. 52(3-4): p. 174-182. 61.Stamler, J.S., et al., Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proceedings of the National Academy of Sciences, 1992. 89(16): p. 7674-7677. 62.De Wolf, F.A. and G.M. Brett, Ligand-binding proteins: their potential for application in systems for controlled delivery and uptake of ligands. Pharmacological reviews, 2000. 52(2): p. 207-236. 63.Nosrati, H., et al., Bovine serum albumin: an efficient biomacromolecule nanocarrier for improving the therapeutic efficacy of chrysin. Journal of Molecular Liquids, 2018. 271: p. 639-646. 64.Kamakura, M., N. Suenobu, and M. Fukushima, Fifty-seven-kDa protein in royal jelly enhances proliferation of primary cultured rat hepatocytes and increases albumin production in the absence of serum. Biochemical and Biophysical research communications, 2001. 282(4): p. 865-874. 65.Peng, Z., K. Hidajat, and M. Uddin, Adsorption of bovine serum albumin on nanosized magnetic particles. Journal of colloid and interface science, 2004. 271(2): p. 277-283. 66.Chruszcz, M., et al., Serum albumins—Unusual allergens. Biochimica et Biophysica Acta (BBA)-General Subjects, 2013. 1830(12): p. 5375-5381. 67.Loughney, J.W., et al., Residual bovine serum albumin (BSA) quantitation in vaccines using automated Capillary Western technology. Analytical biochemistry, 2014. 461: p. 49-56. 68.Salehiabar, M., et al., Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. International journal of biological macromolecules, 2018. 115: p. 83-89. 69.Nosrati, H., et al., Folic acid conjugated bovine serum albumin: An efficient smart and tumor targeted biomacromolecule for inhibition folate receptor positive cancer cells. International journal of biological macromolecules, 2018. 117: p. 1125-1132. 70.Nosrati, H., et al., Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorganic chemistry, 2018. 76: p. 501-509. 71.Gawde, K.A., et al., Paclitaxel and di-fluorinated curcumin loaded in albumin nanoparticles for targeted synergistic combination therapy of ovarian and cervical cancers. Colloids and Surfaces B: Biointerfaces, 2018. 167: p. 8-19. 72.Ghosh, P., et al., Preparation of albumin based nanoparticles for delivery of fisetin and evaluation of its cytotoxic activity. International journal of biological macromolecules, 2016. 86: p. 408-417. 73.de Redín, I.L., et al., Human serum albumin nanoparticles for ocular delivery of bevacizumab. International journal of pharmaceutics, 2018. 541(1-2): p. 214-223. 74.Huang, D., et al., Hyaluronic acid coated albumin nanoparticles for targeted peptide delivery in the treatment of retinal ischaemia. Biomaterials, 2018. 168: p. 10-23. 75.Elsadek, B., et al., The antitumor activity of a lactosaminated albumin conjugate of doxorubicin in a chemically induced hepatocellular carcinoma rat model compared to sorafenib. Digestive and Liver Disease, 2017. 49(2): p. 213-222. 76.Di Stefano, G., et al., A novel method for coupling doxorubicin to lactosaminated human albumin by an acid sensitive hydrazone bond: synthesis, characterization and preliminary biological properties of the conjugate. European journal of pharmaceutical sciences, 2004. 23(4-5): p. 393-397. 77.Kayani, Z., O. Firuzi, and A.-K. Bordbar, Doughnut-shaped bovine serum albumin nanoparticles loaded with doxorubicin for overcoming multidrug-resistant in cancer cells. International journal of biological macromolecules, 2018. 107: p. 1835-1843. 78.Xu, Y., et al., A switchable NO-releasing nanomedicine for enhanced cancer therapy and inhibition of metastasis. Nanoscale, 2019. 11(12): p. 5474-5488. 79.Weber, C., et al., Desolvation process and surface characterisation of protein nanoparticles. International journal of pharmaceutics, 2000. 194(1): p. 91-102. 80.Rai, A., J. Jenifer, and R.T.P. Upputuri, Nanoparticles in therapeutic applications and role of albumin and casein nanoparticles in cancer therapy. Asian biomedicine, 2017. 11(1): p. 3-20. 81.Kawahara, J.-i., et al., Chemical cross-linking by glutaraldehyde between amino groups: its mechanism and effects, in Polymer modification. 1997, Springer. p. 119-131. 82.Galisteo-González, F. and J. Molina-Bolívar, Systematic study on the preparation of BSA nanoparticles. Colloids and Surfaces B: Biointerfaces, 2014. 123: p. 286-292. 83.Bernardim, B., et al., Efficient and irreversible antibody–cysteine bioconjugation using carbonylacrylic reagents. Nature protocols, 2019. 14(1): p. 86-99. 84.Akkapeddi, P., et al., Construction of homogeneous antibody–drug conjugates using site-selective protein chemistry. Chemical science, 2016. 7(5): p. 2954-2963. 85.Baldwin, A.D. and K.L. Kiick, Tunable degradation of maleimide–thiol adducts in reducing environments. Bioconjugate chemistry, 2011. 22(10): p. 1946-1953. 86.Cal, P.M., G.J. Bernardes, and P.M. Gois, Cysteine‐Selective Reactions for Antibody Conjugation. Angewandte Chemie International Edition, 2014. 53(40): p. 10585-10587. 87.Heo, D.N., et al., Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials, 2012. 33(3): p. 856-866. 88.Zhao, N., et al., NIR-triggered high-efficient photodynamic and chemo-cascade therapy using caspase-3 responsive functionalized upconversion nanoparticles. Biomaterials, 2017. 141: p. 40-49. 89.Xue, G., et al., Application of maleimide modified graphene quantum dots and porphyrin fluorescence resonance energy transfer in the design of ‘‘turn-on’’fluorescence sensors for biothiols. Analytica chimica acta, 2020. 1108: p. 46-53. 90.Esfandyari-Manesh, M., et al., S2P peptide-conjugated PLGA-Maleimide-PEG nanoparticles containing Imatinib for targeting drug delivery to atherosclerotic plaques. DARU Journal of Pharmaceutical Sciences, 2020: p. 1-8. 91.Bernstein, M.A. and L.D. Hall, A general synthesis of model glycoproteins: coupling of alkenyl glycosides to proteins, using reductive ozonolysis followed by reductive amination with sodium cyanoborohydride. Carbohydrate Research, 1980. 78(1): p. C1-C3. 92.Gildersleeve, J.C., et al., Improved procedure for direct coupling of carbohydrates to proteins via reductive amination. Bioconjugate chemistry, 2008. 19(7): p. 1485-1490. 93.Dills Jr, W.L., Protein fructosylation: fructose and the Maillard reaction. The American journal of clinical nutrition, 1993. 58(5): p. 779S-787S. 94.Martinez-Saez, N., et al., In vitro formation of Maillard reaction products during simulated digestion of meal-resembling systems. Food Research International, 2019. 118: p. 72-80. 95.Flückiger, R., T. Woodtli, and W. Berger, Evaluation of the fructosamine test for the measurement of plasma protein glycation. Diabetologia, 1987. 30(8): p. 648-652. 96.Vlassopoulos, A., M. Lean, and E. Combet, Role of oxidative stress in physiological albumin glycation: a neglected interaction. Free Radical Biology and Medicine, 2013. 60: p. 318-324. 97.Reusch, C.E., et al., Fructosamine: a new parameter for diagnosis and metabolic control in diabetic dogs and cats. Journal of Veterinary Internal Medicine, 1993. 7(3): p. 177-182. 98.Armbruster, D.A., Fructosamine: structure, analysis, and clinical usefulness. Clinical chemistry, 1987. 33(12): p. 2153-2163. 99.Al-Araji, Y.H., J.K. Shneine, and A.A. Ahmed, Chemistry of formazan. International Journal of Research in Pharmacy and Chemistry, 2015. 5(1): p. 36. 100.Loveland, B., et al., Validation of the MTT dye assay for enumeration of cells in proliferative and antiproliferative assays. Biochemistry international, 1992. 27(3): p. 501-510. 101.Telli, C., et al., Evaluation of the cytotoxicity of calcium phosphate root canal sealers by MTT assay. Journal of endodontics, 1999. 25(12): p. 811-813. 102.Van Meerloo, J., G.J. Kaspers, and J. Cloos, Cell sensitivity assays: the MTT assay, in Cancer cell culture. 2011, Springer. p. 237-245. 103.Dutta, A., et al., Development of a modified MTT assay for screening antimonial resistant field isolates of Indian visceral leishmaniasis. Parasitology international, 2005. 54(2): p. 119-122. 104.How, S.-C., et al., Cell-targeted, dual reduction-and pH-responsive saccharide/lipoic acid-modified poly (L-lysine) and poly (acrylic acid) polyionic complex nanogels for drug delivery. Colloids and Surfaces B: Biointerfaces, 2017. 153: p. 244-252. 105.Maeda, H., The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in enzyme regulation, 2001. 41: p. 189-207. 106.Godoy, A., et al., Differential subcellular distribution of glucose transporters GLUT1–6 and GLUT9 in human cancer: ultrastructural localization of GLUT1 and GLUT5 in breast tumor tissues. Journal of cellular physiology, 2006. 207(3): p. 614-627. 107.Chithrani, B.D. and W.C. Chan, Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano letters, 2007. 7(6): p. 1542-1550. 108.Behzadi, S., et al., Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 2017. 46(14): p. 4218-4244. 109.Danaei, M., et al., Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018. 10(2): p. 57. 110.Clogston, J.D. and A.K. Patri, Zeta potential measurement, in Characterization of nanoparticles intended for drug delivery. 2011, Springer. p. 63-70. 111.Byeon, H.J., et al., Doxorubicin-bound albumin nanoparticles containing a TRAIL protein for targeted treatment of colon cancer. Pharmaceutical research, 2016. 33(3): p. 615-626. 112.Baker, J.R., et al., Use of protein-based standards in automated colorimetric determinations of fructosamine in serum. Clinical chemistry, 1985. 31(9): p. 1550-1554. 113.IR Spectrum Table by Frequency Range. Available from: https://www.sigmaaldrich.com/technical-documents/articles/biology/ir-spectrum-table.html. 114.Barth, A., Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2007. 1767(9): p. 1073-1101. 115.Husband, F.A., et al., Adsorbed protein secondary and tertiary structures by circular dichroism and infrared spectroscopy with refractive index matched emulsions. Journal of Agricultural and Food Chemistry, 2001. 49(2): p. 859-866. 116.Müller, I., et al., Effect of concentration on the cytotoxic mechanism of doxorubicin—apoptosis and oxidative DNA damage. Biochemical and biophysical research communications, 1997. 230(2): p. 254-257. 117.Pilco-Ferreto, N. and G.M. Calaf, Influence of doxorubicin on apoptosis and oxidative stress in breast cancer cell lines. International journal of oncology, 2016. 49(2): p. 753-762. 118.Brix, K., Lysosomal proteases, in Lysosomes. 2005, Springer. p. 50-59. 119.Ohshita, T. and Y. Hiroi, Degradation of serum albumin by rat liver and kidney lysosomes. Journal of nutritional science and vitaminology, 1998. 44(5): p. 641-653. 120.Hao, G., Z.P. Xu, and L. Li, Manipulating extracellular tumour pH: an effective target for cancer therapy. RSC advances, 2018. 8(39): p. 22182-22192. 121.Persi, E., et al., Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nature communications, 2018. 9(1): p. 1-11. 122.Rehman, A.U., et al., Development of doxorubicin hydrochloride loaded pH-sensitive liposomes: Investigation on the impact of chemical nature of lipids and liposome composition on pH-sensitivity. European Journal of Pharmaceutics and Biopharmaceutics, 2018. 133: p. 331-338.
|