跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 19:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐暐翔
研究生(外文):Wei-Hsiang Hsu
論文名稱:以穀胱甘肽敏感之阿黴素/糖基化牛血清白蛋白偶合奈米粒子作為乳腺癌標靶藥物遞送載體之研究
論文名稱(外文):Glutathione-Sensitive Doxorubicin-Coupled Glycated Bovine Serum Albumin Nanoparticles as Targeted Drug Delivery Carriers for Breast Cancer
指導教授:王勝仕
指導教授(外文):Sheng-Shih Wang
口試委員:林達顯賴進此蔡伸隆周秀慧侯劭毅
口試委員(外文):Ta-Hsien LinJinn-Tsyy LaiShen-Long TsaiShiu-Huey ChouShao-Yi Hou
口試日期:2021-07-02
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:91
中文關鍵詞:牛血清白蛋白阿黴素乳腺癌奈米粒子生物材料
外文關鍵詞:bovine serum albumindoxorubicinbreast cancernanoparticlesbiomaterials
DOI:10.6342/NTU202101672
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
牛血清白蛋白(BSA)具有生物相容性、生物可降解性、無毒性、低成本和良好的水溶性等特性,再加上其具有多種官能基,如羥基、羧基和硫醇基等等,可用於交聯和藥物的偶聯,因此BSA被認為是一種有潛力的藥物載體。而在乳腺癌細胞系中,能發現一種過度表達的果糖轉運蛋白-GLUT5,此受體被證明能夠應用於乳腺癌的標靶藥物治療上。透過D-glucose的還原胺化反應,能對BSA進行修飾,在其表面上形成果糖胺的結構,藉此使BSA能被GLUT5識別。
阿黴素(doxorubicin, DOXO)是治療乳腺癌常見的化療藥物。在本研究中,首先製備了具有果糖胺結構的糖基化牛血清白蛋白(F-BSA),然後使用6-maleimido-hexanoic acid將阿黴素改質,並透過maleimide-thiol reaction使阿黴素與F-BSA的硫醇基結合,形成穀胱甘肽敏感的maleimide-thiol group。然而,有證據顯示BSA分子太小而無法受惠於腫瘤組織的enhanced permeability and retention (EPR) effect,因此我們透過desolvation method將阿黴素/糖基化牛血清白蛋白偶合物(F-BSA-DOXO)進一步製成粒徑較大的奈米粒子(NPs)。
本研究所製備出的奈米粒子為球狀,平均粒徑為60.74 ± 18.38 nm,ζ-potential為-42.20 ± 5.75 mV,而loading capacity (LC%)則為3.57%。製備出的F-BSA-DOXO NPs是以傅立葉轉換紅外線光譜(FTIR)來分析化學結構;接著使用體外藥物釋放來研究F-BSA-DOXO NPs的藥物釋放行為;最後對MCF-7以及CHO-K1細胞進行MTT試驗以評估F-BSA-DOXO NPs的抗癌活性以及選擇性,並透過共軛焦雷射掃描顯微鏡來觀察細胞對藥物的攝取。本研究的結果表明,F-BSA-DOXO NPs為乳腺癌標靶藥物治療的潛力候選藥物。
Bovine serum albumin (BSA) is considered a potential drug carrier due to its nontoxicity, biocompatibility, biodegradability in vivo, low cost, and good solubility in water. Also, BSA has various functional groups, such as hydroxyl groups, carboxylic acid groups, and thiol/sulfhydryl groups, which can be applied to cross-linkage and drug coupling. A type of fructose transporter, GLUT5, is overexpressed in breast cancer lines and has been shown to be a promising receptor for targeted drug delivery in breast cancer therapy. Upon glycation by the reductive amination of D-glucose, the fructosamine structure was formed on the glycated serum albumin (e.g., bovine serum albumin; BSA) which can be recognized by GLUT5.
Doxorubicin (DOXO) is known as a commonly used chemotherapy drug to treat breast cancer. In this study, the fructosamine structure-carrying glycated bovine serum albumin (F-BSA) was first prepared, followed by coupling with DOXO using 6-maleimidohexanoic acid to form the glutathione-sensitive maleimide-thiol group. Evidence indicates that the drug-encapsulated glycated proteins are inclined to be rapidly removed from tumors; therefore, efforts have been devoted to synthesizing the drug-encapsulated glycated protein nanoparticles via desolvation method to augment the enhanced permeability and retention (EPR) effect.
The nanoparticles were spherical with a mean size of 60.74 ± 18.38 nm (mean ± SD) and a ζ-potential of -42.20 ± 5.75 mV. The loading capacity was found to be 3.57%. Fructosamine assay was applied to the determination of the amount of fructosamine structures. The formation of synthesized F-BSA-DOXO nanoparticles (NPs) conjugates were verified by Fourier-transform infrared spectroscopy (FTIR). Next, the drug release behavior of the synthesized F-BSA-DOXO conjugates was further evaluated using the in vitro dialysis release method. The anticancer activity and selectivity of F-BSA-DOXO NPs were evaluated by performing MTT assay on MCF-7 cell lines and CHO-K1 cell lines. Finally, the cellular uptake was measure by confocal laser scanning microscopy (CLSM). The outcome from this study suggests that F-BSA-DOXO NPs serve as potential candidates for targeted drug delivery carriers used in breast cancer therapy.
口試委員審定書 I
誌謝 II
大綱 III
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XII
第一章 文獻回顧 1
1.1乳腺癌(breast cancer) 1
1.1.1乳腺癌簡介 1
1.1.2 Glucose transporter type 5 (GLUT 5)簡介 6
1.1.3 Enhanced permeability and retention (EPR) effect簡介 7
1.2阿黴素簡介 8
1.3牛血清白蛋白簡介 12
1.3.1 Desolvation method簡介 16
1.3.2 Maleimide-thiol reaction簡介 17
1.4還原胺化反應(reductive amination)簡介 19
1.5實驗檢測原理介紹 20
1.5.1果糖胺檢測方法(Fructosamine assay) 20
1.5.2 MTT試驗(MTT assay) 21
第二章 研究動機 22
第三章 實驗儀器、藥品、細胞與步驟 24
3.1實驗儀器 24
3.2實驗藥品與細胞 26
3.3實驗方法和步驟 31
3.3.1主要溶液配製 31
3.3.2糖基化牛血清白蛋白(F-BSA)製備 34
3.3.3糖基化牛血清白蛋白奈米粒子(F-BSA NPs)製備 35
3.3.4阿黴素改質步驟(M-DOXO製備) 36
3.3.5阿黴素/糖基化牛血清白蛋白偶合物(F-BSA-DOXO)製備 37
3.3.5.1製備步驟 37
3.3.5.2 Loading capacity以及encapsulation efficiency估算 38
3.3.6阿黴素/糖基化牛血清白蛋白偶合物奈米粒子製備 39
3.3.6.1 F-BSA-DOXO NPs製備 39
3.3.6.2 F-BSA-DOXO NPs*製備 40
3.3.7果糖胺檢測方法(Fructosamine assay) 41
3.3.8穿透式電子顯微鏡(TEM) 42
3.3.9傅立葉轉換紅外線光譜儀(FTIR) 42
3.3.10動態光散射粒徑分析儀及界面電位分析儀 42
3.3.11體外藥物釋放實驗 43
3.3.11.1 DTT存在與否對體外藥物釋放的影響 43
3.3.11.2環境pH值以及藥物偶合方法對體外藥物釋放的影響 43
3.3.12細胞培養條件 44
3.3.12.1 MCF-7培養方式 44
3.3.12.2 CHO-K1培養方式 44
3.3.13 MTT試驗 45
第四章 實驗結果與討論 46
4.1阿黴素/糖基化牛血清白蛋白偶合物奈米粒子特性 46
4.1.1粒徑分布以及zeta potential 46
4.1.2 Loading capacity以及encapsulation efficiency 49
4.2穿透式電子顯微鏡觀察結果 50
4.2.1 pH值與交聯劑添加與否對BSA NPs粒徑以及型態的影響 50
4.2.2離子強度對F-BSA-DOXO NPs粒徑以及型態的影響 53
4.3果糖胺檢測方法實驗結果 56
4.4傅立葉轉換紅外線光譜分析 60
4.5體外藥物釋放實驗 63
4.5.1 DTT存在與否對體外藥物釋放的影響 63
4.5.2環境pH值以及藥物偶合方法對體外藥物釋放的影響 66
4.6 MTT試驗 69
第五章 結論 75
參考文獻 77
附錄 91
1.Torre, L.A., et al., Global cancer statistics, 2012. CA: a cancer journal for clinicians, 2015. 65(2): p. 87-108.
2.2019 Cause of Death Statistics. Available from: https://www.mohw.gov.tw/cp-4964-55572-2.html.
3.Tsai, H.-Y., R.N.-C. Kuo, and K.-p. Chung, Quality of life of breast cancer survivors following breast-conserving therapy versus mastectomy: a multicenter study in Taiwan. Japanese journal of clinical oncology, 2017. 47(10): p. 909-918.
4.Parise, C.A., et al., Breast cancer subtypes as defined by the estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2) among women with invasive breast cancer in California, 1999–2004. The breast journal, 2009. 15(6): p. 593-602.
5.Lovitt, C.J., T.B. Shelper, and V.M. Avery, Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC cancer, 2018. 18(1): p. 1-11.
6.Bacus, S.S., et al., Differentiation of cultured human breast cancer cells (AU‐565 and MCF‐7) associated with loss of cell surface HER‐2/neu antigen. Molecular carcinogenesis, 1990. 3(6): p. 350-362.
7.Tagliabue, E., et al., Role of HER2 in wound-induced breast carcinoma proliferation. The Lancet, 2003. 362(9383): p. 527-533.
8.Fisher, B., et al., Presence of a growth-stimulating factor in serum following primary tumor removal in mice. Cancer research, 1989. 49(8): p. 1996-2001.
9.Ding, H., et al., HER2-positive breast cancer targeting and treatment by a peptide-conjugated mini nanodrug. Nanomedicine: Nanotechnology, Biology and Medicine, 2017. 13(2): p. 631-639.
10.Kümler, I., M.K. Tuxen, and D.L. Nielsen, A systematic review of dual targeting in HER2-positive breast cancer. Cancer treatment reviews, 2014. 40(2): p. 259-270.
11.Blasco-Benito, S., et al., Therapeutic targeting of HER2–CB2R heteromers in HER2-positive breast cancer. Proceedings of the National Academy of Sciences, 2019. 116(9): p. 3863-3872.
12.Zhao, J., et al., Fructose-coated nanoparticles: a promising drug nanocarrier for triple-negative breast cancer therapy. Chemical Communications, 2014. 50(100): p. 15928-15931.
13.Shafei, A., et al., A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomedicine & pharmacotherapy, 2017. 95: p. 1209-1218.
14.Hortobagyi, G., Anthracyclines in the treatment of cancer. Drugs, 1997. 54(4): p. 1-7.
15.Zhao, F.-Q. and A.F. Keating, Functional properties and genomics of glucose transporters. Current genomics, 2007. 8(2): p. 113-128.
16.Mueckler, M. and B. Thorens, The SLC2 (GLUT) family of membrane transporters. Molecular aspects of medicine, 2013. 34(2-3): p. 121-138.
17.Nomura, N., et al., Structure and mechanism of the mammalian fructose transporter GLUT5. Nature, 2015. 526(7573): p. 397-401.
18.Burant, C.F. and M. Saxena, Rapid reversible substrate regulation of fructose transporter expression in rat small intestine and kidney. American Journal of Physiology-Gastrointestinal and Liver Physiology, 1994. 267(1): p. G71-G79.
19.Burant, C., et al., Fructose transporter in human spermatozoa and small intestine is GLUT5. Journal of Biological Chemistry, 1992. 267(21): p. 14523-14526.
20.Manolescu, A.R., et al., Facilitated hexose transporters: new perspectives on form and function. Physiology, 2007. 22(4): p. 234-240.
21.Blakemore, S., et al., The GLUT5 hexose transporter is also localized to the basolateral membrane of the human jejunum. Biochemical Journal, 1995. 309(1): p. 7-12.
22.DOEGE, H., et al., Characterization of human glucose transporter (GLUT) 11 (encoded by SLC2A11), a novel sugar-transport facilitator specifically expressed in heart and skeletal muscle. Biochemical Journal, 2001. 359(2): p. 443-449.
23.Manolescu, A., et al., Identification of a hydrophobic residue as a key determinant of fructose transport by the facilitative hexose transporter SLC2A7 (GLUT7). Journal of Biological Chemistry, 2005. 280(52): p. 42978-42983.
24.Douard, V. and R.P. Ferraris, Regulation of the fructose transporter GLUT5 in health and disease. American Journal of Physiology-Endocrinology and Metabolism, 2008. 295(2): p. E227-E237.
25.Kane, S., M.J. Seatter, and G.W. Gould, Functional studies of human GLUT5: effect of pH on substrate selection and an analysis of substrate interactions. Biochemical and biophysical research communications, 1997. 238(2): p. 503-505.
26.Rand, E., et al., Sequence, tissue distribution, and functional characterization of the rat fructose transporter GLUT5. American Journal of Physiology-Gastrointestinal and Liver Physiology, 1993. 264(6): p. G1169-G1176.
27.Shepherd, P.R., et al., Human small intestine facilitative fructose/glucose transporter (GLUT5) is also present in insulin-responsive tissues and brain: Investigation of biochemical characteristics and translocation. Diabetes, 1992. 41(10): p. 1360-1365.
28.Stuart, C.A., M.E. Howell, and D. Yin, Overexpression of GLUT5 in diabetic muscle is reversed by pioglitazone. Diabetes Care, 2007. 30(4): p. 925-931.
29.Zamora-León, S.P., et al., Expression of the fructose transporter GLUT5 in human breast cancer. Proceedings of the National Academy of Sciences, 1996. 93(5): p. 1847-1852.
30.Levi, J., et al., Fluorescent fructose derivatives for imaging breast cancer cells. Bioconjugate chemistry, 2007. 18(3): p. 628-634.
31.Wuest, M., et al., Radiopharmacological evaluation of 6-deoxy-6-[18F] fluoro-D-fructose as a radiotracer for PET imaging of GLUT5 in breast cancer. Nuclear medicine and biology, 2011. 38(4): p. 461-475.
32.Jadvar, H., A. Alavi, and S.S. Gambhir, 18F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization. Journal of Nuclear Medicine, 2009. 50(11): p. 1820-1827.
33.Jin, C., X. Gong, and Y. Shang, GLUT5 increases fructose utilization in ovarian cancer. OncoTargets and therapy, 2019. 12: p. 5425.
34.House, S.W., et al., On respiratory impairment in cancer cells. Science, 1956. 124(3215): p. 267-272.
35.Zhao, J., et al., Fructose-coated nanodiamonds: promising platforms for treatment of human breast cancer. Biomacromolecules, 2016. 17(9): p. 2946-2955.
36.Zhou, L., et al., Two branched fructose modification improves tumor targeting delivery of liposomes to breast cancer in intro and in vivo. Journal of Drug Delivery Science and Technology, 2021. 61: p. 102312.
37.Fang, J., T. Sawa, and H. Maeda, Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Polymer Drugs in the Clinical Stage, 2004: p. 29-49.
38.Folkman, J., Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature medicine, 1995. 1(1): p. 27-30.
39.Skinner, S.A., P.J. Tutton, and P.E. O'Brien, Microvascular architecture of experimental colon tumors in the rat. Cancer research, 1990. 50(8): p. 2411-2417.
40.Greish, K., et al., Enhanced permeability and retention (EPR) effect and tumor-selective delivery of anticancer drugs. Delivery of protein and peptide drugs in cancer, 2006. 10: p. 14.
41.Maeda, H. and Y. Matsumura, Tumoritropic and lymphotropic principles of macromolecular drugs. Critical reviews in therapeutic drug carrier systems, 1989. 6(3): p. 193-210.
42.Iyer, A.K., et al., Exploiting the enhanced permeability and retention effect for tumor targeting. Drug discovery today, 2006. 11(17-18): p. 812-818.
43.Torchilin, V., Tumor delivery of macromolecular drugs based on the EPR effect. Advanced drug delivery reviews, 2011. 63(3): p. 131-135.
44.Kobayashi, H., R. Watanabe, and P.L. Choyke, Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics, 2014. 4(1): p. 81.
45.Chithrani, B.D., A.A. Ghazani, and W.C. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano letters, 2006. 6(4): p. 662-668.
46.Minotti, G., et al., Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological reviews, 2004. 56(2): p. 185-229.
47.Weiss, R.B. The anthracyclines: will we ever find a better doxorubicin? in Seminars in oncology. 1992.
48.Giordano, S.H., et al., Decline in the use of anthracyclines for breast cancer. Journal of clinical oncology, 2012. 30(18): p. 2232.
49.Shaul, P., et al., The structure of anthracycline derivatives determines their subcellular localization and cytotoxic activity. ACS medicinal chemistry letters, 2013. 4(3): p. 323-328.
50.Berger, J.M., et al., Structure and mechanism of DNA topoisomerase II. Nature, 1996. 379(6562): p. 225-232.
51.Corremans, R., et al., Update on pathophysiology and preventive strategies of anthracycline‐induced cardiotoxicity. Clinical and Experimental Pharmacology and Physiology, 2019. 46(3): p. 204-215.
52.Yang, F., et al., Doxorubicin, DNA torsion, and chromatin dynamics. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2014. 1845(1): p. 84-89.
53.Berlin, V. and W. Haseltine, Reduction of adriamycin to a semiquinone-free radical by NADPH cytochrome P-450 reductase produces DNA cleavage in a reaction mediated by molecular oxygen. Journal of Biological Chemistry, 1981. 256(10): p. 4747-4756.
54.Rabbani, A., R.M. Finn, and J. Ausio, The anthracycline antibiotics: antitumor drugs that alter chromatin structure. Bioessays, 2005. 27(1): p. 50-56.
55.Salazar-Mendiguchía, J., et al., Anthracycline-mediated cardiomyopathy: basic molecular knowledge for the cardiologist. Archivos de cardiología de México, 2014. 84(3): p. 218-223.
56.Dorr, R.T. Cytoprotective agents for anthracyclines. in Seminars in oncology. 1996.
57.Wu, Y.-P., et al., Folate-conjugated halloysite nanotubes, an efficient drug carrier, deliver doxorubicin for targeted therapy of breast cancer. ACS Applied Nano Materials, 2018. 1(2): p. 595-608.
58.Lee, C.C., et al., A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proceedings of the National Academy of Sciences, 2006. 103(45): p. 16649-16654.
59.Chan, M.K., et al., New molecular biologist perspective and insight: DNA topoisomerases production by recombinant DNA technology for medical laboratory application and pharmaceutical industry. Electronic Journal of Biotechnology, 2013. 16(6): p. 18-18.
60.Majorek, K.A., et al., Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Molecular immunology, 2012. 52(3-4): p. 174-182.
61.Stamler, J.S., et al., Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proceedings of the National Academy of Sciences, 1992. 89(16): p. 7674-7677.
62.De Wolf, F.A. and G.M. Brett, Ligand-binding proteins: their potential for application in systems for controlled delivery and uptake of ligands. Pharmacological reviews, 2000. 52(2): p. 207-236.
63.Nosrati, H., et al., Bovine serum albumin: an efficient biomacromolecule nanocarrier for improving the therapeutic efficacy of chrysin. Journal of Molecular Liquids, 2018. 271: p. 639-646.
64.Kamakura, M., N. Suenobu, and M. Fukushima, Fifty-seven-kDa protein in royal jelly enhances proliferation of primary cultured rat hepatocytes and increases albumin production in the absence of serum. Biochemical and Biophysical research communications, 2001. 282(4): p. 865-874.
65.Peng, Z., K. Hidajat, and M. Uddin, Adsorption of bovine serum albumin on nanosized magnetic particles. Journal of colloid and interface science, 2004. 271(2): p. 277-283.
66.Chruszcz, M., et al., Serum albumins—Unusual allergens. Biochimica et Biophysica Acta (BBA)-General Subjects, 2013. 1830(12): p. 5375-5381.
67.Loughney, J.W., et al., Residual bovine serum albumin (BSA) quantitation in vaccines using automated Capillary Western technology. Analytical biochemistry, 2014. 461: p. 49-56.
68.Salehiabar, M., et al., Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. International journal of biological macromolecules, 2018. 115: p. 83-89.
69.Nosrati, H., et al., Folic acid conjugated bovine serum albumin: An efficient smart and tumor targeted biomacromolecule for inhibition folate receptor positive cancer cells. International journal of biological macromolecules, 2018. 117: p. 1125-1132.
70.Nosrati, H., et al., Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorganic chemistry, 2018. 76: p. 501-509.
71.Gawde, K.A., et al., Paclitaxel and di-fluorinated curcumin loaded in albumin nanoparticles for targeted synergistic combination therapy of ovarian and cervical cancers. Colloids and Surfaces B: Biointerfaces, 2018. 167: p. 8-19.
72.Ghosh, P., et al., Preparation of albumin based nanoparticles for delivery of fisetin and evaluation of its cytotoxic activity. International journal of biological macromolecules, 2016. 86: p. 408-417.
73.de Redín, I.L., et al., Human serum albumin nanoparticles for ocular delivery of bevacizumab. International journal of pharmaceutics, 2018. 541(1-2): p. 214-223.
74.Huang, D., et al., Hyaluronic acid coated albumin nanoparticles for targeted peptide delivery in the treatment of retinal ischaemia. Biomaterials, 2018. 168: p. 10-23.
75.Elsadek, B., et al., The antitumor activity of a lactosaminated albumin conjugate of doxorubicin in a chemically induced hepatocellular carcinoma rat model compared to sorafenib. Digestive and Liver Disease, 2017. 49(2): p. 213-222.
76.Di Stefano, G., et al., A novel method for coupling doxorubicin to lactosaminated human albumin by an acid sensitive hydrazone bond: synthesis, characterization and preliminary biological properties of the conjugate. European journal of pharmaceutical sciences, 2004. 23(4-5): p. 393-397.
77.Kayani, Z., O. Firuzi, and A.-K. Bordbar, Doughnut-shaped bovine serum albumin nanoparticles loaded with doxorubicin for overcoming multidrug-resistant in cancer cells. International journal of biological macromolecules, 2018. 107: p. 1835-1843.
78.Xu, Y., et al., A switchable NO-releasing nanomedicine for enhanced cancer therapy and inhibition of metastasis. Nanoscale, 2019. 11(12): p. 5474-5488.
79.Weber, C., et al., Desolvation process and surface characterisation of protein nanoparticles. International journal of pharmaceutics, 2000. 194(1): p. 91-102.
80.Rai, A., J. Jenifer, and R.T.P. Upputuri, Nanoparticles in therapeutic applications and role of albumin and casein nanoparticles in cancer therapy. Asian biomedicine, 2017. 11(1): p. 3-20.
81.Kawahara, J.-i., et al., Chemical cross-linking by glutaraldehyde between amino groups: its mechanism and effects, in Polymer modification. 1997, Springer. p. 119-131.
82.Galisteo-González, F. and J. Molina-Bolívar, Systematic study on the preparation of BSA nanoparticles. Colloids and Surfaces B: Biointerfaces, 2014. 123: p. 286-292.
83.Bernardim, B., et al., Efficient and irreversible antibody–cysteine bioconjugation using carbonylacrylic reagents. Nature protocols, 2019. 14(1): p. 86-99.
84.Akkapeddi, P., et al., Construction of homogeneous antibody–drug conjugates using site-selective protein chemistry. Chemical science, 2016. 7(5): p. 2954-2963.
85.Baldwin, A.D. and K.L. Kiick, Tunable degradation of maleimide–thiol adducts in reducing environments. Bioconjugate chemistry, 2011. 22(10): p. 1946-1953.
86.Cal, P.M., G.J. Bernardes, and P.M. Gois, Cysteine‐Selective Reactions for Antibody Conjugation. Angewandte Chemie International Edition, 2014. 53(40): p. 10585-10587.
87.Heo, D.N., et al., Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials, 2012. 33(3): p. 856-866.
88.Zhao, N., et al., NIR-triggered high-efficient photodynamic and chemo-cascade therapy using caspase-3 responsive functionalized upconversion nanoparticles. Biomaterials, 2017. 141: p. 40-49.
89.Xue, G., et al., Application of maleimide modified graphene quantum dots and porphyrin fluorescence resonance energy transfer in the design of ‘‘turn-on’’fluorescence sensors for biothiols. Analytica chimica acta, 2020. 1108: p. 46-53.
90.Esfandyari-Manesh, M., et al., S2P peptide-conjugated PLGA-Maleimide-PEG nanoparticles containing Imatinib for targeting drug delivery to atherosclerotic plaques. DARU Journal of Pharmaceutical Sciences, 2020: p. 1-8.
91.Bernstein, M.A. and L.D. Hall, A general synthesis of model glycoproteins: coupling of alkenyl glycosides to proteins, using reductive ozonolysis followed by reductive amination with sodium cyanoborohydride. Carbohydrate Research, 1980. 78(1): p. C1-C3.
92.Gildersleeve, J.C., et al., Improved procedure for direct coupling of carbohydrates to proteins via reductive amination. Bioconjugate chemistry, 2008. 19(7): p. 1485-1490.
93.Dills Jr, W.L., Protein fructosylation: fructose and the Maillard reaction. The American journal of clinical nutrition, 1993. 58(5): p. 779S-787S.
94.Martinez-Saez, N., et al., In vitro formation of Maillard reaction products during simulated digestion of meal-resembling systems. Food Research International, 2019. 118: p. 72-80.
95.Flückiger, R., T. Woodtli, and W. Berger, Evaluation of the fructosamine test for the measurement of plasma protein glycation. Diabetologia, 1987. 30(8): p. 648-652.
96.Vlassopoulos, A., M. Lean, and E. Combet, Role of oxidative stress in physiological albumin glycation: a neglected interaction. Free Radical Biology and Medicine, 2013. 60: p. 318-324.
97.Reusch, C.E., et al., Fructosamine: a new parameter for diagnosis and metabolic control in diabetic dogs and cats. Journal of Veterinary Internal Medicine, 1993. 7(3): p. 177-182.
98.Armbruster, D.A., Fructosamine: structure, analysis, and clinical usefulness. Clinical chemistry, 1987. 33(12): p. 2153-2163.
99.Al-Araji, Y.H., J.K. Shneine, and A.A. Ahmed, Chemistry of formazan. International Journal of Research in Pharmacy and Chemistry, 2015. 5(1): p. 36.
100.Loveland, B., et al., Validation of the MTT dye assay for enumeration of cells in proliferative and antiproliferative assays. Biochemistry international, 1992. 27(3): p. 501-510.
101.Telli, C., et al., Evaluation of the cytotoxicity of calcium phosphate root canal sealers by MTT assay. Journal of endodontics, 1999. 25(12): p. 811-813.
102.Van Meerloo, J., G.J. Kaspers, and J. Cloos, Cell sensitivity assays: the MTT assay, in Cancer cell culture. 2011, Springer. p. 237-245.
103.Dutta, A., et al., Development of a modified MTT assay for screening antimonial resistant field isolates of Indian visceral leishmaniasis. Parasitology international, 2005. 54(2): p. 119-122.
104.How, S.-C., et al., Cell-targeted, dual reduction-and pH-responsive saccharide/lipoic acid-modified poly (L-lysine) and poly (acrylic acid) polyionic complex nanogels for drug delivery. Colloids and Surfaces B: Biointerfaces, 2017. 153: p. 244-252.
105.Maeda, H., The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in enzyme regulation, 2001. 41: p. 189-207.
106.Godoy, A., et al., Differential subcellular distribution of glucose transporters GLUT1–6 and GLUT9 in human cancer: ultrastructural localization of GLUT1 and GLUT5 in breast tumor tissues. Journal of cellular physiology, 2006. 207(3): p. 614-627.
107.Chithrani, B.D. and W.C. Chan, Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano letters, 2007. 7(6): p. 1542-1550.
108.Behzadi, S., et al., Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 2017. 46(14): p. 4218-4244.
109.Danaei, M., et al., Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018. 10(2): p. 57.
110.Clogston, J.D. and A.K. Patri, Zeta potential measurement, in Characterization of nanoparticles intended for drug delivery. 2011, Springer. p. 63-70.
111.Byeon, H.J., et al., Doxorubicin-bound albumin nanoparticles containing a TRAIL protein for targeted treatment of colon cancer. Pharmaceutical research, 2016. 33(3): p. 615-626.
112.Baker, J.R., et al., Use of protein-based standards in automated colorimetric determinations of fructosamine in serum. Clinical chemistry, 1985. 31(9): p. 1550-1554.
113.IR Spectrum Table by Frequency Range. Available from: https://www.sigmaaldrich.com/technical-documents/articles/biology/ir-spectrum-table.html.
114.Barth, A., Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2007. 1767(9): p. 1073-1101.
115.Husband, F.A., et al., Adsorbed protein secondary and tertiary structures by circular dichroism and infrared spectroscopy with refractive index matched emulsions. Journal of Agricultural and Food Chemistry, 2001. 49(2): p. 859-866.
116.Müller, I., et al., Effect of concentration on the cytotoxic mechanism of doxorubicin—apoptosis and oxidative DNA damage. Biochemical and biophysical research communications, 1997. 230(2): p. 254-257.
117.Pilco-Ferreto, N. and G.M. Calaf, Influence of doxorubicin on apoptosis and oxidative stress in breast cancer cell lines. International journal of oncology, 2016. 49(2): p. 753-762.
118.Brix, K., Lysosomal proteases, in Lysosomes. 2005, Springer. p. 50-59.
119.Ohshita, T. and Y. Hiroi, Degradation of serum albumin by rat liver and kidney lysosomes. Journal of nutritional science and vitaminology, 1998. 44(5): p. 641-653.
120.Hao, G., Z.P. Xu, and L. Li, Manipulating extracellular tumour pH: an effective target for cancer therapy. RSC advances, 2018. 8(39): p. 22182-22192.
121.Persi, E., et al., Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nature communications, 2018. 9(1): p. 1-11.
122.Rehman, A.U., et al., Development of doxorubicin hydrochloride loaded pH-sensitive liposomes: Investigation on the impact of chemical nature of lipids and liposome composition on pH-sensitivity. European Journal of Pharmaceutics and Biopharmaceutics, 2018. 133: p. 331-338.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊