跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/11 05:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張乃文
研究生(外文):Nai-Wen Chang
論文名稱:發展1,4-二硫蘇糖醇響應性比例螢光型高分子奈米探針與麩胱甘肽響應性高分子奈米藥物載體
論文名稱(外文):Development of Ratiometric Fluorescent Polymeric Micelles for 1,4-dithiothreitol (DTT) Detection and Glutathione (GSH) Responsive Theranostics Polymeric Drug Carrier
指導教授:陳昭岑
指導教授(外文):Chao-Tsen Chen
口試委員:王建隆陳韻晶廖奕翰
口試委員(外文):Chien-Lung WangYun-Ching ChenIan Liau
口試日期:2021-09-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:184
中文關鍵詞:奈米探針比例螢光14-二硫蘇糖醇交聯性藥物載體麩胱甘肽
外文關鍵詞:Nanoparticle14-DithiothreitolRatiometric fluorescenceGlutathionecrosslinked nanocarrier
DOI:10.6342/NTU202103698
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
基於高分子奈米粒子具有高生物相容性、高生物可降解性、易調控的物理與化學性質,以及高度可修飾性的優點,可藉由裝載上導引、診斷、治療或顯影等不同功能,形成多功能的智慧載體,在近年來成為備受矚目的研究領域。本研究主要發展具有螢光的嵌段式高分子,在水溶液中可自組裝成奈米粒子,根據偵測的分子以及是否裝載藥物區分為兩部份。第一部分針對胱胺酸症發展兼具診斷與顯影功能的1,4-二硫蘇糖醇 (1,4-dithiothreitol, DTT) 響應性比例螢光奈米探針。設計並合成單邊側鏈型3HF-SS-DEG、雙邊側鏈型3HF-2(SS-DEG) 與直鏈型PEG-3HF-SS三種不同結構的兩親性高分子,三者皆具有親水段、質子環境敏感螢光團3-HF,與具雙硫鍵之疏水段,皆可經自組裝形成奈米微胞。經由不斷優化高分子親水性與微胞溶液之製作與組成條件,最後以直鏈型PEG-3HF-SS發展出偵測效果最佳的Micelle-C 。在有DTT存在的環境中,DTT會與PEG-3HF-SS之雙硫鍵進行硫醇-雙硫鍵交換反應而使高分子結構親水性提升,並使Micelle-C微胞膨脹,且伴隨由綠到藍的比例螢光輸出變化,以此偵測環境中DTT之濃度。在常見的生物硫醇中,Micelle-C對DTT有較高的選擇性,且藍綠螢光比值與DTT濃度高度相關,因此適合應用於輔助胱胺酸症治療,以避免DTT用量過高導致中毒。
第二部份則是發展兩款能針對癌症環境中過度表達之麩胱甘肽 (glutathione, GSH) 控制釋放藥物的螢光奈米藥物載體Micelle-click-PTX與Micelle-crosslink-PTX,前者利用共價鍵連接藥物;後者藉由疏水作用力包覆藥物 (圖2)。Micelle-click-PTX利用雙硫鍵共價連接藥物的兩親性高分子PEG-3HF-prodrug自組裝形成,在與GSH作用後會進行雙硫鍵交換反應,並在自我級聯反應後脫去藥物,然而無法將藥物順利從微胞內部釋出。經由穿透式顯微影像,以及高效液相層析分析結果得知Micelle-click-PTX疏水結構過於緻密 。Micelle-crosslink-PTX則是透過具有螢光特性的AO-3-DSF作為交聯劑,利用兩親性高分子PEG-N3自組裝的同時形成交聯性奈米載體,並將藥物包覆在內。此結構設計可降低藥物在運送過程中洩漏的機會。Micelle-crosslink-PTX在GSH的作用下AO-3-DSF斷裂,放出綠色螢光,在兩天內可釋放出約87%的藥物。細胞實驗結果證明Micelle-crosslink-PTX能順利的進入細胞中,並具有良好的顯影與毒殺細胞的效果,具有運用於生物體中探測GSH濃度變化與治療癌症的潛力 。
Polymeric nanoparticles have attracted considerable interest over recent years due to their high biocompatibility, biodegradability, and flexible structural modifications. By installing various functions such as targeting, diagnosis, therapy, or imaging, multifunctional smart polymeric nanoparticles can be designed and frabricated. This study takes the advantages of polymeric nanoparticles aiming to develop fluorescent block copolymers that can self-assemble to polymeric micelles. Based on the targeted analytes and whether drugs are loaded, the study is divided into two parts. The first part aims to develop a ratiometric 1,4-dithiothreitol (DTT)-responsive fluorescent nanoprobe. Three different structural features of amphiphilic block copolymers containing a hydrophilic segment, a proton-sensitive ratiometric fluorophore 3-HF, and a hydrophobic segment with a disulfide bond were designed and synthesized, denoted by 3HF-SS-DEG (branched diblock copolymer), 3HF-2(SS-DEG) (branched triblock copolymer), and PEG-3HF-SS (linear diblock copolymer). After optimizing the hydrophilicity of the copolymers as well as the micelle fabrication conditions and the composition of the solutions, stable and DTT-responsive nanoprobes can only be obtained by using PEG-3HF-SS copolymers. The resulting self-assembled stable micelle is denote by Micelle-C. In response to DTT, Micelle-C swells and the fluorescent color changes from green to blue, indicating that DTT reacts with the disulfide bonds via the thiol-disulfide exchange, resulting in the increased hydrophilicity. Moreover, Micelle-C displays higher selectivity towards DTT than other common biothiols, and the blue/green emission ratio is highly correlated with the concentration of DTT. Consequently, Micelle-C is suitable for Cystinosis therapy to prevent using excessive dosage of DTT.
The second part describes two types of glutathione (GSH)-responsive fluorescent drug nanocarriers, Micelle-click-PTX and Micelle-crosslink-PTX, which carry drugs either via covalent bond or encapsulation of noncovalent interactions. Micelle-click-PTX is self-assembled by the amphiphilic polymer PEG-3HF-prodrug which covalently links the anticancer drug PTX by the disulfide bonds. After GSH reacts with the disulfide bond, a cascade reaction is triggered and PTX can be released. However, the drugs could not escape from the micelle successfully owing to the high densed hydrophobic part of Micelle-click-PTX confirmed by the TEM images and HPLC analysis. Micelle-crosslink-PTX was fabricated by crosslinking the amphiphilic polymer PEG-N3 via the thiol reactive fluorescent crosslinker AO-3-DSF, and PTX was encapsulated during the self-assembly of PEG-N3. The resulting Micelle-crosslink-PTX can effectively reduce drug leakage during transportation. In response to GSH, the S-S cross-linkage is cleaved and the green fluorescence is emitted. 87% of PTX drugs can be released from Micelle-crosslink-PTX in 2 days. Moreover, Micelle-crosslink-PTX can get into the HeLa cells in which the endogenous GSH concentration is high and displays significant green fluorescence. In vitro cytotoxicity analysis revealed that the polymer itself is not very toxic to the cells. Only the drug loaded Micelle-crosslink-PTX displays high cell toxicity. It can thus be concluded that Micelle-crosslink-PTX has potential to serve as a target-responsive theranostics for cancer treatment.
目 錄 i
圖目錄 iv
表目錄 xv
簡稱用語對照表 xvi
中文摘要 xviii
Abstract xx

第一章 緒論 1
1.1 奈米探針 (Nanoprobes) 4
1.1.1 環境敏感螢光探針 5
1.1.2 螢光奈米探針 9
1.2 奈米藥物載體 (Nano Drug Carrier) 13
1.2.1 多功能高分子奈米藥物載體 13
1.2.2 藥物裝載方式 17
第二章 偵測1,4-二硫蘇糖醇之比例螢光型高分子奈米微胞 22
2.1 胱胺酸症 (Cystinosis) 22
2.2 偵測1,4-二硫蘇糖醇 (DTT) 之相關文獻回顧 23
2.3 研究動機與分子設計 26
2.4 實驗流程與方法 32
2.4.1 兩親性高分子之逆合成分析與合成步驟 33
2.4.2 兩親性高分子之組成分析 41
2.5 實驗結果與討論 46
2.5.1 單體B1與DTT作用之NMR分析 46
2.5.2 形成穩定微胞之條件優化 48
2.5.3 高分子PEG-3HF-SS性質鑑定 57
2.5.4 微胞在DTT作用下之螢光與DLS時間進程實驗與TEM影像圖 60
2.5.5 選擇性測試 61
2.5.6 定量分析 63
2.6 結果與討論 64
第三章 偵測麩胱甘肽之多功能響應型高分子奈米藥物載體 65
3.1 麩胱甘肽響應型奈米藥物載體之文獻回顧 67
3.2 研究動機與Micelle-click-PTX之分子設計 70
3.3 實驗流程與方法 72
3.3.1 PEG-3HF-Prodrug合成步驟 73
3.3.2 高分子PEG-3HF-Prodrug性質鑑定 78
3.4 實驗結果討論 81
3.5 螢光探針AO-3-DSF回顧與Micelle-crosslink-PTX分子設計 86
3.5.1 交聯高分子之合成 92
3.5.2 高分子PEG-N3性質鑑定 94
3.6 實驗結果討論 96
3.6.1 Micelle-crosslink-PTX微胞製作條件優化 96
3.6.2 Micelle-crosslink-PTX在GSH作用下之時間進程實驗 99
3.6.3 選擇性測試 101
3.6.4 藥物釋放效率測試 102
3.6.5 細胞實驗 103
3.7 結果與討論 106
第四章 結論 108
實驗部分 110
一、一般敘述 110
二、合成步驟與光譜數據 119
參考文獻 132
附錄 150
1.Anu Mary Ealia, S.; Saravanakumar, M. P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 263, 032019.
2.Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem. Lett. Rev. 2020, 13, 223-245.
3.Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arabian J. Chem. 2019, 12, 908-931.
4.Murphy, F.; McAlea, E. M.; Mullins, M.; Springer International Publishing, A. G., Managing Risk in Nanotechnology Topics in Governance, Assurance and Transfer, 2016.
5.Richards, D. A.; Maruani, A.; Chudasama, V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem. Sci. 2017, 8, 63-77.
6.Yuan, X.; Zhang, X.; Sun, L.; Wei, Y.; Wei, X. Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials. Part. Fibre Toxicol. 2019, 16, 18.
7.Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101-124.
8.Sundar, S.; Kundu, J.; Kundu, S. C. Biopolymeric nanoparticles. Sci. Technol. Adv. Mater. 2010, 11, 014104.
9.van Vlerken, L. E.; Vyas, T. K.; Amiji, M. M. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm. Res. 2007, 24, 1405-14.
10.Jokerst, J. V.; Lobovkina, T.; Zare, R. N.; Gambhir, S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011, 6, 715-728.
11.Abuchowski, A.; van Es, T.; Palczuk, N. C.; Davis, F. F. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem. 1977, 252, 3578-3581.
12.Allen, C.; Dos Santos, N.; Gallagher, R.; Chiu, G. N.; Shu, Y.; Li, W. M.; Johnstone, S. A.; Janoff, A. S.; Mayer, L. D.; Webb, M. S.; Bally, M. B. Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci. Rep. 2002, 22, 225-50.
13.Astete, C. E.; Sabliov, C. M. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci., Polym. Ed. 2006, 17, 247-289.
14.Chawla, J. S.; Amiji, M. M. Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int. J. Pharm. 2002, 249, 127-138.
15.Bowman, K.; Leong, K. W. Chitosan nanoparticles for oral drug and gene delivery. Int. J. Nanomed. 2006, 1, 117-28.
16.Cai, J.; Fu, J.; Li, R.; Zhang, F.; Ling, G.; Zhang, P. A potential carrier for anti-tumor targeted delivery-hyaluronic acid nanoparticles. Carbohydr. Polym. 2019, 208, 356-364.
17.Owens, D. E.; Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006, 307, 93-102.
18.Santoro, O.; Zhang, X.; Redshaw, C. Synthesis of Biodegradable Polymers: A Review on the Use of Schiff-Base Metal Complexes as Catalysts for the Ring Opening Polymerization (ROP) of Cyclic Esters. Catalysts 2020, 10.
19.Zhou, X.; Hong, L. Controlled ring-opening polymerization of cyclic esters with phosphoric acid as catalysts. Colloid. Polym. Sci. 2013, 291, 2155-2162.
20.Sakhrani, N. M.; Padh, H. Organelle targeting: third level of drug targeting. Drug Des., Dev. Ther. 2013, 7, 585-99.
21.Xu, J. J.; Zhao, W. W.; Song, S.; Fan, C.; Chen, H. Y. Functional nanoprobes for ultrasensitive detection of biomolecules: an update. Chem. Soc. Rev. 2014, 43, 1601-11.
22.Yan, J.; Su, S.; He, S.; He, Y.; Zhao, B.; Wang, D.; Zhang, H.; Huang, Q.; Song, S.; Fan, C. Nano Rolling-Circle Amplification for Enhanced SERS Hot Spots in Protein Microarray Analysis. Anal. Chem. 2012, 84, 9139-9145.
23.Zhao, W. W.; Tian, C. Y.; Xu, J. J.; Chen, H. Y. The coupling of localized surface plasmon resonance-based photoelectrochemistry and nanoparticle size effect: towards novel plasmonic photoelectrochemical biosensing. Chem. Commun. 2012, 48, 895-897.
24.Khan, R.; Naveen, M. H.; Abbas, M. A.; Lee, J.; Kim, H.; Bang, J. H. Photoelectrochemistry of Au Nanocluster-Sensitized TiO2: Intricacy Arising from the Light-Induced Transformation of Nanoclusters into Nanoparticles. ACS Energy Lett. 2021, 6, 24-32.
25.An, L.; Wang, X.; Rui, X.; Lin, J.; Yang, H.; Tian, Q.; Tao, C.; Yang, S. The In Situ Sulfidation of Cu2 O by Endogenous H2 S for Colon Cancer Theranostics. Angew. Chem. Int. Ed. Engl. 2018, 57, 15782-15786.
26.Miller, S. A.; Hiatt, L. A.; Keil, R. G.; Wright, D. W.; Cliffel, D. E. Multifunctional nanoparticles as simulants for a gravimetric immunoassay. Anal. Bioanal. Chem. 2011, 399, 1021-9.
27.Bigdeli, A.; Ghasemi, F.; Abbasi-Moayed, S.; Shahrajabian, M.; Fahimi-Kashani, N.; Jafarinejad, S.; Farahmand Nejad, M. A.; Hormozi-Nezhad, M. R. Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances - A review. Anal. Chim. Acta 2019, 1079, 30-58.
28.Piston, D. W.; Kremers, G. J. Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem. Sci. 2007, 32, 407-414.
29.Broussard, J. A.; Rappaz, B.; Webb, D. J.; Brown, C. M. Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt. Nat. Protoc. 2013, 8, 265-281.
30.Woolfe, G. J.; Thistlethwaite, P. J. Direct observation of excited state intramolecular proton transfer kinetics in 3-hydroxyflavone. J. Am. Chem. Soc. 1981, 103, 6916-6923.
31.Sengupta, P. K.; Kasha, M. Excited state proton-transfer spectroscopy of 3-hydroxyflavone and quercetin. Chem. Phys. Lett. 1979, 68, 382-385.
32.Celej, M. S.; Caarls, W.; Demchenko, A. P.; Jovin, T. M. A triple-emission fluorescent probe reveals distinctive amyloid fibrillar polymorphism of wild-type alpha-synuclein and its familial Parkinson's disease mutants. Biochemistry 2009, 48, 7465-72.
33.Huang, X.; Song, J.; Yung, B. C.; Huang, X.; Xiong, Y.; Chen, X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 2018, 47, 2873-2920.
34.Baù, L.; Selvestrel, F.; Arduini, M.; Zamparo, I.; Lodovichi, C.; Mancin, F. A Cell-Penetrating Ratiometric Nanoprobe for Intracellular Chloride. Org. Lett. 2012, 14, 2984-2987.
35.Jayaraman, S.; Verkman, A. S. Quenching mechanism of quinolinium-type chloride-sensitive fluorescent indicators. Biophys. Chem. 2000, 85, 49-57.
36.Wu, L.; Wu, I. C.; DuFort, C. C.; Carlson, M. A.; Wu, X.; Chen, L.; Kuo, C. T.; Qin, Y.; Yu, J.; Hingorani, S. R.; Chiu, D. T. Photostable Ratiometric Pdot Probe for in Vitro and in Vivo Imaging of Hypochlorous Acid. J. Am. Chem. Soc. 2017, 139, 6911-6918.
37.Chen, C. Y.; Chen, C. T. A PNIPAM-based fluorescent nanothermometer with ratiometric readout. Chem. Commun. 2011, 47, 994-6.
38.Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf., B 2010, 75, 1-18.
39.Allen, T. M.; Cullis, P. R. Drug Delivery Systems: Entering the Mainstream. Science 2004, 303, 1818-1822.
40.Singh, A. P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduction Targeted Ther. 2019, 4.
41.Devarajan, P. V.; Dawre, S. M.; Dutta, R., Infectious Diseases: Need for Targeted Drug Delivery, 2015, 113-148.
42.Qi, W.; Zhang, Y.; Wang, J.; Tao, G.; Wu, L.; Kochovski, Z.; Gao, H.; Chen, G.; Jiang, M. Deprotection-Induced Morphology Transition and Immunoactivation of Glycovesicles: A Strategy of Smart Delivery Polymersomes. J. Am. Chem. Soc. 2018, 140, 8851-8857.
43.Li, C.; Huang, F.; Liu, Y.; Lv, J.; Wu, G.; Liu, Y.; Ma, R.; An, Y.; Shi, L. Nitrilotriacetic Acid-Functionalized Glucose-Responsive Complex Micelles for the Efficient Encapsulation and Self-Regulated Release of Insulin. Langmuir 2018, 34, 12116-12125.
44.Zhao, L.; Ding, J.; Xiao, C.; He, P.; Tang, Z.; Pang, X.; Zhuang, X.; Chen, X. Glucose-sensitive polypeptide micelles for self-regulated insulin release at physiological pH. J. Mater. Chem. 2012, 22, 12319.
45.Jia, T.; Huang, S.; Yang, C.; Wang, M. Unimolecular Micelles of Amphiphilic Cyclodextrin-Core Star-Like Copolymers with Covalent pH-Responsive Linkage of Anticancer Prodrugs. Mol. Pharm. 2017, 14, 2529-2537.
46.Li, Q.; Li, X.; Zhao, C. Strategies to Obtain Encapsulation and Controlled Release of Small Hydrophilic Molecules. Front. Biomed. Biotechnol. 2020, 8, 437.
47.Lee, J. H.; Yeo, Y. Controlled Drug Release from Pharmaceutical Nanocarriers. Chem. Eng. Sci. 2015, 125, 75-84.
48.Kim, S. W.; Lee, Y. K.; Kim, S. H.; Park, J. Y.; Lee, D. U.; Choi, J.; Hong, J. H.; Kim, S.; Khang, D. Covalent, Non-Covalent, Encapsulated Nanodrug Regulate the Fate of Intra- and Extracellular Trafficking: Impact on Cancer and Normal Cells. Sci. Rep. 2017, 7, 6454.
49.Xue, Y.; Bai, H.; Peng, B.; Fang, B.; Baell, J.; Li, L.; Huang, W.; Voelcker, N. H. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem. Soc. Rev. 2021, 50, 4872-4931.
50.Bochet, C. Photolabile protecting groups and linkers. J. Chem. Soc., Perkin Trans. 1 2002, 125-142.
51.Pes, L.; Koester, S. D.; Magnusson, J. P.; Chercheja, S.; Medda, F.; Abu Ajaj, K.; Rognan, D.; Daum, S.; Nollmann, F. I.; Garcia Fernandez, J.; Perez Galan, P.; Walter, H. K.; Warnecke, A.; Kratz, F. Novel auristatin E-based albumin-binding prodrugs with superior anticancer efficacy in vivo compared to the parent compound. J. Controlled Release 2019, 296, 81-92.
52.Wang, H.; Wang, L.; Gao, Y.; Ding, Y. The effect of drug position on the properties of paclitaxel-conjugated gold nanoparticles for liver tumor treatment. Chin. Chem. Lett. 2021, 32, 1041-1045.
53.Zhang, Y.; Wang, W.; Zhang, Y.; Cheng, M.; Wu, Q.; Yuan, Z. “Three-in-One” Multifunctional Gatekeeper Gated Mesoporous Silica Nanoparticles for Intracellular pH-Activated Targeted Cancer Therapy. ACS Appl. Bio Mater. 2018, 1, 572-580.
54.Snyder, J. T.; Malinao, M. C.; Dugal Tessier, J.; Atkinson, J. E.; Anand, B. S.; Okada, A.; Mendelsohn, B. A. Metabolism of an Oxime-Linked Antibody Drug Conjugate, AGS62P1, and Characterization of Its Identified Metabolite. Mol. Pharm. 2018, 15, 2384-2390.
55.Vrettos, E. I.; Karampelas, T.; Sayyad, N.; Kougioumtzi, A.; Syed, N.; Crook, T.; Murphy, C.; Tamvakopoulos, C.; Tzakos, A. G. Development of programmable gemcitabine-GnRH pro-drugs bearing linker controllable “click” oxime bond tethers and preclinical evaluation against prostate cancer. Eur. J. Med. Chem. 2021, 211, 113018.
56.Leurs, U.; Mező, G.; Orbán, E.; Öhlschläger, P.; Marquardt, A.; Manea, M. Design, synthesis, in vitro stability and cytostatic effect of multifunctional anticancer drug-bioconjugates containing GnRH-III as a targeting moiety. Biopolymers 2012, 98, 1-10.
57.Walji, A. M.; Sanchez, R. I.; Clas, S. D.; Nofsinger, R.; de Lera Ruiz, M.; Li, J.; Bennet, A.; John, C.; Bennett, D. J.; Sanders, J. M.; Di Marco, C. N.; Kim, S. H.; Balsells, J.; Ceglia, S. S.; Dang, Q.; Manser, K.; Nissley, B.; Wai, J. S.; Hafey, M.; Wang, J.; Chessen, G.; Templeton, A.; Higgins, J.; Smith, R.; Wu, Y.; Grobler, J.; Coleman, P. J. An Acetal Carbonate Prodrug of Raltegravir with Enhanced Colonic Absorption. ChemMedChem 2015, 10, 245-252.
58.Huang, D.; Zhuang, Y.; Shen, H.; Yang, F.; Wang, X.; Wu, D. Acetal-linked PEGylated paclitaxel prodrugs forming free-paclitaxel-loaded pH-responsive micelles with high drug loading capacity and improved drug delivery. Mater. Sci. Eng., C 2018, 82, 60-68.
59.Zhai, Y.; Zhou, X.; Jia, L.; Ma, C.; Song, R.; Deng, Y.; Hu, X.; Sun, W. Acetal-Linked Paclitaxel Polymeric Prodrug Based on Functionalized mPEG-PCL Diblock Polymer for pH-Triggered Drug Delivery. Polymers 2017, 9, 698.
60.Zhang, A.; Yao, L.; An, M. Reversing the undesirable pH-profile of doxorubicin via activation of a di-substituted maleamic acid prodrug at tumor acidity. Chem. Commun. 2017, 53, 12826-12829.
61.Yan, Y.; Fu, J.; Liu, X.; Wang, T.; Lu, X. Acid-responsive intracellular doxorubicin release from click chemistry functionalized mesoporous silica nanoparticles. RSC Adv. 2015, 5, 30640-30646.
62.Zhu, J.; Wang, G.; Alves, C. S.; Tomás, H.; Xiong, Z.; Shen, M.; Rodrigues, J.; Shi, X. Multifunctional Dendrimer-Entrapped Gold Nanoparticles Conjugated with Doxorubicin for pH-Responsive Drug Delivery and Targeted Computed Tomography Imaging. Langmuir 2018, 34, 12428-12435.
63.Pei, P.; Sun, C.; Tao, W.; Li, J.; Yang, X.; Wang, J. ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy. Biomaterials 2019, 188, 74-82.
64.Xu, X.; Saw, P. E.; Tao, W.; Li, Y.; Ji, X.; Bhasin, S.; Liu, Y.; Ayyash, D.; Rasmussen, J.; Huo, M.; Shi, J.; Farokhzad, O. C. ROS-Responsive Polyprodrug Nanoparticles for Triggered Drug Delivery and Effective Cancer Therapy. Adv. Mater. 2017, 29, 1700141.
65.Li, J.; Ding, Z.; Li, Y.; Miao, J.; Wang, W.; Nundlall, K.; Chen, S. Reactive oxygen species-sensitive thioketal-linked mesoporous silica nanoparticles as drug carrier for effective antibacterial activity. Mater. Des. 2020, 195, 109021.
66.Ai, Y.; Obianom, O. N.; Kuser, M.; Li, Y.; Shu, Y.; Xue, F. Enhanced Tumor Selectivity of 5-Fluorouracil Using a Reactive Oxygen Species-Activated Prodrug Approach. ACS Med. Chem. Lett. 2019, 10, 127-131.
67.Peiró Cadahía, J.; Bondebjerg, J.; Hansen, C. A.; Previtali, V.; Hansen, A. E.; Andresen, T. L.; Clausen, M. H. Synthesis and Evaluation of Hydrogen Peroxide Sensitive Prodrugs of Methotrexate and Aminopterin for the Treatment of Rheumatoid Arthritis. J. Med. Chem. 2018, 61, 3503-3515.
68.Kim, E. J.; Bhuniya, S.; Lee, H.; Kim, H. M.; Cheong, C.; Maiti, S.; Hong, K. S.; Kim, J. S. An Activatable Prodrug for the Treatment of Metastatic Tumors. J. Am. Chem. Soc. 2014, 136, 13888-13894.
69.Wang, S.; Wang, Z.; Yu, G.; Zhou, Z.; Jacobson, O.; Liu, Y.; Ma, Y.; Zhang, F.; Chen, Z. Y.; Chen, X. Tumor-Specific Drug Release and Reactive Oxygen Species Generation for Cancer Chemo/Chemodynamic Combination Therapy. Adv. Sci. 2019, 6, 1801986.
70.Berwin Singh, S. V.; Jung, E.; Noh, J.; Yoo, D.; Kang, C.; Hyeon, H.; Kim, G.-W.; Khang, G.; Lee, D. Hydrogen peroxide-activatable polymeric prodrug of curcumin for ultrasound imaging and therapy of acute liver failure. Nanomed. Nanotechnol. Biol. Med. 2019, 16, 45-55.
71.Li, X.; Zhang, C.; Zheng, Q.; Shi, X. ROS-responsive targeting micelles for optical imaging-guided chemo-phototherapy of cancer. Colloids Surf., B 2019, 179, 218-225.
72.Jiang, M. Y.; Dolphin, D. Site-Specific Prodrug Release Using Visible Light. J. Am. Chem. Soc. 2008, 130, 4236-4237.
73.Shin, J.; Shum, P.; Grey, J.; Fujiwara, S. I.; Malhotra, G. S.; González-Bonet, A.; Hyun, S. H.; Moase, E.; Allen, T. M.; Thompson, D. H. Acid-Labile mPEG–Vinyl Ether–1,2-Dioleylglycerol Lipids with Tunable pH Sensitivity: Synthesis and Structural Effects on Hydrolysis Rates, DOPE Liposome Release Performance, and Pharmacokinetics. Mol. Pharm. 2012, 9, 3266-3276.
74.Ki Choi, S.; Thomas, T.; Li, M. H.; Kotlyar, A.; Desai, A.; Baker, J. J. R. Light-controlled release of caged doxorubicin from folate receptor-targeting PAMAM dendrimer nanoconjugate. Chem. Commun. 2010, 46, 2632.
75.Agasti, S. S.; Chompoosor, A.; You, C.-C.; Ghosh, P.; Kim, C. K.; Rotello, V. M. Photoregulated Release of Caged Anticancer Drugs from Gold Nanoparticles. J. Am. Chem. Soc. 2009, 131, 5728-5729.
76.Johnson, J. A.; Lu, Y. Y.; Burts, A. O.; Xia, Y.; Durrell, A. C.; Tirrell, D. A.; Grubbs, R. H. Drug-Loaded, Bivalent-Bottle-Brush Polymers by Graft-through ROMP. Macromolecules 2010, 43, 10326-10335.
77.Zhou, T.; Liu, T.; Bao, Y.; Zhang, P.; Yan, C.; Yao, F.; Cui, S.; Chen, Y.; Chen, X.; Yu, Y. Designing a main-chain visible-light-labile picolinium-caged polymer and its biological applications. Polym. Chem. 2018, 9, 138-144.
78.Rochat, S.; Minardi, C.; de Saint Laumer, J. Y.; Herrmann, A. Controlled Release of Perfumery Aldehydes and Ketones by Norrish Type-II Photofragmentation of α-Keto Esters in Undegassed Solution. Helv. Chim. Acta 2000, 83, 1645-1671.
79.Chirapu, S. R.; Bauman, J. N.; Eng, H.; Goosen, T. C.; Strelevitz, T. J.; Sinha, S. C.; Dow, R. L.; Finn, M. G. Undesired versus designed enzymatic cleavage of linkers for liver targeting. Bioorganic & Medicinal Chemistry Letters 2014, 24, 1144-1147.
80.Su, F. Y.; Srinivasan, S.; Lee, B.; Chen, J.; Convertine, A. J.; West, T. E.; Ratner, D. M.; Skerrett, S. J.; Stayton, P. S. Macrophage-targeted drugamers with enzyme-cleavable linkers deliver high intracellular drug dosing and sustained drug pharmacokinetics against alveolar pulmonary infections. J. Controlled Release 2018, 287, 1-11.
81.Avugadda, S. K.; Materia, M. E.; Nigmatullin, R.; Cabrera, D.; Marotta, R.; Cabada, T. F.; Marcello, E.; Nitti, S.; Artés-Ibañez, E. J.; Basnett, P.; Wilhelm, C.; Teran, F. J.; Roy, I.; Pellegrino, T. Esterase-Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling To Improve Magnetic Hyperthermia Heat Losses. Chem. Mater. 2019, 31, 5450-5463.
82.Pedersen, P. J.; Viart, H. M. F.; Melander, F.; Andresen, T. L.; Madsen, R.; Clausen, M. H. Synthesis of tocopheryl succinate phospholipid conjugates and monitoring of phospholipase A2 activity. Biorg. Med. Chem. 2012, 20, 3972-3978.
83.Linderoth, L.; Peters, G. H.; Madsen, R.; Andresen, T. L. Drug Delivery by an Enzyme-Mediated Cyclization of a Lipid Prodrug with Unique Bilayer-Formation Properties. Angew. Chem. Int. Ed. 2009, 48, 1823-1826.
84.Pedersen, P. J.; Adolph, S. K.; Subramanian, A. K.; Arouri, A.; Andresen, T. L.; Mouritsen, O. G.; Madsen, R.; Madsen, M. W.; Peters, G. H.; Clausen, M. H. Liposomal Formulation of Retinoids Designed for Enzyme Triggered Release. J. Med. Chem. 2010, 53, 3782-3792.
85.Huttunen, K. M.; Mähönen, N.; Leppänen, J.; Vepsäläinen, J.; Juvonen, R. O.; Raunio, H.; Kumpulainen, H.; Järvinen, T.; Rautio, J. Novel Cyclic Phosphate Prodrug Approach for Cytochrome P450-activated Drugs Containing an Alcohol Functionality. Pharm. Res. 2007, 24, 679-687.
86.Flores-Ramos, M.; Ibarra-Velarde, F.; Hernández-Campos, A.; Vera-Montenegro, Y.; Jung-Cook, H.; Cantó-Alarcón, G. J.; Del Rivero, L. M.; Castillo, R. A highly water soluble benzimidazole derivative useful for the treatment of fasciolosis. Bioorganic & Medicinal Chemistry Letters 2014, 24, 5814-5817.
87.Zhu, R.; Liu, M. C.; Luo, M. Z.; Penketh, P. G.; Baumann, R. P.; Shyam, K.; Sartorelli, A. C. 4-Nitrobenzyloxycarbonyl Derivatives ofO6-Benzylguanine as Hypoxia-Activated Prodrug Inhibitors ofO6-Alkylguanine-DNA Alkyltransferase (AGT), Which Produces Resistance to Agents Targeting theO-6 Position of DNA Guanine. J. Med. Chem. 2011, 54, 7720-7728.
88.Chevalier, A.; Zhang, Y.; Khdour, O. M.; Kaye, J. B.; Hecht, S. M. Mitochondrial Nitroreductase Activity Enables Selective Imaging and Therapeutic Targeting. J. Am. Chem. Soc. 2016, 138, 12009-12012.
89.Zhang, Q.; Jin, C.; Yu, J.; Lu, W. Synthesis of New Branched 2-Nitroimidazole as a Hypoxia Sensitive Linker for Ligand-Targeted Drugs of Paclitaxel. ACS Omega 2018, 3, 8813-8818.
90.Yang, Z.; Lee, J. H.; Jeon, H. M.; Han, J. H.; Park, N.; He, Y.; Lee, H.; Hong, K. S.; Kang, C.; Kim, J. S. Folate-Based Near-Infrared Fluorescent Theranostic Gemcitabine Delivery. J. Am. Chem. Soc. 2013, 135, 11657-11662.
91.Qu, Y.; Chu, B.; Wei, X.; Lei, M.; Hu, D.; Zha, R.; Zhong, L.; Wang, M.; Wang, F.; Qian, Z. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for “on-demand” drug delivery. J. Controlled Release 2019, 296, 93-106.
92.Xu, Z.; Wang, D.; Xu, S.; Liu, X.; Zhang, X.; Zhang, H. Preparation of a Camptothecin Prodrug with Glutathione-Responsive Disulfide Linker for Anticancer Drug Delivery. Chem. - Asian J. 2014, 9, 199-205.
93.Sun, B.; Luo, C.; Zhang, X.; Guo, M.; Sun, M.; Yu, H.; Chen, Q.; Yang, W.; Wang, M.; Zuo, S.; Chen, P.; Kan, Q.; Zhang, H.; Wang, Y.; He, Z.; Sun, J. Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat. Commun. 2019, 10.
94.Li, Y.; Li, Y.; Ji, W.; Lu, Z.; Liu, L.; Shi, Y.; Ma, G.; Zhang, X. Positively Charged Polyprodrug Amphiphiles with Enhanced Drug Loading and Reactive Oxygen Species-Responsive Release Ability for Traceable Synergistic Therapy. J. Am. Chem. Soc. 2018, 140, 4164-4171.
95.Hu, Y.; Wu, S.; He, Y.; Deng, L. A redox prodrug micelle co-delivering camptothecin and curcumin for synergetic B16 melanoma cells inhibition. Chem. Eng. J. 2019, 362, 877-886.
96.Elmonem, M. A.; Veys, K. R.; Soliman, N. A.; van Dyck, M.; van den Heuvel, L. P.; Levtchenko, E. Cystinosis: a review. Orphanet J. Rare Dis. 2016, 11, 47.
97.Baumner, S.; Weber, L. T. Nephropathic Cystinosis: Symptoms, Treatment, and Perspectives of a Systemic Disease. Front. Pediatr. 2018, 6, 58.
98.Depape-Brigger, D.; Goldman, H. Y.; Scriver, C. R.; Delvin, E.; Mamer, O. The in Vivo Use of Dithiothreitol in Cystinosis. Pediatr. Res. 1977, 11, 124-131.
99.Atallah, C.; Charcosset, C.; Greige-Gerges, H. Challenges for cysteamine stabilization, quantification, and biological effects improvement. J. Pharm. Anal. 2020, 10, 499-516.
100.Kirakosyan, G.; Bagramyan, K.; Trchounian, A. Redox sensing by Escherichia coli: effects of dithiothreitol, a redox reagent reducing disulphides, on bacterial growth. Biochem. Biophys. Res. Commun. 2004, 325, 803-806.
101.Riondet, C.; Cachon, R.; Waché, Y.; Alcaraz, Gérard; Diviès, C. Changes in the proton-motive force in Escherichia coli in response to external oxidoreduction potential. Eur. J. Biochem. 1999, 262, 595-599.
102.Wang, C.; Dong, B.; Kong, X.; Zhang, N.; Song, W.; Lin, W. A new xanthene-based two-photon fluorescent probe for the imaging of 1,4-dithiothreitol (DTT) in living cells. Luminescence 2018, 33, 1048-1053.
103.Guo, S.; Zheng, F.; Zeng, F.; Wu, S. A fluorescent probe capable of discriminately and simultaneously detecting dl-dithiothreitol and single sulfhydryl-containing thiols. Sensors Actuators B: Chem. 2016, 224, 88-94.
104.Sun, T.; Xia, L.; Huang, J.; Gu, Y.; Wang, P. A highly sensitive fluorescent probe for fast recognization of DTT and its application in one- and two-photon imaging. Talanta 2018, 187, 295-301.
105.Chen, C. Y.; Chen, C. T. Reaction-based and single fluorescent emitter decorated ratiometric nanoprobe to detect hydrogen peroxide. Chemistry 2013, 19, 16050-7.
106.Fu, Y. H.; Chen, C. Y.; Chen, C. T. Tuning of hydrogen peroxide-responsive polymeric micelles of biodegradable triblock polycarbonates as a potential drug delivery platform with ratiometric fluorescence signaling. Polym. Chem. 2015, 6, 8132-8143.
107.Le Fer, G.; Le Coeur, C.; Guigner, J. M.; Amiel, C.; Volet, G. Amphiphilic diblock and triblock copolymers based on poly(2-methyl-2-oxazoline) and poly(D,L-lactide): Synthesis, physicochemical characterizations and self-assembly properties. Polymer 2019, 171, 149-160.
108.Simoes, S. M.; Figueiras, A. R.; Veiga, F.; Concheiro, A.; Alvarez-Lorenzo, C. Polymeric micelles for oral drug administration enabling locoregional and systemic treatments. Expert Opin. Drug Deliv. 2015, 12, 297-318.
109.傅映樺, 國立臺灣大學化學研究所碩士論文, 台北市, 2013.
110.Kamber, N. E.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.; Lohmeijer, B. G. G.; Hedrick, J. L. Organocatalytic Ring-Opening Polymerization. Chem. Rev. 2007, 107, 5813-5840.
111.Pratt, R. C.; Lohmeijer, B. G. G.; Long, D. A.; Lundberg, P. N. P.; Dove, A. P.; Li, H.; Wade, C. G.; Waymouth, R. M.; Hedrick, J. L. Exploration, Optimization, and Application of Supramolecular Thiourea−Amine Catalysts for the Synthesis of Lactide (Co)polymers. Macromolecules 2006, 39, 7863-7871.
112.項祈豪, 國立臺灣大學化學研究所碩士論文, 台北市, 2020.
113.Jadhav, S. A.; Maccagno, M. Identification of thiol from 11-(9-carbazolyl)-1-undecyl disulfide by NMR spectroscopy and single step coating of gold nanoparticles. J. Sulfur Chem. 2014, 35, 587-595.
114.Ur-Rehman, T.; Tavelin, S.; Gröbner, G. Effect of DMSO on micellization, gelation and drug release profile of Poloxamer 407. Int. J. Pharm. 2010, 394, 92-8.
115.Niraula, T. P.; Shah, S. K.; Chatterjee, S. K.; Bhattarai, A. Effect of methanol on the surface tension and viscosity of sodiumdodecyl sulfate (SDS) in aqueous medium at 298.15–323.15 K. Karbala Int. J. Mod. Sci. 2018, 4, 26-34.
116.Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer Statistics, 2021. Ca-Cancer J. Clin. 2021, 71, 7-33.
117.Miller, K. D.; Siegel, R. L.; Lin, C. C.; Mariotto, A. B.; Kramer, J. L.; Rowland, J. H.; Stein, K. D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics, 2016. Ca-Cancer J. Clin. 2016, 66, 271-289.
118.Singh, Y.; Palombo, M.; Sinko, P. J. Recent trends in targeted anticancer prodrug and conjugate design. Curr. Med. Chem. 2008, 15, 1802-26.
119.Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O. C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Del. Rev. 2014, 66, 2-25.
120.Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Controlled Release 2010, 148, 135-146.
121.Maeda, H.; Bharate, G. Y.; Daruwalla, J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 2009, 71, 409-419.
122.Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discovery Today 2006, 11, 812-818.
123.Liou, G. Y.; Storz, P. Reactive oxygen species in cancer. Free Radical Res. 2010, 44, 479-496.
124.Gamcsik, M. P.; Kasibhatla, M. S.; Teeter, S. D.; Colvin, O. M. Glutathione levels in human tumors. Biomarkers 2012, 17, 671-691.
125.Matsuyama, S.; Llopis, J.; Deveraux, Q. L.; Tsien, R. Y.; Reed, J. C. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat. Cell Biol. 2000, 2, 318-325.
126.Ahmad, A.; Khan, F.; Mishra, R. K.; Khan, R. Precision Cancer Nanotherapy: Evolving Role of Multifunctional Nanoparticles for Cancer Active Targeting. J. Med. Chem. 2019, 62, 10475-10496.
127.Wu, L.; Qu, X. Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev. 2015, 44, 2963-2997.
128.Mo, R.; Gu, Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater. Today 2016, 19, 274-283.
129.Sies, H. . Free Radic. Biol. Med. 1999, 27, 916–921.
130.Estrela, J. M.; Ortega, A.; Obrador, E. Glutathione in cancer biology and therapy. Crit. Rev. Clin. Lab. Sci. 2006, 43, 143-81.
131.Townsend, D. M.; Tew, K. D.; Tapiero, H. The importance of glutathione in human disease. Biomed. Pharmacother. 2003, 57, 145-155.
132.Calvert, P.; Yao, K. S.; Hamilton, T. C.; O’Dwyer, P. J. Clinical studies of reversal of drug resistance based on glutathione. Chem.-Biol. Interact. 1998, 213–224.
133.Dong, Y.; Liu, P. Amphiphilic Triblock Copolymer Prodrug for Tumor-Specific pH/Reduction Dual-Triggered Drug Delivery: Effect of Self-Assembly Behaviors. Langmuir 2021, 37, 7356-7363.
134.Gao, J.; Dutta, K.; Zhuang, J.; Thayumanavan, S. Cellular- and Subcellular-Targeted Delivery Using a Simple All-in-One Polymeric Nanoassembly. Angew. Chem. Int. Ed. Engl. 2020, 59, 23466-23470.
135.劉渟葦, 國立臺灣大學化學研究所碩士論文, 台北市, 2016.
136.Jiang, X.; Zhang, J.; Zhou, Y.; Xu, J.; Liu, S. Facile preparation of core-crosslinked micelles from azide-containing thermoresponsive double hydrophilic diblock copolymer via click chemistry. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 860-871.
137.Cajot, S.; Lautram, N.; Passirani, C.; Jérôme, C. Design of reversibly core cross-linked micelles sensitive to reductive environment. J. Controlled Release 2011, 152, 30-36.
138.Garg, S. M.; Xiong, X. B.; Lu, C.; Lavasanifar, A. Application of Click Chemistry in the Preparation of Poly(ethylene oxide)-block-poly(ε-caprolactone) with Hydrolyzable Cross-Links in the Micellar Core. Macromolecules 2011, 44, 2058-2066.
139.Aguiar, J.; Carpena, P.; Molina-Bolı́Var, J. A.; Carnero Ruiz, C. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J. Colloid Interface Sci. 2003, 258, 116-122.
140.Zhao, X.; Poon, Z.; Engler, A. C.; Bonner, D. K.; Hammond, P. T. Enhanced Stability of Polymeric Micelles Based on Postfunctionalized Poly(ethylene glycol)-b-poly(γ-propargyl l-glutamate): The Substituent Effect. Biomacromolecules 2012, 13, 1315-1322.
141.Milanović, M.; Krstonošić, V.; Dokić, L.; Hadnađev, M.; Dapčević Hadnađev, T. Insight into the Interaction Between Carbopol® 940 and Ionic/Nonionic Surfactant. J. Surfactants Deterg. 2015, 18, 505-516.
142.Dominguez, A.; Fernandez, A.; Gonzalez, N.; Iglesias, E.; Montenegro, L. Determination of Critical Micelle Concentration of Some Surfactants by Three Techniques. J. Chem. Educ. 1997, 74, 1227.
143.Shahrokhian, S. Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode. Anal. Chem. 2001, 73, 5972-5978.
144.Refsum, M. H.; Ueland, M. P. M.; Nygård, M. O.; Vollset, M. D. P. S. E. HOMOCYSTEINE AND CARDIOVASCULAR DISEASE. Annu. Rev. Med. 1998, 49, 31-62.
145.Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P. F.; Rosenberg, I. H.; D'Agostino, R. B.; Wilson, P. W. F.; Wolf, P. A. Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer's Disease. New Engl. J. Med. 2002, 346, 476-483.
146.McRae Page, S.; Martorella, M.; Parelkar, S.; Kosif, I.; Emrick, T. Disulfide Cross-Linked Phosphorylcholine Micelles for Triggered Release of Camptothecin. Mol. Pharm. 2013, 10, 2684-2692.
147.Ji, W.; Li, X.; Xiao, M.; Sun, Y.; Lai, W.; Zhang, H.; Pei, H.; Li, L. DNA‐Scaffolded Disulfide Redox Network for Programming Drug‐Delivery Kinetics. Chem. - Eur. J. 2021.
148.Hu, X.; Tian, J.; Liu, T.; Zhang, G.; Liu, S. Photo-Triggered Release of Caged Camptothecin Prodrugs from Dually Responsive Shell Cross-Linked Micelles. Macromolecules 2013, 46, 6243-6256.
149.Wang, H.; Tang, L.; Tu, C.; Song, Z.; Yin, Q.; Yin, L.; Zhang, Z.; Cheng, J. Redox-Responsive, Core-Cross-Linked Micelles Capable of On-Demand, Concurrent Drug Release and Structure Disassembly. Biomacromolecules 2013, 14, 3706-3712.
150.Zhao, X.; Liu, P. Reduction-Responsive Core–Shell–Corona Micelles Based on Triblock Copolymers: Novel Synthetic Strategy, Characterization, and Application As a Tumor Microenvironment-Responsive Drug Delivery System. ACS Appl. Mater. Interfaces 2015, 7, 166-174.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top