|
1.Anu Mary Ealia, S.; Saravanakumar, M. P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 263, 032019. 2.Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem. Lett. Rev. 2020, 13, 223-245. 3.Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arabian J. Chem. 2019, 12, 908-931. 4.Murphy, F.; McAlea, E. M.; Mullins, M.; Springer International Publishing, A. G., Managing Risk in Nanotechnology Topics in Governance, Assurance and Transfer, 2016. 5.Richards, D. A.; Maruani, A.; Chudasama, V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem. Sci. 2017, 8, 63-77. 6.Yuan, X.; Zhang, X.; Sun, L.; Wei, Y.; Wei, X. Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials. Part. Fibre Toxicol. 2019, 16, 18. 7.Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101-124. 8.Sundar, S.; Kundu, J.; Kundu, S. C. Biopolymeric nanoparticles. Sci. Technol. Adv. Mater. 2010, 11, 014104. 9.van Vlerken, L. E.; Vyas, T. K.; Amiji, M. M. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm. Res. 2007, 24, 1405-14. 10.Jokerst, J. V.; Lobovkina, T.; Zare, R. N.; Gambhir, S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011, 6, 715-728. 11.Abuchowski, A.; van Es, T.; Palczuk, N. C.; Davis, F. F. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem. 1977, 252, 3578-3581. 12.Allen, C.; Dos Santos, N.; Gallagher, R.; Chiu, G. N.; Shu, Y.; Li, W. M.; Johnstone, S. A.; Janoff, A. S.; Mayer, L. D.; Webb, M. S.; Bally, M. B. Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci. Rep. 2002, 22, 225-50. 13.Astete, C. E.; Sabliov, C. M. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci., Polym. Ed. 2006, 17, 247-289. 14.Chawla, J. S.; Amiji, M. M. Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int. J. Pharm. 2002, 249, 127-138. 15.Bowman, K.; Leong, K. W. Chitosan nanoparticles for oral drug and gene delivery. Int. J. Nanomed. 2006, 1, 117-28. 16.Cai, J.; Fu, J.; Li, R.; Zhang, F.; Ling, G.; Zhang, P. A potential carrier for anti-tumor targeted delivery-hyaluronic acid nanoparticles. Carbohydr. Polym. 2019, 208, 356-364. 17.Owens, D. E.; Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006, 307, 93-102. 18.Santoro, O.; Zhang, X.; Redshaw, C. Synthesis of Biodegradable Polymers: A Review on the Use of Schiff-Base Metal Complexes as Catalysts for the Ring Opening Polymerization (ROP) of Cyclic Esters. Catalysts 2020, 10. 19.Zhou, X.; Hong, L. Controlled ring-opening polymerization of cyclic esters with phosphoric acid as catalysts. Colloid. Polym. Sci. 2013, 291, 2155-2162. 20.Sakhrani, N. M.; Padh, H. Organelle targeting: third level of drug targeting. Drug Des., Dev. Ther. 2013, 7, 585-99. 21.Xu, J. J.; Zhao, W. W.; Song, S.; Fan, C.; Chen, H. Y. Functional nanoprobes for ultrasensitive detection of biomolecules: an update. Chem. Soc. Rev. 2014, 43, 1601-11. 22.Yan, J.; Su, S.; He, S.; He, Y.; Zhao, B.; Wang, D.; Zhang, H.; Huang, Q.; Song, S.; Fan, C. Nano Rolling-Circle Amplification for Enhanced SERS Hot Spots in Protein Microarray Analysis. Anal. Chem. 2012, 84, 9139-9145. 23.Zhao, W. W.; Tian, C. Y.; Xu, J. J.; Chen, H. Y. The coupling of localized surface plasmon resonance-based photoelectrochemistry and nanoparticle size effect: towards novel plasmonic photoelectrochemical biosensing. Chem. Commun. 2012, 48, 895-897. 24.Khan, R.; Naveen, M. H.; Abbas, M. A.; Lee, J.; Kim, H.; Bang, J. H. Photoelectrochemistry of Au Nanocluster-Sensitized TiO2: Intricacy Arising from the Light-Induced Transformation of Nanoclusters into Nanoparticles. ACS Energy Lett. 2021, 6, 24-32. 25.An, L.; Wang, X.; Rui, X.; Lin, J.; Yang, H.; Tian, Q.; Tao, C.; Yang, S. The In Situ Sulfidation of Cu2 O by Endogenous H2 S for Colon Cancer Theranostics. Angew. Chem. Int. Ed. Engl. 2018, 57, 15782-15786. 26.Miller, S. A.; Hiatt, L. A.; Keil, R. G.; Wright, D. W.; Cliffel, D. E. Multifunctional nanoparticles as simulants for a gravimetric immunoassay. Anal. Bioanal. Chem. 2011, 399, 1021-9. 27.Bigdeli, A.; Ghasemi, F.; Abbasi-Moayed, S.; Shahrajabian, M.; Fahimi-Kashani, N.; Jafarinejad, S.; Farahmand Nejad, M. A.; Hormozi-Nezhad, M. R. Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances - A review. Anal. Chim. Acta 2019, 1079, 30-58. 28.Piston, D. W.; Kremers, G. J. Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem. Sci. 2007, 32, 407-414. 29.Broussard, J. A.; Rappaz, B.; Webb, D. J.; Brown, C. M. Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt. Nat. Protoc. 2013, 8, 265-281. 30.Woolfe, G. J.; Thistlethwaite, P. J. Direct observation of excited state intramolecular proton transfer kinetics in 3-hydroxyflavone. J. Am. Chem. Soc. 1981, 103, 6916-6923. 31.Sengupta, P. K.; Kasha, M. Excited state proton-transfer spectroscopy of 3-hydroxyflavone and quercetin. Chem. Phys. Lett. 1979, 68, 382-385. 32.Celej, M. S.; Caarls, W.; Demchenko, A. P.; Jovin, T. M. A triple-emission fluorescent probe reveals distinctive amyloid fibrillar polymorphism of wild-type alpha-synuclein and its familial Parkinson's disease mutants. Biochemistry 2009, 48, 7465-72. 33.Huang, X.; Song, J.; Yung, B. C.; Huang, X.; Xiong, Y.; Chen, X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 2018, 47, 2873-2920. 34.Baù, L.; Selvestrel, F.; Arduini, M.; Zamparo, I.; Lodovichi, C.; Mancin, F. A Cell-Penetrating Ratiometric Nanoprobe for Intracellular Chloride. Org. Lett. 2012, 14, 2984-2987. 35.Jayaraman, S.; Verkman, A. S. Quenching mechanism of quinolinium-type chloride-sensitive fluorescent indicators. Biophys. Chem. 2000, 85, 49-57. 36.Wu, L.; Wu, I. C.; DuFort, C. C.; Carlson, M. A.; Wu, X.; Chen, L.; Kuo, C. T.; Qin, Y.; Yu, J.; Hingorani, S. R.; Chiu, D. T. Photostable Ratiometric Pdot Probe for in Vitro and in Vivo Imaging of Hypochlorous Acid. J. Am. Chem. Soc. 2017, 139, 6911-6918. 37.Chen, C. Y.; Chen, C. T. A PNIPAM-based fluorescent nanothermometer with ratiometric readout. Chem. Commun. 2011, 47, 994-6. 38.Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf., B 2010, 75, 1-18. 39.Allen, T. M.; Cullis, P. R. Drug Delivery Systems: Entering the Mainstream. Science 2004, 303, 1818-1822. 40.Singh, A. P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduction Targeted Ther. 2019, 4. 41.Devarajan, P. V.; Dawre, S. M.; Dutta, R., Infectious Diseases: Need for Targeted Drug Delivery, 2015, 113-148. 42.Qi, W.; Zhang, Y.; Wang, J.; Tao, G.; Wu, L.; Kochovski, Z.; Gao, H.; Chen, G.; Jiang, M. Deprotection-Induced Morphology Transition and Immunoactivation of Glycovesicles: A Strategy of Smart Delivery Polymersomes. J. Am. Chem. Soc. 2018, 140, 8851-8857. 43.Li, C.; Huang, F.; Liu, Y.; Lv, J.; Wu, G.; Liu, Y.; Ma, R.; An, Y.; Shi, L. Nitrilotriacetic Acid-Functionalized Glucose-Responsive Complex Micelles for the Efficient Encapsulation and Self-Regulated Release of Insulin. Langmuir 2018, 34, 12116-12125. 44.Zhao, L.; Ding, J.; Xiao, C.; He, P.; Tang, Z.; Pang, X.; Zhuang, X.; Chen, X. Glucose-sensitive polypeptide micelles for self-regulated insulin release at physiological pH. J. Mater. Chem. 2012, 22, 12319. 45.Jia, T.; Huang, S.; Yang, C.; Wang, M. Unimolecular Micelles of Amphiphilic Cyclodextrin-Core Star-Like Copolymers with Covalent pH-Responsive Linkage of Anticancer Prodrugs. Mol. Pharm. 2017, 14, 2529-2537. 46.Li, Q.; Li, X.; Zhao, C. Strategies to Obtain Encapsulation and Controlled Release of Small Hydrophilic Molecules. Front. Biomed. Biotechnol. 2020, 8, 437. 47.Lee, J. H.; Yeo, Y. Controlled Drug Release from Pharmaceutical Nanocarriers. Chem. Eng. Sci. 2015, 125, 75-84. 48.Kim, S. W.; Lee, Y. K.; Kim, S. H.; Park, J. Y.; Lee, D. U.; Choi, J.; Hong, J. H.; Kim, S.; Khang, D. Covalent, Non-Covalent, Encapsulated Nanodrug Regulate the Fate of Intra- and Extracellular Trafficking: Impact on Cancer and Normal Cells. Sci. Rep. 2017, 7, 6454. 49.Xue, Y.; Bai, H.; Peng, B.; Fang, B.; Baell, J.; Li, L.; Huang, W.; Voelcker, N. H. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem. Soc. Rev. 2021, 50, 4872-4931. 50.Bochet, C. Photolabile protecting groups and linkers. J. Chem. Soc., Perkin Trans. 1 2002, 125-142. 51.Pes, L.; Koester, S. D.; Magnusson, J. P.; Chercheja, S.; Medda, F.; Abu Ajaj, K.; Rognan, D.; Daum, S.; Nollmann, F. I.; Garcia Fernandez, J.; Perez Galan, P.; Walter, H. K.; Warnecke, A.; Kratz, F. Novel auristatin E-based albumin-binding prodrugs with superior anticancer efficacy in vivo compared to the parent compound. J. Controlled Release 2019, 296, 81-92. 52.Wang, H.; Wang, L.; Gao, Y.; Ding, Y. The effect of drug position on the properties of paclitaxel-conjugated gold nanoparticles for liver tumor treatment. Chin. Chem. Lett. 2021, 32, 1041-1045. 53.Zhang, Y.; Wang, W.; Zhang, Y.; Cheng, M.; Wu, Q.; Yuan, Z. “Three-in-One” Multifunctional Gatekeeper Gated Mesoporous Silica Nanoparticles for Intracellular pH-Activated Targeted Cancer Therapy. ACS Appl. Bio Mater. 2018, 1, 572-580. 54.Snyder, J. T.; Malinao, M. C.; Dugal Tessier, J.; Atkinson, J. E.; Anand, B. S.; Okada, A.; Mendelsohn, B. A. Metabolism of an Oxime-Linked Antibody Drug Conjugate, AGS62P1, and Characterization of Its Identified Metabolite. Mol. Pharm. 2018, 15, 2384-2390. 55.Vrettos, E. I.; Karampelas, T.; Sayyad, N.; Kougioumtzi, A.; Syed, N.; Crook, T.; Murphy, C.; Tamvakopoulos, C.; Tzakos, A. G. Development of programmable gemcitabine-GnRH pro-drugs bearing linker controllable “click” oxime bond tethers and preclinical evaluation against prostate cancer. Eur. J. Med. Chem. 2021, 211, 113018. 56.Leurs, U.; Mező, G.; Orbán, E.; Öhlschläger, P.; Marquardt, A.; Manea, M. Design, synthesis, in vitro stability and cytostatic effect of multifunctional anticancer drug-bioconjugates containing GnRH-III as a targeting moiety. Biopolymers 2012, 98, 1-10. 57.Walji, A. M.; Sanchez, R. I.; Clas, S. D.; Nofsinger, R.; de Lera Ruiz, M.; Li, J.; Bennet, A.; John, C.; Bennett, D. J.; Sanders, J. M.; Di Marco, C. N.; Kim, S. H.; Balsells, J.; Ceglia, S. S.; Dang, Q.; Manser, K.; Nissley, B.; Wai, J. S.; Hafey, M.; Wang, J.; Chessen, G.; Templeton, A.; Higgins, J.; Smith, R.; Wu, Y.; Grobler, J.; Coleman, P. J. An Acetal Carbonate Prodrug of Raltegravir with Enhanced Colonic Absorption. ChemMedChem 2015, 10, 245-252. 58.Huang, D.; Zhuang, Y.; Shen, H.; Yang, F.; Wang, X.; Wu, D. Acetal-linked PEGylated paclitaxel prodrugs forming free-paclitaxel-loaded pH-responsive micelles with high drug loading capacity and improved drug delivery. Mater. Sci. Eng., C 2018, 82, 60-68. 59.Zhai, Y.; Zhou, X.; Jia, L.; Ma, C.; Song, R.; Deng, Y.; Hu, X.; Sun, W. Acetal-Linked Paclitaxel Polymeric Prodrug Based on Functionalized mPEG-PCL Diblock Polymer for pH-Triggered Drug Delivery. Polymers 2017, 9, 698. 60.Zhang, A.; Yao, L.; An, M. Reversing the undesirable pH-profile of doxorubicin via activation of a di-substituted maleamic acid prodrug at tumor acidity. Chem. Commun. 2017, 53, 12826-12829. 61.Yan, Y.; Fu, J.; Liu, X.; Wang, T.; Lu, X. Acid-responsive intracellular doxorubicin release from click chemistry functionalized mesoporous silica nanoparticles. RSC Adv. 2015, 5, 30640-30646. 62.Zhu, J.; Wang, G.; Alves, C. S.; Tomás, H.; Xiong, Z.; Shen, M.; Rodrigues, J.; Shi, X. Multifunctional Dendrimer-Entrapped Gold Nanoparticles Conjugated with Doxorubicin for pH-Responsive Drug Delivery and Targeted Computed Tomography Imaging. Langmuir 2018, 34, 12428-12435. 63.Pei, P.; Sun, C.; Tao, W.; Li, J.; Yang, X.; Wang, J. ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy. Biomaterials 2019, 188, 74-82. 64.Xu, X.; Saw, P. E.; Tao, W.; Li, Y.; Ji, X.; Bhasin, S.; Liu, Y.; Ayyash, D.; Rasmussen, J.; Huo, M.; Shi, J.; Farokhzad, O. C. ROS-Responsive Polyprodrug Nanoparticles for Triggered Drug Delivery and Effective Cancer Therapy. Adv. Mater. 2017, 29, 1700141. 65.Li, J.; Ding, Z.; Li, Y.; Miao, J.; Wang, W.; Nundlall, K.; Chen, S. Reactive oxygen species-sensitive thioketal-linked mesoporous silica nanoparticles as drug carrier for effective antibacterial activity. Mater. Des. 2020, 195, 109021. 66.Ai, Y.; Obianom, O. N.; Kuser, M.; Li, Y.; Shu, Y.; Xue, F. Enhanced Tumor Selectivity of 5-Fluorouracil Using a Reactive Oxygen Species-Activated Prodrug Approach. ACS Med. Chem. Lett. 2019, 10, 127-131. 67.Peiró Cadahía, J.; Bondebjerg, J.; Hansen, C. A.; Previtali, V.; Hansen, A. E.; Andresen, T. L.; Clausen, M. H. Synthesis and Evaluation of Hydrogen Peroxide Sensitive Prodrugs of Methotrexate and Aminopterin for the Treatment of Rheumatoid Arthritis. J. Med. Chem. 2018, 61, 3503-3515. 68.Kim, E. J.; Bhuniya, S.; Lee, H.; Kim, H. M.; Cheong, C.; Maiti, S.; Hong, K. S.; Kim, J. S. An Activatable Prodrug for the Treatment of Metastatic Tumors. J. Am. Chem. Soc. 2014, 136, 13888-13894. 69.Wang, S.; Wang, Z.; Yu, G.; Zhou, Z.; Jacobson, O.; Liu, Y.; Ma, Y.; Zhang, F.; Chen, Z. Y.; Chen, X. Tumor-Specific Drug Release and Reactive Oxygen Species Generation for Cancer Chemo/Chemodynamic Combination Therapy. Adv. Sci. 2019, 6, 1801986. 70.Berwin Singh, S. V.; Jung, E.; Noh, J.; Yoo, D.; Kang, C.; Hyeon, H.; Kim, G.-W.; Khang, G.; Lee, D. Hydrogen peroxide-activatable polymeric prodrug of curcumin for ultrasound imaging and therapy of acute liver failure. Nanomed. Nanotechnol. Biol. Med. 2019, 16, 45-55. 71.Li, X.; Zhang, C.; Zheng, Q.; Shi, X. ROS-responsive targeting micelles for optical imaging-guided chemo-phototherapy of cancer. Colloids Surf., B 2019, 179, 218-225. 72.Jiang, M. Y.; Dolphin, D. Site-Specific Prodrug Release Using Visible Light. J. Am. Chem. Soc. 2008, 130, 4236-4237. 73.Shin, J.; Shum, P.; Grey, J.; Fujiwara, S. I.; Malhotra, G. S.; González-Bonet, A.; Hyun, S. H.; Moase, E.; Allen, T. M.; Thompson, D. H. Acid-Labile mPEG–Vinyl Ether–1,2-Dioleylglycerol Lipids with Tunable pH Sensitivity: Synthesis and Structural Effects on Hydrolysis Rates, DOPE Liposome Release Performance, and Pharmacokinetics. Mol. Pharm. 2012, 9, 3266-3276. 74.Ki Choi, S.; Thomas, T.; Li, M. H.; Kotlyar, A.; Desai, A.; Baker, J. J. R. Light-controlled release of caged doxorubicin from folate receptor-targeting PAMAM dendrimer nanoconjugate. Chem. Commun. 2010, 46, 2632. 75.Agasti, S. S.; Chompoosor, A.; You, C.-C.; Ghosh, P.; Kim, C. K.; Rotello, V. M. Photoregulated Release of Caged Anticancer Drugs from Gold Nanoparticles. J. Am. Chem. Soc. 2009, 131, 5728-5729. 76.Johnson, J. A.; Lu, Y. Y.; Burts, A. O.; Xia, Y.; Durrell, A. C.; Tirrell, D. A.; Grubbs, R. H. Drug-Loaded, Bivalent-Bottle-Brush Polymers by Graft-through ROMP. Macromolecules 2010, 43, 10326-10335. 77.Zhou, T.; Liu, T.; Bao, Y.; Zhang, P.; Yan, C.; Yao, F.; Cui, S.; Chen, Y.; Chen, X.; Yu, Y. Designing a main-chain visible-light-labile picolinium-caged polymer and its biological applications. Polym. Chem. 2018, 9, 138-144. 78.Rochat, S.; Minardi, C.; de Saint Laumer, J. Y.; Herrmann, A. Controlled Release of Perfumery Aldehydes and Ketones by Norrish Type-II Photofragmentation of α-Keto Esters in Undegassed Solution. Helv. Chim. Acta 2000, 83, 1645-1671. 79.Chirapu, S. R.; Bauman, J. N.; Eng, H.; Goosen, T. C.; Strelevitz, T. J.; Sinha, S. C.; Dow, R. L.; Finn, M. G. Undesired versus designed enzymatic cleavage of linkers for liver targeting. Bioorganic & Medicinal Chemistry Letters 2014, 24, 1144-1147. 80.Su, F. Y.; Srinivasan, S.; Lee, B.; Chen, J.; Convertine, A. J.; West, T. E.; Ratner, D. M.; Skerrett, S. J.; Stayton, P. S. Macrophage-targeted drugamers with enzyme-cleavable linkers deliver high intracellular drug dosing and sustained drug pharmacokinetics against alveolar pulmonary infections. J. Controlled Release 2018, 287, 1-11. 81.Avugadda, S. K.; Materia, M. E.; Nigmatullin, R.; Cabrera, D.; Marotta, R.; Cabada, T. F.; Marcello, E.; Nitti, S.; Artés-Ibañez, E. J.; Basnett, P.; Wilhelm, C.; Teran, F. J.; Roy, I.; Pellegrino, T. Esterase-Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling To Improve Magnetic Hyperthermia Heat Losses. Chem. Mater. 2019, 31, 5450-5463. 82.Pedersen, P. J.; Viart, H. M. F.; Melander, F.; Andresen, T. L.; Madsen, R.; Clausen, M. H. Synthesis of tocopheryl succinate phospholipid conjugates and monitoring of phospholipase A2 activity. Biorg. Med. Chem. 2012, 20, 3972-3978. 83.Linderoth, L.; Peters, G. H.; Madsen, R.; Andresen, T. L. Drug Delivery by an Enzyme-Mediated Cyclization of a Lipid Prodrug with Unique Bilayer-Formation Properties. Angew. Chem. Int. Ed. 2009, 48, 1823-1826. 84.Pedersen, P. J.; Adolph, S. K.; Subramanian, A. K.; Arouri, A.; Andresen, T. L.; Mouritsen, O. G.; Madsen, R.; Madsen, M. W.; Peters, G. H.; Clausen, M. H. Liposomal Formulation of Retinoids Designed for Enzyme Triggered Release. J. Med. Chem. 2010, 53, 3782-3792. 85.Huttunen, K. M.; Mähönen, N.; Leppänen, J.; Vepsäläinen, J.; Juvonen, R. O.; Raunio, H.; Kumpulainen, H.; Järvinen, T.; Rautio, J. Novel Cyclic Phosphate Prodrug Approach for Cytochrome P450-activated Drugs Containing an Alcohol Functionality. Pharm. Res. 2007, 24, 679-687. 86.Flores-Ramos, M.; Ibarra-Velarde, F.; Hernández-Campos, A.; Vera-Montenegro, Y.; Jung-Cook, H.; Cantó-Alarcón, G. J.; Del Rivero, L. M.; Castillo, R. A highly water soluble benzimidazole derivative useful for the treatment of fasciolosis. Bioorganic & Medicinal Chemistry Letters 2014, 24, 5814-5817. 87.Zhu, R.; Liu, M. C.; Luo, M. Z.; Penketh, P. G.; Baumann, R. P.; Shyam, K.; Sartorelli, A. C. 4-Nitrobenzyloxycarbonyl Derivatives ofO6-Benzylguanine as Hypoxia-Activated Prodrug Inhibitors ofO6-Alkylguanine-DNA Alkyltransferase (AGT), Which Produces Resistance to Agents Targeting theO-6 Position of DNA Guanine. J. Med. Chem. 2011, 54, 7720-7728. 88.Chevalier, A.; Zhang, Y.; Khdour, O. M.; Kaye, J. B.; Hecht, S. M. Mitochondrial Nitroreductase Activity Enables Selective Imaging and Therapeutic Targeting. J. Am. Chem. Soc. 2016, 138, 12009-12012. 89.Zhang, Q.; Jin, C.; Yu, J.; Lu, W. Synthesis of New Branched 2-Nitroimidazole as a Hypoxia Sensitive Linker for Ligand-Targeted Drugs of Paclitaxel. ACS Omega 2018, 3, 8813-8818. 90.Yang, Z.; Lee, J. H.; Jeon, H. M.; Han, J. H.; Park, N.; He, Y.; Lee, H.; Hong, K. S.; Kang, C.; Kim, J. S. Folate-Based Near-Infrared Fluorescent Theranostic Gemcitabine Delivery. J. Am. Chem. Soc. 2013, 135, 11657-11662. 91.Qu, Y.; Chu, B.; Wei, X.; Lei, M.; Hu, D.; Zha, R.; Zhong, L.; Wang, M.; Wang, F.; Qian, Z. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for “on-demand” drug delivery. J. Controlled Release 2019, 296, 93-106. 92.Xu, Z.; Wang, D.; Xu, S.; Liu, X.; Zhang, X.; Zhang, H. Preparation of a Camptothecin Prodrug with Glutathione-Responsive Disulfide Linker for Anticancer Drug Delivery. Chem. - Asian J. 2014, 9, 199-205. 93.Sun, B.; Luo, C.; Zhang, X.; Guo, M.; Sun, M.; Yu, H.; Chen, Q.; Yang, W.; Wang, M.; Zuo, S.; Chen, P.; Kan, Q.; Zhang, H.; Wang, Y.; He, Z.; Sun, J. Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat. Commun. 2019, 10. 94.Li, Y.; Li, Y.; Ji, W.; Lu, Z.; Liu, L.; Shi, Y.; Ma, G.; Zhang, X. Positively Charged Polyprodrug Amphiphiles with Enhanced Drug Loading and Reactive Oxygen Species-Responsive Release Ability for Traceable Synergistic Therapy. J. Am. Chem. Soc. 2018, 140, 4164-4171. 95.Hu, Y.; Wu, S.; He, Y.; Deng, L. A redox prodrug micelle co-delivering camptothecin and curcumin for synergetic B16 melanoma cells inhibition. Chem. Eng. J. 2019, 362, 877-886. 96.Elmonem, M. A.; Veys, K. R.; Soliman, N. A.; van Dyck, M.; van den Heuvel, L. P.; Levtchenko, E. Cystinosis: a review. Orphanet J. Rare Dis. 2016, 11, 47. 97.Baumner, S.; Weber, L. T. Nephropathic Cystinosis: Symptoms, Treatment, and Perspectives of a Systemic Disease. Front. Pediatr. 2018, 6, 58. 98.Depape-Brigger, D.; Goldman, H. Y.; Scriver, C. R.; Delvin, E.; Mamer, O. The in Vivo Use of Dithiothreitol in Cystinosis. Pediatr. Res. 1977, 11, 124-131. 99.Atallah, C.; Charcosset, C.; Greige-Gerges, H. Challenges for cysteamine stabilization, quantification, and biological effects improvement. J. Pharm. Anal. 2020, 10, 499-516. 100.Kirakosyan, G.; Bagramyan, K.; Trchounian, A. Redox sensing by Escherichia coli: effects of dithiothreitol, a redox reagent reducing disulphides, on bacterial growth. Biochem. Biophys. Res. Commun. 2004, 325, 803-806. 101.Riondet, C.; Cachon, R.; Waché, Y.; Alcaraz, Gérard; Diviès, C. Changes in the proton-motive force in Escherichia coli in response to external oxidoreduction potential. Eur. J. Biochem. 1999, 262, 595-599. 102.Wang, C.; Dong, B.; Kong, X.; Zhang, N.; Song, W.; Lin, W. A new xanthene-based two-photon fluorescent probe for the imaging of 1,4-dithiothreitol (DTT) in living cells. Luminescence 2018, 33, 1048-1053. 103.Guo, S.; Zheng, F.; Zeng, F.; Wu, S. A fluorescent probe capable of discriminately and simultaneously detecting dl-dithiothreitol and single sulfhydryl-containing thiols. Sensors Actuators B: Chem. 2016, 224, 88-94. 104.Sun, T.; Xia, L.; Huang, J.; Gu, Y.; Wang, P. A highly sensitive fluorescent probe for fast recognization of DTT and its application in one- and two-photon imaging. Talanta 2018, 187, 295-301. 105.Chen, C. Y.; Chen, C. T. Reaction-based and single fluorescent emitter decorated ratiometric nanoprobe to detect hydrogen peroxide. Chemistry 2013, 19, 16050-7. 106.Fu, Y. H.; Chen, C. Y.; Chen, C. T. Tuning of hydrogen peroxide-responsive polymeric micelles of biodegradable triblock polycarbonates as a potential drug delivery platform with ratiometric fluorescence signaling. Polym. Chem. 2015, 6, 8132-8143. 107.Le Fer, G.; Le Coeur, C.; Guigner, J. M.; Amiel, C.; Volet, G. Amphiphilic diblock and triblock copolymers based on poly(2-methyl-2-oxazoline) and poly(D,L-lactide): Synthesis, physicochemical characterizations and self-assembly properties. Polymer 2019, 171, 149-160. 108.Simoes, S. M.; Figueiras, A. R.; Veiga, F.; Concheiro, A.; Alvarez-Lorenzo, C. Polymeric micelles for oral drug administration enabling locoregional and systemic treatments. Expert Opin. Drug Deliv. 2015, 12, 297-318. 109.傅映樺, 國立臺灣大學化學研究所碩士論文, 台北市, 2013. 110.Kamber, N. E.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.; Lohmeijer, B. G. G.; Hedrick, J. L. Organocatalytic Ring-Opening Polymerization. Chem. Rev. 2007, 107, 5813-5840. 111.Pratt, R. C.; Lohmeijer, B. G. G.; Long, D. A.; Lundberg, P. N. P.; Dove, A. P.; Li, H.; Wade, C. G.; Waymouth, R. M.; Hedrick, J. L. Exploration, Optimization, and Application of Supramolecular Thiourea−Amine Catalysts for the Synthesis of Lactide (Co)polymers. Macromolecules 2006, 39, 7863-7871. 112.項祈豪, 國立臺灣大學化學研究所碩士論文, 台北市, 2020. 113.Jadhav, S. A.; Maccagno, M. Identification of thiol from 11-(9-carbazolyl)-1-undecyl disulfide by NMR spectroscopy and single step coating of gold nanoparticles. J. Sulfur Chem. 2014, 35, 587-595. 114.Ur-Rehman, T.; Tavelin, S.; Gröbner, G. Effect of DMSO on micellization, gelation and drug release profile of Poloxamer 407. Int. J. Pharm. 2010, 394, 92-8. 115.Niraula, T. P.; Shah, S. K.; Chatterjee, S. K.; Bhattarai, A. Effect of methanol on the surface tension and viscosity of sodiumdodecyl sulfate (SDS) in aqueous medium at 298.15–323.15 K. Karbala Int. J. Mod. Sci. 2018, 4, 26-34. 116.Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer Statistics, 2021. Ca-Cancer J. Clin. 2021, 71, 7-33. 117.Miller, K. D.; Siegel, R. L.; Lin, C. C.; Mariotto, A. B.; Kramer, J. L.; Rowland, J. H.; Stein, K. D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics, 2016. Ca-Cancer J. Clin. 2016, 66, 271-289. 118.Singh, Y.; Palombo, M.; Sinko, P. J. Recent trends in targeted anticancer prodrug and conjugate design. Curr. Med. Chem. 2008, 15, 1802-26. 119.Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O. C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Del. Rev. 2014, 66, 2-25. 120.Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Controlled Release 2010, 148, 135-146. 121.Maeda, H.; Bharate, G. Y.; Daruwalla, J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 2009, 71, 409-419. 122.Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discovery Today 2006, 11, 812-818. 123.Liou, G. Y.; Storz, P. Reactive oxygen species in cancer. Free Radical Res. 2010, 44, 479-496. 124.Gamcsik, M. P.; Kasibhatla, M. S.; Teeter, S. D.; Colvin, O. M. Glutathione levels in human tumors. Biomarkers 2012, 17, 671-691. 125.Matsuyama, S.; Llopis, J.; Deveraux, Q. L.; Tsien, R. Y.; Reed, J. C. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat. Cell Biol. 2000, 2, 318-325. 126.Ahmad, A.; Khan, F.; Mishra, R. K.; Khan, R. Precision Cancer Nanotherapy: Evolving Role of Multifunctional Nanoparticles for Cancer Active Targeting. J. Med. Chem. 2019, 62, 10475-10496. 127.Wu, L.; Qu, X. Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev. 2015, 44, 2963-2997. 128.Mo, R.; Gu, Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater. Today 2016, 19, 274-283. 129.Sies, H. . Free Radic. Biol. Med. 1999, 27, 916–921. 130.Estrela, J. M.; Ortega, A.; Obrador, E. Glutathione in cancer biology and therapy. Crit. Rev. Clin. Lab. Sci. 2006, 43, 143-81. 131.Townsend, D. M.; Tew, K. D.; Tapiero, H. The importance of glutathione in human disease. Biomed. Pharmacother. 2003, 57, 145-155. 132.Calvert, P.; Yao, K. S.; Hamilton, T. C.; O’Dwyer, P. J. Clinical studies of reversal of drug resistance based on glutathione. Chem.-Biol. Interact. 1998, 213–224. 133.Dong, Y.; Liu, P. Amphiphilic Triblock Copolymer Prodrug for Tumor-Specific pH/Reduction Dual-Triggered Drug Delivery: Effect of Self-Assembly Behaviors. Langmuir 2021, 37, 7356-7363. 134.Gao, J.; Dutta, K.; Zhuang, J.; Thayumanavan, S. Cellular- and Subcellular-Targeted Delivery Using a Simple All-in-One Polymeric Nanoassembly. Angew. Chem. Int. Ed. Engl. 2020, 59, 23466-23470. 135.劉渟葦, 國立臺灣大學化學研究所碩士論文, 台北市, 2016. 136.Jiang, X.; Zhang, J.; Zhou, Y.; Xu, J.; Liu, S. Facile preparation of core-crosslinked micelles from azide-containing thermoresponsive double hydrophilic diblock copolymer via click chemistry. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 860-871. 137.Cajot, S.; Lautram, N.; Passirani, C.; Jérôme, C. Design of reversibly core cross-linked micelles sensitive to reductive environment. J. Controlled Release 2011, 152, 30-36. 138.Garg, S. M.; Xiong, X. B.; Lu, C.; Lavasanifar, A. Application of Click Chemistry in the Preparation of Poly(ethylene oxide)-block-poly(ε-caprolactone) with Hydrolyzable Cross-Links in the Micellar Core. Macromolecules 2011, 44, 2058-2066. 139.Aguiar, J.; Carpena, P.; Molina-Bolı́Var, J. A.; Carnero Ruiz, C. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J. Colloid Interface Sci. 2003, 258, 116-122. 140.Zhao, X.; Poon, Z.; Engler, A. C.; Bonner, D. K.; Hammond, P. T. Enhanced Stability of Polymeric Micelles Based on Postfunctionalized Poly(ethylene glycol)-b-poly(γ-propargyl l-glutamate): The Substituent Effect. Biomacromolecules 2012, 13, 1315-1322. 141.Milanović, M.; Krstonošić, V.; Dokić, L.; Hadnađev, M.; Dapčević Hadnađev, T. Insight into the Interaction Between Carbopol® 940 and Ionic/Nonionic Surfactant. J. Surfactants Deterg. 2015, 18, 505-516. 142.Dominguez, A.; Fernandez, A.; Gonzalez, N.; Iglesias, E.; Montenegro, L. Determination of Critical Micelle Concentration of Some Surfactants by Three Techniques. J. Chem. Educ. 1997, 74, 1227. 143.Shahrokhian, S. Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode. Anal. Chem. 2001, 73, 5972-5978. 144.Refsum, M. H.; Ueland, M. P. M.; Nygård, M. O.; Vollset, M. D. P. S. E. HOMOCYSTEINE AND CARDIOVASCULAR DISEASE. Annu. Rev. Med. 1998, 49, 31-62. 145.Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P. F.; Rosenberg, I. H.; D'Agostino, R. B.; Wilson, P. W. F.; Wolf, P. A. Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer's Disease. New Engl. J. Med. 2002, 346, 476-483. 146.McRae Page, S.; Martorella, M.; Parelkar, S.; Kosif, I.; Emrick, T. Disulfide Cross-Linked Phosphorylcholine Micelles for Triggered Release of Camptothecin. Mol. Pharm. 2013, 10, 2684-2692. 147.Ji, W.; Li, X.; Xiao, M.; Sun, Y.; Lai, W.; Zhang, H.; Pei, H.; Li, L. DNA‐Scaffolded Disulfide Redox Network for Programming Drug‐Delivery Kinetics. Chem. - Eur. J. 2021. 148.Hu, X.; Tian, J.; Liu, T.; Zhang, G.; Liu, S. Photo-Triggered Release of Caged Camptothecin Prodrugs from Dually Responsive Shell Cross-Linked Micelles. Macromolecules 2013, 46, 6243-6256. 149.Wang, H.; Tang, L.; Tu, C.; Song, Z.; Yin, Q.; Yin, L.; Zhang, Z.; Cheng, J. Redox-Responsive, Core-Cross-Linked Micelles Capable of On-Demand, Concurrent Drug Release and Structure Disassembly. Biomacromolecules 2013, 14, 3706-3712. 150.Zhao, X.; Liu, P. Reduction-Responsive Core–Shell–Corona Micelles Based on Triblock Copolymers: Novel Synthetic Strategy, Characterization, and Application As a Tumor Microenvironment-Responsive Drug Delivery System. ACS Appl. Mater. Interfaces 2015, 7, 166-174.
|