|
1.Niller, H. H.; Masa, R.;Venkei, A.; Mészáros, S.; Minarovits, J., Pathogenic mechanisms of intracellular bacteria. Curr. Opin. Infect. Dis. 2017, 30, 309−315. 2.Kapoor, G.; Saigal, S.; Elongavan, A., Action and resistance mechanisms of antibiotics: a guide for clinicians. J Anaesthesiol Clin Pharmacol 2017, 33, 300−305. 3.Martínez, J. L.; Baquero, F., Emergence and spread of antibiotic resistance: setting a parameter space. Ups. J. Med. Sci. 2014, 119, 68−77. 4.Walsh, C., Molecular mechanisms that confer antibacterial drug resistance. Nature 2000, 406, 775−781. 5.Blair, J. M. A.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. V., Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42−51. 6.Zhao, J.; Huang, S.; Ravisankar, P.; Zhu, H., Two-dimensional nanomaterials for photoinduced antibacterial Applications. ACS Appl. Bio Mater. 2020, 3, 8188−8210. 7.Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A., Antibacterial activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674−3684. 8.Zhu, W.; von dem Bussche, A.; Yi, X.; Qiu, Y.; Wang, Z.; Weston, P.; Hurt, R. H.; Kane, A. B.; Gao, H., Nanomechanical mechanism for lipid bilayer damage induced by carbon nanotubes confined in intracellular vesicles. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 12374−12379. 9.Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H.; Zhou, R., Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8, 594−601. 10.Lu, X.; Feng, X.; Werber, J. R.; Chu, C.; Zucker, I.; Kim, J.-H.; Osuji, C. O.; Elimelech, M., Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, E9793−E9801. 11.Li, Y.; Yuan, H.; von dem Bussche, A.; Creighton, M.; Hurt, R. H.; Kane, A. B.; Gao, H., Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 12295−12300. 12.Sun, W.; Wu, F.-G., Two-dimensional materials for antimicrobial applications: graphene materials and beyond. Chem. Asian J. 2018, 13, 3378−3410. 13.Mei, L.; Zhu, S.; Yin, W.; Chen, C.; Nie, G.; Gu, Z.; Zhao, Y., Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics 2020, 10 (2), 757−781. 14.Miao, H.; Teng, Z.; Wang, C.; Chong, H.; Wang, G., Recent progress in two-dimensional antimicrobial nanomaterials. Chem. Eur. J. 2019, 25, 929−944. 15.Karahan, H. E.; Wiraja, C.; Xu, C.; Wei, J.; Wang, Y.; Wang, L.; Liu, F.; Chen, Y., Graphene materials in antimicrobial nanomedicine: current status and future perspectives. Adv. Healthc. Mater. 2018, 7, 1701406. 16.Lu, X.; Feng, X.; Zhang, X.; Chukwu, M. N.; Osuji, C. O.; Elimelech, M., Fabrication of a desalination membrane with enhanced microbial resistance through vertical alignment of graphene oxide. Environ. Sci. Technol. Lett. 2018, 5, 614−620. 17.Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248−4253. 18.Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W., Two-dimensional transition metal carbides. ACS Nano 2012, 6, 1322−1331. 19.Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y., 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098. 20.Huang, K.; Li, Z.; Lin, J.; Han, G.; Huang, P., Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47, 5109−5124. 21.Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633−7644. 22.Fu, Z.; Wang, N.; Legut, D.; Si, C.; Zhang, Q.; Du, S.; Germann, T. C.; Francisco, J. S.; Zhang, R., Rational design of flexible two-dimensional MXenes with multiple functionalities. Chem. Rev. 2019, 119, 11980−12031. 23.Wang, H.; Wu, Y.; Yuan, X.; Zeng, G.; Zhou, J.; Wang, X.; Chew, J. W., Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges. Adv. Mater. 2018, 30, 1704561. 24.He, S.; Zhu, Q.; Soomro, R. A.; Xu, B., MXene derivatives for energy storage applications. Sustain. Energy Fuels 2020, 4, 4988−5004. 25.Kalambate, P. K.; Gadhari, N. S.; Li, X.; Rao, Z.; Navale, S. T.; Shen, Y.; Patil, V. R.; Huang, Y., Recent advances in MXene–based electrochemical sensors and biosensors. TrAC, Trends Anal. Chem. 2019, 120, 115643. 26.Morales-García, Á.; Calle-Vallejo, F.; Illas, F., MXenes: new horizons in catalysis. ACS Catal. 2020, 10, 13487−13503. 27.Zhang, Y.; Wang, L.; Zhang, N.; Zhou, Z., Adsorptive environmental applications of MXene nanomaterials: a review. RSC Adv. 2018, 8, 19895−19905. 28.Zamhuri, A.; Lim, G. P.; Ma, N. L.; Tee, K. S.; Soon, C. F., MXene in the lens of biomedical engineering: synthesis, applications and future outlook. Biomed. Eng. Online 2021, 20, 33. 29.Arabi Shamsabadi, A.; Sharifian Gh, M.; Anasori, B.; Soroush, M., Antimicrobial mode-of-action of colloidal Ti3C2Tx MXene nanosheets. ACS Sustainable Chem. Eng. 2018, 6, 16586−16596. 30.Wu, F.; Zheng, H.; Wang, W.; Wu, Q.; Zhang, Q.; Guo, J.; Pu, B.; Shi, X.; Li, J.; Chen, X.; Hong, W., Rapid eradication of antibiotic-resistant bacteria and biofilms by MXene and near-infrared light through photothermal ablation. Sci. China Mater. 2021, 64, 748−758. 31.Zhang, Y.; Zhou, Z.; Lan, J.; Ge, C.; Chai, Z.; Zhang, P.; Shi, W., Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Appl. Surf. Sci. 2017, 426, 572−578. 32.Yu, X.; Li, Y.; Cheng, J.; Liu, Z.; Li, Q.; Li, W.; Yang, X.; Xiao, B., Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl. Mater. Interfaces 2015, 7, 13707−13713. 33.Guo, X.; Zhang, X.; Zhao, S.; Huang, Q.; Xue, J., High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation. Phys. Chem. Chem. Phys. 2016, 18, 228−233. 34.Guo, J.; Peng, Q.; Fu, H.; Zou, G.; Zhang, Q., Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations. J. Phys. Chem. C 2015, 119, 20923−20930. 35.Peng, Q.; Guo, J.; Zhang, Q.; Xiang, J.; Liu, B.; Zhou, A.; Liu, R.; Tian, Y., Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 2014, 136, 4113−4116. 36.Ying, Y.; Liu, Y.; Wang, X.; Mao, Y.; Cao, W.; Hu, P.; Peng, X., Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Appl. Mater. Interfaces 2015, 7, 1795−1803. 37.Shahzad, A.; Rasool, K.; Miran, W.; Nawaz, M.; Jang, J.; Mahmoud, K. A.; Lee, D. S., Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustainable Chem. Eng. 2017, 5, 11481−11488. 38.Festa, R. A.; Thiele, D. J., Copper: an essential metal in biology. Curr. Biol. 2011, 21, R877−R883. 39.Arendsen, L. P.; Thakar, R.; Sultan, A. H., The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology. Clin. Microbiol. Rev. 2019, 32, e00125−00118. 40.Hostynek, J. J.; Dreher, F.; Maibach, H. I., Human skin penetration of a copper tripeptide in vitro as a function of skin layer. Inflamm. Res. 2011, 60, 79−86. 41.Macomber, L.; Imlay, J. A., The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 8344−8349. 42.Ruparelia, J. P.; Chatterjee, A. K.; Duttagupta, S. P.; Mukherji, S., Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008, 4, 707−716. 43.Cervantes, C.; Gutierrez-Corona, F., Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol. Rev. 1994, 14, 121−137. 44.Ren, G.; Hu, D.; Cheng, E. W. C.; Vargas-Reus, M. A.; Reip, P.; Allaker, R. P., Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 2009, 33, 587−590. 45.Meyer, T.; Ramlall, J.; Thu, P.; Gadura, N., Antimicrobial properties of copper in gram-negative and gram-positive bacteria. W Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2015, 2, 274−278. 46.Jadhav, S.; Gaikwad, S.; Nimse, M.; Rajbhoj, A., Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity. J. Cluster Sci. 2011, 22, 121−129. 47.Dalecki, A. G.; Crawford, C. L.; Wolschendorf, F. Copper and antibiotics: discovery, modes of action, and opportunities for medicinal applications. Adv. Microb. Physiol. 2017, 70, 193–260. 48.Santo, C. E.; Quaranta, D.; Grass, G., Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. MicrobiologyOpen 2012, 1, 46–52. 49.Warnes, S. L.; Caves, V.; Keevil, C. W., Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for gram-positive bacteria. Environ. Microbiol. 2012, 14 , 1730–1743. 50.Emam, H. E.; Ahmed, H. B.; Bechtold, T., In-situ deposition of Cu2O micro-needles for biologically active textiles and their release properties. Carbohydr. Polym. 2017, 165, 255–265. 51.Thurman, R. B.; Gerba, C. P.; Bitton, G., The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. CRC Crit. Rev. Environ. Control 1989, 1, 295–315. 52.Breitenborn, H.; Dong, J.; Piccoli, R.; Bruhacs, A.; Besteiro, L. V.; Skripka, A.; Wang, Z. M.; Govorov, A. O.; Razzari, L.; Vetrone, F.; Naccache, R.; Morandotti, R., Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation. APL Photonics 2019, 4, 126106. 53.Pham, C. T. N.; Thomas, D. G.; Beiser, J.; Mitchell, L. M.; Huang, J. L.; Senpan, A.; Hu, G.; Gordon, M.; Baker, N. A.; Pan, D.; Lanza, G. M.; Hourcade, D. E., Application of a hemolysis assay for analysis of complement activation by perfluorocarbon nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 651–660. 54.Ren, C. E.; Zhao, M.-Q.; Makaryan, T.; Halim, J.; Boota, M.; Kota, S.; Anasori, B.; Barsoum, M. W.; Gogotsi, Y., Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. ChemElectroChem 2016, 3, 689–693. 55.Lin, H.; Wang, X.; Yu, L.; Chen, Y.; Shi, J., Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 2017, 17, 384–391. 56.Robinson, J. T.; Tabakman, S. M.; Liang, Y.; Wang, H.; Sanchez Casalongue, H.; Vinh, D.; Dai, H., Ultrasmall reduced graphene oxide with high near-infrared absorbance for Photothermal Therapy. J. Am. Chem. Soc. 2011, 133, 6825–6831. 57.Sun, Z.; Xie, H.; Tang, S.; Yu, X.-F.; Guo, Z.; Shao, J.; Zhang, H.; Huang, H.; Wang, H.; Chu, P. K., Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. Int. Ed. 2015, 54, 11526–11530. 58.Cheng, L.; Liu, J.; Gu, X.; Gong, H.; Shi, X.; Liu, T.; Wang, C.; Wang, X.; Liu, G.; Xing, H.; Bu, W.; Sun, B.; Liu, Z., PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886–1893. 59.Zhang, C. J.; Pinilla, S.; McEvoy, N.; Cullen, C. P.; Anasori, B.; Long, E.; Park, S.-H.; Seral-Ascaso, A.; Shmeliov, A.; Krishnan, D.; Morant, C.; Liu, X.; Duesberg, G. S.; Gogotsi, Y.; Nicolosi, V., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 2017, 29, 4848–4856. 60.Li, Z.; Wang, L.; Sun, D.; Zhang, Y.; Liu, B.; Hu, Q.; Zhou, A., Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng., B 2015, 191, 33–40. 61.Osti, N. C.; Naguib, M.; Ostadhossein, A.; Xie, Y.; Kent, P. R. C.; Dyatkin, B.; Rother, G.; Heller, W. T.; van Duin, A. C. T.; Gogotsi, Y.; Mamontov, E., Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces. ACS Appl. Mater. Interfaces 2016, 8, 8859–8863. 62.Wu, M.; Deokar, A. R.; Liao, J.; Shih, P.; Ling, Y., Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 2013, 7, 1281–1290. 63.Li, R.; Zhang, L.; Shi, L.; Wang, P., MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 2017, 11, 3752–3759. 64.Gazzi, A.; Fusco, L.; Khan, A.; Bedognetti, D.; Zavan, B.; Vitale, F.; Yilmazer, A.; Delogu, L. G., Photodynamic therapy based on graphene and MXene in cancer theranostics. Front. Bioeng. Biotechnol. 2019, 7, 00295. 65.Zhu, X.; Zhu, Y.; Jia, K.; Abraha, B. S.; Li, Y.; Peng, W.; Zhang, F.; Fan, X.; Zhang, L., A near-infrared light-mediated antimicrobial based on Ag/Ti3C2Tx for effective synergetic antibacterial applications. Nanoscale 2020, 12, 19129–19141. 66.Chen, Y.; Tan, C.; Zhang, H.; Wang, L., Two-dimensional graphene analogues for biomedical applications. Chem. Soc. Rev. 2015, 44, 2681–701. 67.Liu, G.; Zou, J.; Tang, Q.; Yang, X.; Zhang, Y.; Zhang, Q.; Huang, W.; Chen, P.; Shao, J.; Dong, X., Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl. Mater. Interfaces 2017, 9, 40077–40086. 68.Qiao, Y.; Ma, F.; Liu, C.; Zhou, B.; Wei, Q.; Li, W.; Zhong, D.; Li, Y.; Zhou, M., Near-infrared laser-excited nanoparticles to eradicate multidrug-resistant bacteria and promote wound healing. ACS Appl. Mater. Interfaces 2018, 10, 193–206. 69.Rasool, K.; Mahmoud, K. A.; Johnson, D. J.; Helal, M.; Berdiyorov, G. R.; Gogotsi, Y., Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 2017, 7, 1598. 70.Dryden, M., Reactive oxygen species: a novel antimicrobial. Int. J. Antimicrob. Agents 2018, 51, 299–303. 71.Rastogi, R. P.; Singh, S. P.; Häder, D.-P.; Sinha, R. P., Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2’, 7’-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Biophys. Res. Commun. 2010, 397, 603–607. 72.Li, X.; Imlay, J. A., Improved measurements of scant hydrogen peroxide enable experiments that define its threshold of toxicity for Escherichia coli. Free Radical Biol. Med. 2018, 120, 217–227.
|