跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 17:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐雅茹
研究生(外文):Ya-Ju HSU
論文名稱:摻雜銅離子之二維過渡金屬鈦碳化物以協同效果提升抗菌能力應用於細菌感染性傷口
論文名稱(外文):Copper doped Ti3C2Tx MXenes synergistically enhance the antibacterial activity for infectious wound treatment
指導教授:張煥宗張煥宗引用關係
指導教授(外文):Huan-Tsung Chang
口試委員:黃志清黃郁棻
口試委員(外文):Chin-Ching HuangYu-Fen Huang
口試日期:2021-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:48
中文關鍵詞:二維材料過渡金屬碳化抗菌劑光熱療法抗藥性細菌
外文關鍵詞:two-dimentional materialMXeneantibacterial agentphotothermaldrug-resistant bacteria
DOI:10.6342/NTU202102472
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於抗生素的濫用,導致抗藥性細菌的增加,成為一個對人類健康具潛在威脅的隱憂。本研究以二維過渡金屬鈦碳化物(Ti3C2Tx MXene)與銅離子混合,形成奈米複合材料 (Cu/MXene) 作為新型抗菌劑之應用。Ti3C2Tx MXene為過渡金屬Ti與輕元素C和H所組成的複合原子層二維化合物,易與菌膜表面作用。此外,藉由Ti3C2Tx MXene易與金屬離子鍵結,將銅離子吸附於Ti3C2Tx MXene,可保留銅離子特性,達到協同作用並提升抑菌之功效。此材料抗菌活性對大腸桿菌、金黃色葡萄球菌及耐甲氧西林金黃色葡萄球菌(MRSA)皆具有很好的抑菌效果,且與Ti3C2Tx MXene相比,Cu/MXene所產生的過氧化氫量(H2O2)增加約十倍左右,其能夠造成菌膜表面氧化壓力上升,再協同Ti3C2Tx MXene本身以鋒利邊緣與細菌表面作用特性,增加對細菌的物理壓力,進而增強材料的抗菌能力。同時,由於Ti3C2Tx MXene本身具有良好的光熱轉換效率,透過照射808 nm雷射,能使Cu/MXene溫度上升(58 oC)並增加H2O2產生值,進而增加抗菌之功效。體外細胞毒性結果揭示了Cu/MXene的高生物相容性。為了證明其實際應用,在小鼠 (C57BL/6) 中進行了體外 MRSA 感染的傷口癒合研究,證明當Cu/MXene作敷料,可有效清除傷口上細菌並加速膠原纖維形成,使癒合速度更快,並加速膠原纖維形成。我們的結果證實此具有光熱特性及生物相容性之二維型奈米複合抗菌劑,具有商業價值。
In recent years, the abuse of antibiotics has led to an increase in drug-resistant bacteria, which has become a potential threat to human health. Therefore, it is in urgent need of developing an alternative to traditional antibiotic therapy. In this study, copper ions adsorption to two-dimensional transition metal titanium carbide (Ti3C2Tx MXene) forming a nanocomposite (Cu/MXene) is used as a new antibacterial agent. Ti3C2Tx MXene is a two-dimensional compound and its atomic layers composed with transition metal Ti and light elements C and H, which is easy to interact with bacterial membrane. In addition, Ti3C2Tx MXene is reactive with metal ions, while the adsorption of copper ions with Ti3C2Tx MXene retains the characteristics of copper ions and synergistically enhances antibacterial effects. Our material has good antibacterial effect against non-multidrug resistant Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA) and Gentamicin-resistant Escherichia coli (E. coli GM). Compared with Ti3C2Tx MXene, Cu/MXene produces more than ten times amount of hydrogen peroxide (H2O2), which can cause the enhancement of oxidation pressure on bacterial, and cooperate with the sharp edges from Ti3C2Tx MXene increasing the physical pressure. Meanwhile, Ti3C2Tx MXene has good photothermal conversion efficiency under NIR irradiation. The temperature of Cu/MXene would rise and accelerate the generation of H2O2 in short period, thus further improving the antibacterial effect. In-vitro cytotoxicity and hemolysis results revealed the high biocompatibility of Cu/MXene. An in-vivo MRSA infection wound healing study was conducted in mice (C57BL/6), showing that when Cu/MXene is used as a dressing material, it can effectively remove bacteria on the wound. So far we have developed a new type of nanocomposite antibacterial agent with photothermal properties, and hope to increase the potential of two-dimensional nanomaterials in antibacterial field in the future.
CONTENTS
致謝 I
中文摘要 IV
ABSTRACT V
FIGURE CONTENTS VIII
1. INTRODUCTION 1
1.1 Bacteria resistance 1
1.2 Antibacterial activity of two-dimensional (2D) nanomaterials 2
1.3 Antibacterial activity of MXene 3
1.4 MXene and metal ions 4
1.5 Antibacterial activity of copper ion 5
1.6 Research motives 6
2. EXPERIMENTAL METHODS 7
2.1 Materials 7
2.2 Preparation of delaminated MXene (Ti3C2Tx) nanosheets 7
2.3 Preparation of Cu/MXene 8
2.4 Characterization of MXene and Cu/MXene 8
2.5 Bacterial culture 9
2.6 In-vitro Antibacterial assay 9
2.7 Evalutuion of photothermal performance of Cu25/MXene 10
2.8 SEM and TEM image of bacteria 11
2.9 Hydrogen peroxide produced by Cu/MXene 11
2.10 Reactive Oxygen Species (ROS) assays. 12
2.11 Biocompatibility test 12
2.12 Hemolysis assays 13
2.13 In-vivo wound healing application 14
3. RESULTS AND DISCUSSION 15
3.1 Characterization of the Cu/MXene 15
3.2 Evaluation for antibacterial activity of Cu/MXene 17
3.3 Antibacterial mechanism of Cu/MXene 19
3.4 Biocompatibility of Cu/MXene 22
3.5 Treatment of infected wounds 23
4. CONCLUSIONS 24
REFERENCES 25
FIGURES 33
1.Niller, H. H.; Masa, R.;Venkei, A.; Mészáros, S.; Minarovits, J., Pathogenic mechanisms of intracellular bacteria. Curr. Opin. Infect. Dis. 2017, 30, 309−315.
2.Kapoor, G.; Saigal, S.; Elongavan, A., Action and resistance mechanisms of antibiotics: a guide for clinicians. J Anaesthesiol Clin Pharmacol 2017, 33, 300−305.
3.Martínez, J. L.; Baquero, F., Emergence and spread of antibiotic resistance: setting a parameter space. Ups. J. Med. Sci. 2014, 119, 68−77.
4.Walsh, C., Molecular mechanisms that confer antibacterial drug resistance. Nature 2000, 406, 775−781.
5.Blair, J. M. A.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. V., Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42−51.
6.Zhao, J.; Huang, S.; Ravisankar, P.; Zhu, H., Two-dimensional nanomaterials for photoinduced antibacterial Applications. ACS Appl. Bio Mater. 2020, 3, 8188−8210.
7.Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A., Antibacterial activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674−3684.
8.Zhu, W.; von dem Bussche, A.; Yi, X.; Qiu, Y.; Wang, Z.; Weston, P.; Hurt, R. H.; Kane, A. B.; Gao, H., Nanomechanical mechanism for lipid bilayer damage induced by carbon nanotubes confined in intracellular vesicles. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 12374−12379.
9.Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H.; Zhou, R., Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8, 594−601.
10.Lu, X.; Feng, X.; Werber, J. R.; Chu, C.; Zucker, I.; Kim, J.-H.; Osuji, C. O.; Elimelech, M., Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, E9793−E9801.
11.Li, Y.; Yuan, H.; von dem Bussche, A.; Creighton, M.; Hurt, R. H.; Kane, A. B.; Gao, H., Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 12295−12300.
12.Sun, W.; Wu, F.-G., Two-dimensional materials for antimicrobial applications: graphene materials and beyond. Chem. Asian J. 2018, 13, 3378−3410.
13.Mei, L.; Zhu, S.; Yin, W.; Chen, C.; Nie, G.; Gu, Z.; Zhao, Y., Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics 2020, 10 (2), 757−781.
14.Miao, H.; Teng, Z.; Wang, C.; Chong, H.; Wang, G., Recent progress in two-dimensional antimicrobial nanomaterials. Chem. Eur. J. 2019, 25, 929−944.
15.Karahan, H. E.; Wiraja, C.; Xu, C.; Wei, J.; Wang, Y.; Wang, L.; Liu, F.; Chen, Y., Graphene materials in antimicrobial nanomedicine: current status and future perspectives. Adv. Healthc. Mater. 2018, 7, 1701406.
16.Lu, X.; Feng, X.; Zhang, X.; Chukwu, M. N.; Osuji, C. O.; Elimelech, M., Fabrication of a desalination membrane with enhanced microbial resistance through vertical alignment of graphene oxide. Environ. Sci. Technol. Lett. 2018, 5, 614−620.
17.Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248−4253.
18.Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W., Two-dimensional transition metal carbides. ACS Nano 2012, 6, 1322−1331.
19.Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y., 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.
20.Huang, K.; Li, Z.; Lin, J.; Han, G.; Huang, P., Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47, 5109−5124.
21.Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633−7644.
22.Fu, Z.; Wang, N.; Legut, D.; Si, C.; Zhang, Q.; Du, S.; Germann, T. C.; Francisco, J. S.; Zhang, R., Rational design of flexible two-dimensional MXenes with multiple functionalities. Chem. Rev. 2019, 119, 11980−12031.
23.Wang, H.; Wu, Y.; Yuan, X.; Zeng, G.; Zhou, J.; Wang, X.; Chew, J. W., Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges. Adv. Mater. 2018, 30, 1704561.
24.He, S.; Zhu, Q.; Soomro, R. A.; Xu, B., MXene derivatives for energy storage applications. Sustain. Energy Fuels 2020, 4, 4988−5004.
25.Kalambate, P. K.; Gadhari, N. S.; Li, X.; Rao, Z.; Navale, S. T.; Shen, Y.; Patil, V. R.; Huang, Y., Recent advances in MXene–based electrochemical sensors and biosensors. TrAC, Trends Anal. Chem. 2019, 120, 115643.
26.Morales-García, Á.; Calle-Vallejo, F.; Illas, F., MXenes: new horizons in catalysis. ACS Catal. 2020, 10, 13487−13503.
27.Zhang, Y.; Wang, L.; Zhang, N.; Zhou, Z., Adsorptive environmental applications of MXene nanomaterials: a review. RSC Adv. 2018, 8, 19895−19905.
28.Zamhuri, A.; Lim, G. P.; Ma, N. L.; Tee, K. S.; Soon, C. F., MXene in the lens of biomedical engineering: synthesis, applications and future outlook. Biomed. Eng. Online 2021, 20, 33.
29.Arabi Shamsabadi, A.; Sharifian Gh, M.; Anasori, B.; Soroush, M., Antimicrobial mode-of-action of colloidal Ti3C2Tx MXene nanosheets. ACS Sustainable Chem. Eng. 2018, 6, 16586−16596.
30.Wu, F.; Zheng, H.; Wang, W.; Wu, Q.; Zhang, Q.; Guo, J.; Pu, B.; Shi, X.; Li, J.; Chen, X.; Hong, W., Rapid eradication of antibiotic-resistant bacteria and biofilms by MXene and near-infrared light through photothermal ablation. Sci. China Mater. 2021, 64, 748−758.
31.Zhang, Y.; Zhou, Z.; Lan, J.; Ge, C.; Chai, Z.; Zhang, P.; Shi, W., Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Appl. Surf. Sci. 2017, 426, 572−578.
32.Yu, X.; Li, Y.; Cheng, J.; Liu, Z.; Li, Q.; Li, W.; Yang, X.; Xiao, B., Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl. Mater. Interfaces 2015, 7, 13707−13713.
33.Guo, X.; Zhang, X.; Zhao, S.; Huang, Q.; Xue, J., High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation. Phys. Chem. Chem. Phys. 2016, 18, 228−233.
34.Guo, J.; Peng, Q.; Fu, H.; Zou, G.; Zhang, Q., Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations. J. Phys. Chem. C 2015, 119, 20923−20930.
35.Peng, Q.; Guo, J.; Zhang, Q.; Xiang, J.; Liu, B.; Zhou, A.; Liu, R.; Tian, Y., Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 2014, 136, 4113−4116.
36.Ying, Y.; Liu, Y.; Wang, X.; Mao, Y.; Cao, W.; Hu, P.; Peng, X., Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Appl. Mater. Interfaces 2015, 7, 1795−1803.
37.Shahzad, A.; Rasool, K.; Miran, W.; Nawaz, M.; Jang, J.; Mahmoud, K. A.; Lee, D. S., Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustainable Chem. Eng. 2017, 5, 11481−11488.
38.Festa, R. A.; Thiele, D. J., Copper: an essential metal in biology. Curr. Biol. 2011, 21, R877−R883.
39.Arendsen, L. P.; Thakar, R.; Sultan, A. H., The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology. Clin. Microbiol. Rev. 2019, 32, e00125−00118.
40.Hostynek, J. J.; Dreher, F.; Maibach, H. I., Human skin penetration of a copper tripeptide in vitro as a function of skin layer. Inflamm. Res. 2011, 60, 79−86.
41.Macomber, L.; Imlay, J. A., The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 8344−8349.
42.Ruparelia, J. P.; Chatterjee, A. K.; Duttagupta, S. P.; Mukherji, S., Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008, 4, 707−716.
43.Cervantes, C.; Gutierrez-Corona, F., Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol. Rev. 1994, 14, 121−137.
44.Ren, G.; Hu, D.; Cheng, E. W. C.; Vargas-Reus, M. A.; Reip, P.; Allaker, R. P., Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 2009, 33, 587−590.
45.Meyer, T.; Ramlall, J.; Thu, P.; Gadura, N., Antimicrobial properties of copper in gram-negative and gram-positive bacteria. W Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2015, 2, 274−278.
46.Jadhav, S.; Gaikwad, S.; Nimse, M.; Rajbhoj, A., Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity. J. Cluster Sci. 2011, 22, 121−129.
47.Dalecki, A. G.; Crawford, C. L.; Wolschendorf, F. Copper and antibiotics: discovery, modes of action, and opportunities for medicinal applications. Adv. Microb. Physiol. 2017, 70, 193–260.
48.Santo, C. E.; Quaranta, D.; Grass, G., Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. MicrobiologyOpen 2012, 1, 46–52.
49.Warnes, S. L.; Caves, V.; Keevil, C. W., Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for gram-positive bacteria. Environ. Microbiol. 2012, 14 , 1730–1743.
50.Emam, H. E.; Ahmed, H. B.; Bechtold, T., In-situ deposition of Cu2O micro-needles for biologically active textiles and their release properties. Carbohydr. Polym. 2017, 165, 255–265.
51.Thurman, R. B.; Gerba, C. P.; Bitton, G., The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. CRC Crit. Rev. Environ. Control 1989, 1, 295–315.
52.Breitenborn, H.; Dong, J.; Piccoli, R.; Bruhacs, A.; Besteiro, L. V.; Skripka, A.; Wang, Z. M.; Govorov, A. O.; Razzari, L.; Vetrone, F.; Naccache, R.; Morandotti, R., Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation. APL Photonics 2019, 4, 126106.
53.Pham, C. T. N.; Thomas, D. G.; Beiser, J.; Mitchell, L. M.; Huang, J. L.; Senpan, A.; Hu, G.; Gordon, M.; Baker, N. A.; Pan, D.; Lanza, G. M.; Hourcade, D. E., Application of a hemolysis assay for analysis of complement activation by perfluorocarbon nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 651–660.
54.Ren, C. E.; Zhao, M.-Q.; Makaryan, T.; Halim, J.; Boota, M.; Kota, S.; Anasori, B.; Barsoum, M. W.; Gogotsi, Y., Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. ChemElectroChem 2016, 3, 689–693.
55.Lin, H.; Wang, X.; Yu, L.; Chen, Y.; Shi, J., Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 2017, 17, 384–391.
56.Robinson, J. T.; Tabakman, S. M.; Liang, Y.; Wang, H.; Sanchez Casalongue, H.; Vinh, D.; Dai, H., Ultrasmall reduced graphene oxide with high near-infrared absorbance for Photothermal Therapy. J. Am. Chem. Soc. 2011, 133, 6825–6831.
57.Sun, Z.; Xie, H.; Tang, S.; Yu, X.-F.; Guo, Z.; Shao, J.; Zhang, H.; Huang, H.; Wang, H.; Chu, P. K., Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. Int. Ed. 2015, 54, 11526–11530.
58.Cheng, L.; Liu, J.; Gu, X.; Gong, H.; Shi, X.; Liu, T.; Wang, C.; Wang, X.; Liu, G.; Xing, H.; Bu, W.; Sun, B.; Liu, Z., PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886–1893.
59.Zhang, C. J.; Pinilla, S.; McEvoy, N.; Cullen, C. P.; Anasori, B.; Long, E.; Park, S.-H.; Seral-Ascaso, A.; Shmeliov, A.; Krishnan, D.; Morant, C.; Liu, X.; Duesberg, G. S.; Gogotsi, Y.; Nicolosi, V., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 2017, 29, 4848–4856.
60.Li, Z.; Wang, L.; Sun, D.; Zhang, Y.; Liu, B.; Hu, Q.; Zhou, A., Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng., B 2015, 191, 33–40.
61.Osti, N. C.; Naguib, M.; Ostadhossein, A.; Xie, Y.; Kent, P. R. C.; Dyatkin, B.; Rother, G.; Heller, W. T.; van Duin, A. C. T.; Gogotsi, Y.; Mamontov, E., Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces. ACS Appl. Mater. Interfaces 2016, 8, 8859–8863.
62.Wu, M.; Deokar, A. R.; Liao, J.; Shih, P.; Ling, Y., Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 2013, 7, 1281–1290.
63.Li, R.; Zhang, L.; Shi, L.; Wang, P., MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 2017, 11, 3752–3759.
64.Gazzi, A.; Fusco, L.; Khan, A.; Bedognetti, D.; Zavan, B.; Vitale, F.; Yilmazer, A.; Delogu, L. G., Photodynamic therapy based on graphene and MXene in cancer theranostics. Front. Bioeng. Biotechnol. 2019, 7, 00295.
65.Zhu, X.; Zhu, Y.; Jia, K.; Abraha, B. S.; Li, Y.; Peng, W.; Zhang, F.; Fan, X.; Zhang, L., A near-infrared light-mediated antimicrobial based on Ag/Ti3C2Tx for effective synergetic antibacterial applications. Nanoscale 2020, 12, 19129–19141.
66.Chen, Y.; Tan, C.; Zhang, H.; Wang, L., Two-dimensional graphene analogues for biomedical applications. Chem. Soc. Rev. 2015, 44, 2681–701.
67.Liu, G.; Zou, J.; Tang, Q.; Yang, X.; Zhang, Y.; Zhang, Q.; Huang, W.; Chen, P.; Shao, J.; Dong, X., Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl. Mater. Interfaces 2017, 9, 40077–40086.
68.Qiao, Y.; Ma, F.; Liu, C.; Zhou, B.; Wei, Q.; Li, W.; Zhong, D.; Li, Y.; Zhou, M., Near-infrared laser-excited nanoparticles to eradicate multidrug-resistant bacteria and promote wound healing. ACS Appl. Mater. Interfaces 2018, 10, 193–206.
69.Rasool, K.; Mahmoud, K. A.; Johnson, D. J.; Helal, M.; Berdiyorov, G. R.; Gogotsi, Y., Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 2017, 7, 1598.
70.Dryden, M., Reactive oxygen species: a novel antimicrobial. Int. J. Antimicrob. Agents 2018, 51, 299–303.
71.Rastogi, R. P.; Singh, S. P.; Häder, D.-P.; Sinha, R. P., Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2’, 7’-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Biophys. Res. Commun. 2010, 397, 603–607.
72.Li, X.; Imlay, J. A., Improved measurements of scant hydrogen peroxide enable experiments that define its threshold of toxicity for Escherichia coli. Free Radical Biol. Med. 2018, 120, 217–227.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top