|
1.Eady, R. R.; Postgate, J. R., Nitrogenase. Nature 1974, 249, 805-810. 2.Fegler, J., Function of Carbonic Anhydrase in Blood. Nature 1944, 153, 137-138. 3.Hollander, L., The Amylase System of the Liver. Science 1934, 79, 17-18. 4.Stu, B., Lighting the Way from Dinitrogen to Ammonia. C&EN Global Enterprise 2016, 94, 9-9. 5.Han, G.-F.; Li, F.; Chen, Z.-W.; Coppex, C.; Kim, S.-J.; Noh, H.-J.; Fu, Z.; Lu, Y.; Singh, C. V.; Siahrostami, S.; Jiang, Q.; Baek, J.-B., Mechanochemistry for Ammonia Synthesis under Mild Conditions. Nat. Nanotechnol. 2021, 16, 325-330. 6.Čorić, I.; Mercado, B. Q.; Bill, E.; Vinyard, D. J.; Holland, P. L., Binding of Dinitrogen to an Iron–Sulfur–Carbon Site. Nature 2015, 526, 96-99. 7.Crossland, J. L.; Tyler, D. R., Iron–Dinitrogen Coordination Chemistry: Dinitrogen Activation and Reactivity. Coord. Chem. Rev. 2010, 254, 1883-1894. 8.Hohenberger, J.; Ray, K.; Meyer, K., The Biology and Chemistry of High-Valent Iron–Oxo and Iron–Nitrido Complexes. Nat. Commun. 2012, 3, 720. 9.Keilwerth, M.; Grunwald, L.; Mao, W.; Heinemann, F. W.; Sutter, J.; Bill, E.; Meyer, K., Ligand Tailoring toward an Air-Stable Iron(V) Nitrido Complex. J. Am. Chem. Soc. 2021, 143, 1458-1465. 10.Dorantes, M. J.; Moore, J. T.; Bill, E.; Mienert, B.; Lu, C. C., Bimetallic Iron–Tin Catalyst for N2 to NH3 and a Silyldiazenido Model Intermediate. Chem. Commun. 2020, 56, 11030-11033. 11.Cammarota, R. C.; Vollmer, M. V.; Xie, J.; Ye, J.; Linehan, J. C.; Burgess, S. A.; Appel, A. M.; Gagliardi, L.; Lu, C. C., A Bimetallic Nickel–Gallium Complex Catalyzes CO2 Hydrogenation via the Intermediacy of an Anionic d10 Nickel Hydride. J. Am. Chem. Soc. 2017, 139, 14244-14250. 12.Jorgensen, C. K., Differences between the Four Halide Ligands, and Discussion Remarks on Trigonal-Bipyramidal Complexes,on Oxidation States, and on Diagonal Elements of One Electron Engery. Cood. Chem. Rev 1966, 1, 164-178. 13.Manuel, T. D.; Rohde, J.-U., Reaction of a Redox-Active Ligand Complex of Nickel with Dioxygen Probes Ligand-Radical Character. J. Am. Chem. Soc. 2009, 131, 15582-15583. 14.Butschke, B.; Fillman, K. L.; Bendikov, T.; Shimon, L. J. W.; Diskin-Posner, Y.; Leitus, G.; Gorelsky, S. I.; Neidig, M. L.; Milstein, D., How Innocent are Potentially Redox Non-Innocent Ligands? Electronic Structure and Metal Oxidation States in Iron-PNN Complexes as a Representative Case Study. Inorg. Chem. 2015, 54, 4909-4926. 15.Lyaskovskyy, V.; De Bruin, B., Redox Non-Innocent Ligands: Versatile New Tools to Control Catalytic Reactions. ACS Catal. 2012, 2, 270-279. 16.Gelman, D.; Musa, S., Coordination Versatility of sp3-Hybridized Pincer Ligands toward Ligand–Metal Cooperative Catalysis. ACS Catal. 2012, 2, 2456-2466. 17.Higashi, T.; Kusumoto, S.; Nozaki, K., Cleavage of Si–H, B–H, and C–H Bonds by Metal–Ligand Cooperation. Chem. Rev. 2019, 119, 10393-10402. 18.Ringenberg, M. R.; Kokatam, S. L.; Heiden, Z. M.; Rauchfuss, T. B., Redox-Switched Oxidation of Dihydrogen Using a Non-Innocent Ligand. J. Am. Chem. Soc. 2008, 130, 788-789. 19.Du, H.-Y.; Chen, S.-C.; Su, X.-J.; Jiao, L.; Zhang, M.-T., Redox-Active Ligand Assisted Multielectron Catalysis: A Case of CoIII Complex as Water Oxidation Catalyst. J. Am. Chem. Soc. 2018, 140, 1557-1565. 20.Rawat, K. S.; Mahata, A.; Pathak, B., Catalytic Hydrogenation of CO2 by Fe Complexes Containing Pendant Amines: Role of Water and Base. The Journal of Physical Chemistry C 2016, 120, 26652-26662. 21.Gloaguen, F.; Rauchfuss, T. B., Small Molecule Mimics of Hydrogenases: Hydrides and Redox. Chem. Soc. Rev. 2009, 38, 100-108. 22.Dubois, D. L.; Bullock, R. M., Molecular Electrocatalysts for the Oxidation of Hydrogen and the Production of Hydrogen – the Role of Pendant Amines as Proton Relays. Eur. J. Inorg. Chem. 2011, 2011, 1017-1027. 23.Helm, M. L.; Stewart, M. P.; Bullock, R. M.; Dubois, M. R.; Dubois, D. L., A Synthetic Nickel Electrocatalyst with a Turnover Frequency above 100,000 s-1 for H2 Production. Science 2011, 333, 863-866. 24.Daw, P.; Sinha, A.; Rahaman, S. M. W.; Dinda, S.; Bera, J. K., Bifunctional Water Activation for Catalytic Hydration of Organonitriles. Organometallics 2012, 31, 3790-3797. 25.Thammavongsy, Z.; Mercer, I. P.; Yang, J. Y., Promoting Proton Coupled Electron Transfer in Redox Catalysts through Molecular Design. Chem. Commun. 2019, 55, 10342-10358. 26.Teller, H.; Krichevski, O.; Gur, M.; Gedanken, A.; Schechter, A., Ruthenium Phosphide Synthesis and Electroactivity toward Oxygen Reduction in Acid Solutions. ACS Catal. 2015, 5, 4260-4267. 27.Pegis, M. L.; Wise, C. F.; Martin, D. J.; Mayer, J. M., Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts. Chem. Rev. 2018, 118, 2340-2391. 28.Carver, C. T.; Matson, B. D.; Mayer, J. M., Electrocatalytic Oxygen Reduction by Iron Tetra-Arylporphyrins Bearing Pendant Proton Relays. J. Am. Chem. Soc. 2012, 134, 5444-5447. 29.Xiong, N.; Zhang, G.; Sun, X.; Zeng, R., Metal‐Metal Cooperation in Dinucleating Complexes Involving Late Transition Metals Directed Towards Organic Catalysis. Chin. J. Chem. 2020, 38, 185-201. 30.Bertermann, R.; Böhnke, J.; Braunschweig, H.; Dewhurst, R. D.; Kupfer, T.; Muessig, J. H.; Pentecost, L.; Radacki, K.; Sen, S. S.; Vargas, A., Dynamic, Reversible Oxidative Addition of Highly Polar Bonds to a Transition Metal. J. Am. Chem. Soc. 2016, 138, 16140-16147. 31.Breitenfeld, J.; Wodrich, M. D.; Hu, X., Bimetallic Oxidative Addition in Nickel-Catalyzed Alkyl–Aryl Kumada Coupling Reactions. Organometallics 2014, 33, 5708-5715. 32.Hartline, D. R.; Zeller, M.; Uyeda, C., Catalytic Carbonylative Rearrangement of Norbornadiene via Dinuclear Carbon–Carbon Oxidative Addition. J. Am. Chem. Soc. 2017, 139, 13672-13675. 33.Dutta, I.; Sarbajna, A.; Pandey, P.; Rahaman, S. M. W.; Singh, K.; Bera, J. K., Acceptorless Dehydrogenation of Alcohols on a Diruthenium(II,II) Platform. Organometallics 2016, 35, 1505-1513. 34.Okamura, M.; Kondo, M.; Kuga, R.; Kurashige, Y.; Yanai, T.; Hayami, S.; Praneeth, V. K. K.; Yoshida, M.; Yoneda, K.; Kawata, S.; Masaoka, S., A Pentanuclear Iron Catalyst Designed for Water Oxidation. Nature 2016, 530, 465-468. 35.Wang, Q.; Zhang, S.; Cui, P.; Weberg, A. B.; Thierer, L. M.; Manor, B. C.; Gau, M. R.; Carroll, P. J.; Tomson, N. C., Interdependent Metal–Metal Bonding and Ligand Redox-Activity in a Series of Dinuclear Macrocyclic Complexes of Iron, Cobalt, and Nickel. Inorg. Chem. 2020, 59, 4200-4214. 36.Velian, A.; Lin, S.; Miller, A. J. M.; Day, M. W.; Agapie, T., Synthesis and C−C Coupling Reactivity of a Dinuclear NiI−NiI Complex Supported by a Terphenyl Diphosphine. J. Am. Chem. Soc. 2010, 132, 6296-6297. 37.Zhou, Y.-Y.; Hartline, D. R.; Steiman, T. J.; Fanwick, P. E.; Uyeda, C., Dinuclear Nickel Complexes in Five States of Oxidation Using a Redox-Active Ligand. Inorg. Chem. 2014, 53, 11770-11777. 38.Behlen, M. J.; Uyeda, C., C2-Symmetric Dinickel Catalysts for Enantioselective [4 + 1]-Cycloadditions. J. Am. Chem. Soc. 2020, 142, 17294-17300. 39.Desnoyer, A. N.; Nicolay, A.; Rios, P.; Ziegler, M. S.; Tilley, T. D., Bimetallics in a Nutshell: Complexes Supported by Chelating Naphthyridine-Based Ligands. Acc. Chem. Res. 2020, 53, 1944-1956. 40.Huang, C.-Y.; Kuan, K.-Y.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T., Synthesis and Catalytic Activity of Water-Soluble Ruthenium(II) Complexes Bearing a Naphthyridine–Carboxylate Ligand. Organometallics 2014, 33, 2831-2836. 41.Isaac, J. A.; Gennarini, F.; López, I.; Thibon-Pourret, A.; David, R.; Gellon, G.; Gennaro, B.; Philouze, C.; Meyer, F.; Demeshko, S.; Le Mest, Y.; Réglier, M.; Jamet, H.; Le Poul, N.; Belle, C., Room-Temperature Characterization of a Mixed-Valent Μ-Hydroxodicopper(II,III) Complex. Inorg. Chem. 2016, 55, 8263-8266. 42.Sullivan, D. A.; Palenik, G. J., Binuclear Complexes. Synthesis and Characterization of the Binuclear Ligand 1,4-Dihydrazinophthalazine Bis(2'-pyridinecarboxaldimine) and the Nickel Complex -Chloro-tetraaqua[1,4-Dihydrazinophthlazine bis(2'-pyridinecarboxaldimine)]dinickel(II) Chloride Dihydrate. Inorg. Chem. 1977, 16, 1127-1133. 43.Kuzelka, J.; Mukhopadhyay, S.; Spingler, B.; Lippard, S. J., Synthesis and Characterization of Cu2(I,I), Cu2(I,II), and Cu2(II,II) Compounds Supported by Two Phthalazine-Based Ligands: Influence of a Hydrophobic Pocket. Inorg. Chem. 2004, 43, 1751-1761. 44.Barrios, A. M.; Lippard, S. J., Phthalazine-Based Dinucleating Ligands Afford Dinuclear Centers Often Encountered in Metalloenzyme Active Sites. Inorg. Chem. 2001, 40, 1060-1064. 45.Balogh-Hergovich, É.; Speier, G.; Réglier, M.; Giorgi, M.; Kuzmann, E.; Vértes, A., Synthesis, Structure and Characterization of new Complexes [Fe2(-OMe)2(PAP)(X)4] (PAP= 1,4-Di(2'-pyridyl)aminophthalazine, X=Cl, OAc) and their Oxidation Catalysis. Inorg. Chim. Acta 2004, 357, 3689-3696. 46.Andrew, J. E.; Blake, A. B., Crystal Structure of a Binuclear Nickel(II) Complex of 1,4-Dihydrazinophthalazine. J. Chem. Soc. A 1969, 1408-1415. 47.Shaikh, I. A.; Johnson, F.; Grollman, A. P., Streptonigrin. 1. Structure-Activity Relationships among Simple Bicyclic Analogs. Rate Dependence of DNA Degradation on Quinone Reduction Potential. J. Med. Chem. 1986, 29, 1329-1340. 48.Wang, X.-Z.; Zeng, C.-C., Iron-Catalyzed Minisci acylation of N-heteroarenes with α-keto acids. Tetrahedron 2019, 75, 1425-1430. 49.Pedersen, B., Isomerization of Phenylhydrazones of Dehydroascorbic Acid. Acta Chem. Scand. 1980, B 34, 429-433. 50.Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R., Tables of Bond Lengths Determined by X-Ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds. J. Chem. Soc., Perkin Trans. 2 1987, S1. 51.McNeece, A. J.; Jesse, K. A.; Xie, J.; Filatov, A. S.; Anderson, J. S., Generation and Oxidative Reactivity of a Ni(II) Superoxo Complex via Ligand-Based Redox Non-Innocence. J. Am. Chem. Soc. 2020, 142, 10824-10832. 52.Stroka, J. R.; Kandemir, B.; Matson, E. M.; Bren, K. L., Electrocatalytic Multielectron Nitrite Reduction in Water by an Iron Complex. ACS Catal. 2020, 10, 13968-13972. 53.Mo, Z.; Zhang, Q.; Deng, L., Dinuclear Iron Complex-Catalyzed Cross-Coupling of Primary Alkyl Fluorides with Aryl Grignard Reagents. Organometallics 2012, 31, 6518-6521. 54.Wei, D.; Darcel, C., Iron Catalysis in Reduction and Hydrometalation Reactions. Chem. Rev. 2019, 119, 2550-2610. 55.Shang, R.; Ilies, L.; Nakamura, E., Iron-Catalyzed C–H Bond Activation. Chem. Rev. 2017, 117, 9086-9139. 56.Hoyt, J. M.; Schmidt, V. A.; Tondreau, A. M.; Chirik, P. J., Iron-Catalyzed Intermolecular [2+2] Cycloadditions of Unactivated Alkenes. Science 2015, 349, 960-963. 57.Fatur, S. M.; Shepard, S. G.; Higgins, R. F.; Shores, M. P.; Damrauer, N. H., A Synthetically Tunable System to Control MLCT Excited-State Lifetimes and Spin States in Iron(II) Polypyridines. J. Am. Chem. Soc. 2017, 139, 4493-4505. 58.Shepard, S. G.; Fatur, S. M.; Rappé, A. K.; Damrauer, N. H., Highly Strained Iron(II) Polypyridines: Exploiting the Quintet Manifold to Extend the Lifetime of MLCT Excited States. J. Am. Chem. Soc. 2016, 138, 2949-2952. 59.Billups, J. R.; Fokakis, Z. N.; Creutz, S. E., Octahedral Iron Complexes of Pyrazine(diimine) Pincers: Ligand Electronic Effects and Protonation. Inorg. Chem. 2020, 59, 15228-15239. 60.Chen, L.; Su, X.-J.; Jurss, J. W., Selective Alkane C–H Bond Oxidation Catalyzed by a Non-Heme Iron Complex Featuring a Robust Tetradentate Ligand. Organometallics 2018, 37, 4535-4539. 61.Weiss, D. T.; Anneser, M. R.; Haslinger, S.; Pöthig, A.; Cokoja, M.; Basset, J.-M.; Kühn, F. E., NHC Versus Pyridine: How “Teeth” Change the Redox Behavior of Iron(II) Complexes. Organometallics 2015, 34, 5155-5166. 62.Li, M.; Kwong, F. Y., Cobalt‐Catalyzed Tandem C−H Activation/C−C Cleavage/C−H Cyclization of Aromatic Amides with Alkylidenecyclopropanes. Angewandte Chemie 2018, 130, 6622-6626. 63.Li, Y.; Handunneththige, S.; Farquhar, E. R.; Guo, Y.; Talipov, M. R.; Li, F.; Wang, D., Highly Reactive CoIII,IV2(-O)2 Diamond Core Complex That Cleaves C–H Bonds. J. Am. Chem. Soc. 2019, 141, 20127-20136. 64.Sun, J.; Deng, L., Cobalt Complex-Catalyzed Hydrosilylation of Alkenes and Alkynes. ACS Catal. 2016, 6, 290-300. 65.Moselage, M.; Li, J.; Ackermann, L., Cobalt-Catalyzed C–H Activation. ACS Catal. 2016, 6, 498-525. 66.Cowan, M. G.; Olguín, J.; Narayanaswamy, S.; Tallon, J. L.; Brooker, S., Reversible Switching of a Cobalt Complex by Thermal, Pressure, and Electrochemical Stimuli: Abrupt, Complete, Hysteretic Spin Crossover. J. Am. Chem. Soc. 2012, 134, 2892-2894. 67.Tong, L.; Zong, R.; Thummel, R. P., Visible Light-Driven Hydrogen Evolution from Water Catalyzed by A Molecular Cobalt Complex. J. Am. Chem. Soc. 2014, 136, 4881-4884. 68.Sun, Y.; Bigi, J. P.; Piro, N. A.; Tang, M. L.; Long, J. R.; Chang, C. J., Molecular Cobalt Pentapyridine Catalysts for Generating Hydrogen from Water. J. Am. Chem. Soc. 2011, 133, 9212-9215. 69.Connelly, N. G.; Geiger, W. E., Chemical Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96, 877-910. 70.Bobb, R.; Alhakimi, G.; Studnicki, L.; Lough, A.; Chin, J., Stereoselective Recognition of an Aziridine with a Co(III) Complex: A Potential Transition-State Analogue for Catalytic Epoxidation. J. Am. Chem. Soc. 2002, 124, 4544-4545. 71.Grohmann, A.; Knoch, F., A Square Pyramidal Coordination Cap: The Co(III) Complex of a Novel Tetrapodal Pentadentate Ligand with an NN4 Donor Set. Inorg. Chem. 1996, 35, 7932-7934. 72.Wei, Z.; Wang, Y.; Li, Y.; Ferraccioli, R.; Liu, Q., Bidentate NHC-Cobalt Catalysts for the Hydrogenation of Hindered Alkenes. Organometallics 2020, 39, 3082-3087. 73.Uehling, M. R.; King, R. P.; Krska, S. W.; Cernak, T.; Buchwald, S. L., Pharmaceutical Diversification via Palladium Oxidative Addition Complexes. Science 2019, 363, 405-408. 74.Selander, N.; Szabó, K. J., Catalysis by Palladium Pincer Complexes. Chem. Rev. 2011, 111, 2048-2076. 75.Wang, D.; Weinstein, A. B.; White, P. B.; Stahl, S. S., Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions. Chem. Rev. 2018, 118, 2636-2679. 76.Lin, J.; Zou, C.; Zhang, X.; Gao, Q.; Suo, S.; Zhuo, Q.; Chang, X.; Xie, M.; Lu, W., Highly Phosphorescent Organopalladium(II) Complexes with Metal–Metal-to-Ligand Charge-Transfer Excited States in Fluid Solutions. Dalton Trans. 2019, 48, 10417-10421. 77.Bandyopadhyay, N.; Pradhan, A. B.; Das, S.; Naskar, J. P., Comparative Study of an Osazone Based Ligand and Its Palladium(II) Complex with Human Serum Albumin: A Spectroscopic, Thermodynamic and Molecular Docking Approach. J. Photochem. Photobiol., B 2017, 173, 1-11. 78.Meyer, D.; Taige, M. A.; Zeller, A.; Hohlfeld, K.; Ahrens, S.; Strassner, T., Palladium Complexes with Pyrimidine-Functionalized N-Heterocyclic Carbene Ligands: Synthesis, Structure and Catalytic Activity. Organometallics 2009, 28, 2142-2149. 79.Sengupta, D.; Saha Chowdhury, N.; Samanta, S.; Ghosh, P.; Seth, S. K.; Demeshko, S.; Meyer, F.; Goswami, S., Regioselective ortho Amination of Coordinated 2-(Arylazo)pyridine. Isolation of Monoradical Palladium Complexes of a New Series of Azo-Aromatic Pincer Ligands. Inorg. Chem. 2015, 54, 11465-11476. 80.Wang, S.; Wei, D.; Yang, X.; Song, S.; Sun, L.; Xin, X.; Zheng, G.; Wang, R.; Liu, L.; Sun, J.; Wang, H.; Lv, F.; Mo, W.; Wang, H.; Luo, C.; Xiong, Z.; Wang, S.; Li, S.; Xia, Y., Study on a New Type of Environment-Friendly Polymer and Its Preliminary Application as Soil Consolidation Agent During Tree Transplanting. Sci. Rep. 2021, 11. 81.Zhu, Y.; Romain, C.; Williams, C. K., Sustainable Polymers from Renewable Resources. Nature 2016, 540, 354-362. 82.Jamshidian, M.; Tehrany, E. A.; Imran, M.; Jacquot, M.; Desobry, S., Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Compr. Rev. Food Sci. Food Saf. 2010, 9, 552-571. 83.Thomas, C.; Gladysz, J. A., Highly Active Families of Catalysts for the Ring-Opening Polymerization of Lactide: Metal Templated Organic Hydrogen Bond Donors Derived from 2-Guanidinobenzimidazole. ACS Catal. 2014, 4, 1134-1138. 84.Biernesser, A. B.; Li, B.; Byers, J. A., Redox-Controlled Polymerization of Lactide Catalyzed by Bis(imino)pyridine Iron Bis(alkoxide) Complexes. J. Am. Chem. Soc. 2013, 135, 16553-16560. 85.Coady, D. J.; Engler, A. C.; Horn, H. W.; Bajjuri, K. M.; Fukushima, K.; Jones, G. O.; Nelson, A.; Rice, J. E.; Hedrick, J. L., Catalyst Chelation Effects in Organocatalyzed Ring-Opening Polymerization of Lactide. ACS Macro Lett. 2012, 1, 19-22. 86.Csihony, S.; Culkin, D. A.; Sentman, A. C.; Dove, A. P.; Waymouth, R. M.; Hedrick, J. L., Single-Component Catalyst/Initiators for the Organocatalytic Ring-Opening Polymerization of Lactide. J. Am. Chem. Soc. 2005, 127, 9079-9084. 87.Song, H.; Kang, B.; Hong, S. H., Fe-Catalyzed Acceptorless Dehydrogenation of Secondary Benzylic Alcohols. ACS Catal. 2014, 4, 2889-2895. 88.Liu, J.; Ma, S., Iron-Catalyzed Aerobic Oxidation of Allylic Alcohols: The Issue of C═C Bond Isomerization. Org. Lett. 2013, 15, 5150-5153. 89.Jiang, X.; Liu, J.; Ma, S., Iron-Catalyzed Aerobic Oxidation of Alcohols: Lower Cost and Improved Selectivity. Organic Process Research & Development 2019, 23, 825-835. 90.Heins, S. P.; Schneider, P. E.; Speelman, A. L.; Hammes-Schiffer, S.; Appel, A. M., Electrocatalytic Oxidation of Alcohol with Cobalt Triphosphine Complexes. ACS Catal. 2021, 11, 6384-6389. 91.Karthikeyan, I.; Alamsetti, S. K.; Sekar, G., Isolation and Characterization of a Trinuclear Cobalt Complex Containing Trigonal-Prismatic Cobalt in Secondary Alcohol Aerobic Oxidation. Organometallics 2014, 33, 1665-1671. 92.Sinha, S.; Das, S.; Sikari, R.; Parua, S.; Brandaõ, P.; Demeshko, S.; Meyer, F.; Paul, N. D., Redox Noninnocent Azo-Aromatic Pincers and Their Iron Complexes. Isolation, Characterization, and Catalytic Alcohol Oxidation. Inorg. Chem. 2017, 56, 14084-14100. 93.Miyaura, N.; Suzuki, A., Stereoselective Synthesis of Arylated (E)-Alkenes by the Reaction of Alk-1-enylboranes with Aryl Halides in the Presence of Palladium Catalyst. J. Chem. Soc., Chem. Commun. 1979, 866. 94.Micksch, M.; Strassner, T., Palladium(II) Complexes with Chelating Biscarbene Ligands in the Catalytic Suzuki-Miyaura Cross-Coupling Reaction. Eur. J. Inorg. Chem. 2012, 2012, 5872-5880. 95.Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.; Nolan, S. P., Modified (NHC)Pd(allyl)Cl (NHC =N-Heterocyclic Carbene) Complexes for Room-Temperature Suzuki−Miyaura and Buchwald−Hartwig Reactions. J. Am. Chem. Soc. 2006, 128, 4101-4111. 96.Navarro, O.; Kaur, H.; Mahjoor, P.; Nolan, S. P., Cross-Coupling and Dehalogenation Reactions Catalyzed by (N-Heterocyclic Carbene)Pd(Allyl)Cl Complexes. The Journal of Organic Chemistry 2004, 69, 3173-3180. 97.Crockett, M. P.; Wong, A. S.; Li, B.; Byers, J. A., Rational Design of an Iron‐Based Catalyst for Suzuki–Miyaura Cross‐Couplings Involving Heteroaromatic Boronic Esters and Tertiary Alkyl Electrophiles. Angew. Chem. Int. Ed. 2020, 59, 5392-5397. 98.Tailor, S. B.; Manzotti, M.; Asghar, S.; Rowsell, B. J. S.; Luckham, S. L. J.; Sparkes, H. A.; Bedford, R. B., Revisiting Claims of the Iron-, Cobalt-, Nickel-, and Copper-Catalyzed Suzuki Biaryl Cross-Coupling of Aryl Halides with Aryl Boronic Acids. Organometallics 2019, 38, 1770-1777. 99.Chen, F.; Liu, N.; Dai, B., Iron(II) Bis-CNN Pincer Complex-Catalyzed Cyclic Carbonate Synthesis at Room Temperature. ACS Sustainable Chem. Eng. 2017, 5, 9065-9075. 100.Büttner, H.; Grimmer, C.; Steinbauer, J.; Werner, T., Iron-Based Binary Catalytic System for the Valorization of CO2 into Biobased Cyclic Carbonates. ACS Sustainable Chem. Eng. 2016, 4, 4805-4814. 101.Li, J.; Han, Y.; Lin, H.; Wu, N.; Li, Q.; Jiang, J.; Zhu, J., Cobalt–Salen-Based Porous Ionic Polymer: The Role of Valence on Cooperative Conversion of CO2 to Cyclic Carbonate. ACS Appl. Mater. Interfaces 2020, 12, 609-618. 102.Song, W.-Y.; Liu, Q.; Bu, Q.; Wei, D.; Dai, B.; Liu, N., Rational Design of Cobalt Complexes Based on the Trans Effect of Hybrid Ligands and Evaluation of Their Catalytic Activity in the Cycloaddition of Carbon Dioxide with Epoxide. Organometallics 2020, 39, 3546-3561.
|