跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 05:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周思仲
研究生(外文):Siz-Chung Chou
論文名稱:多功能鐵、鈷及鈀金屬錯合物的合成、鑑定與催化
論文名稱(外文):Synthesis, Characterizations, and Catalysis of Multifunctional Iron, Cobalt, and Palladium Complexes
指導教授:張慕傑
指導教授(外文):Mu-Chieh Chang
口試委員:林哲仁林峻毅
口試委員(外文):Che-Jen LinChun-Yi Lin
口試日期:2021-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:120
中文關鍵詞:金屬-配位基協同作用金屬-金屬協同作用多功能配位基多功能金屬錯合物催化反應
外文關鍵詞:metal-ligand cooperationmetal-metal cooperationmultifunctional metallic complexcatalytic reaction
DOI:10.6342/NTU202101799
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
鈀、鉑等貴金屬在近代的科學發展中被發掘可做為有效的催化劑,且廣泛地被使用在催化各種小分子的反應中。但貴金屬缺點為較為貴重且較不易取得,為解決此一缺陷,我們選用價格相對較便宜、且地殼含量較高之第一列過渡金屬元素來解決此問題 (如鐵、鈷、鎳、銅等金屬)。為了進一步加強金屬中心的催化能力,我們加入配位基和金屬反應形成金屬錯合物。
透過金屬-配位基協同作用 (Metal-Ligand Cooperation) 及金屬-金屬協同作用 (Metal-Metal Cooperation) 兩大作用的幫助下,可以穩定金屬不常見的氧化數及催化涉及電子、質子轉移的反應。設計好一個具備以上特性的酞嗪 (Phthalazine) 配位基H2L後,和兩種不同的金屬鹽類反應後,我們成功得到鐵(II)錯合物 4、鈷(II)錯合物 5,利用核磁共振光譜法及X-ray單晶繞射來確認溶液中跟固體的結構,皆為單核金屬錯合物。藉由循環伏安法研究電化學上氧化環原的性質,觀察是否具有可逆的氧化環原峰可幫助催化反應。而鈷錯合物(II) 5 發現在加入氧化劑的狀況下會形成另一鈷錯合物(III) 6,其中有一個H2L發生了碳氫鍵活化作用 (C-H Bond Activation)。最後,我們使用H2L和鈀金屬鹽類反應後得到了鈀(II)錯合物 7,同樣為單核金屬錯合物。
而完成對錯合物的性質和結構鑑定後,我們分別對Suzuki 偶聯反應、開環聚合、醇類氧化反應及二氧化碳環加成反應進行催化,並比較各個錯合物的優缺點,以及跟原先文獻上結果的差異。
Nowadays, noble metals, such as palladium and platinum, have been discovered as effective catalysts. They are also widely used to catalyze various small molecule reactions. However, these noble metals are expensive and scarce. In order to solve the problem, we choose the first row transition metals (iron, cobalt, nickel, and copper) which are relatively cheap and abundant on the curst. So as to further enhance the catalytic ability of the metal center, we utilize ligands to react with metals to form metal complexes.
With the help of the Metal-Ligand Cooperation and Metal-Metal Cooperation, these two synergetic cooperation can stabilize the uncommon oxidation states of metals and catalyze reactions involving electron and proton transfer. After designing a phthalazine-based ligand H2L and reacting with two different metal salts, we obtained iron (II) complex 4, cobalt (II) complex 5. The structure of the solution state and the solid state can be confirmed by using nuclear magnetic resonance spectroscopy and X-ray single crystal diffraction. All the results show that these complexes are mononuclear metal complexes. Besides, cyclic voltammetry is used to study the electrochemical properties of the complexes, and observe whether there is a reversible reduction peak to help catalyze the reaction. Cobalt complex 5 has been discovered that it can be oxidized to cobalt complex (III) 6 when an oxidant is added, and C-H bond activation has occurred to one of the ligands. Last, we used H2L to react with palladium salts, and got palladium complex (II) 7 which is also a mononuclear metal complex.
After completing the identification of the properties and structure of the complexes, we catalyzed the Suzuki coupling reaction, ring-opening polymerization, alcohol oxidation reaction and carbon dioxide cycloaddition reaction, and compared their catalytic activity to the original literature.
目錄
致謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
式目錄 xi
表目錄 xiii
第一章 緒論 1
1.1 金屬-配位基協同作用 2
1.1.1 Redox Non-Innocent Ligand 2
1.1.2 Pendant Proton Relay 7
1.2 金屬-金屬協同作用 10
1.3 多功能催化劑 16
1.4 多功能配位基的設計與構思 20
第二章 結果與討論 22
2.1 配位基合成與鑑定 22
2.1.1 配位基合成與結構鑑定 22
2.1.2 配位基的去質子化實驗 26
2.1.3 配位基的電化學分析 30
2.2 鐵錯合物 4 的合成和鑑定 31
2.2.1 鐵錯合物 4 的合成和結構鑑定 31
2.2.2 鐵錯合物 4 的電化學性質 40
2.3 鈷錯合物 5、6的合成和鑑定 43
2.3.1 鈷錯合物 5 的合成和結構鑑定 43
2.3.2 鈷錯合物 5 的電化學性質 47
2.3.3 鈷錯合物 6 的合成和結構鑑定 50
2.3.3 鈷錯合物6的反應路徑探討 56
2.4 鈀錯合物 7 的合成和鑑定 59
2.4.1鈀錯合物 7 的合成和結構鑑定 59
2.4.2鈀錯合物 7 的電化學性質 63
2.5 催化反應 66
2.5.1 D,L Lactide的開環聚合反應 66
2.5.2 醇類氧化反應 69
2.5.3 Suzuki–Miyaura 偶聯反應 71
2.5.4 環氧化合物和二氧化碳的環加成反應 75
第三章 結論與未來工作 77
第四章 實驗部分 78
4.1 一般敘述 78
4.2物理測量 78
參考資料 89
附錄 103
1.Eady, R. R.; Postgate, J. R., Nitrogenase. Nature 1974, 249, 805-810.
2.Fegler, J., Function of Carbonic Anhydrase in Blood. Nature 1944, 153, 137-138.
3.Hollander, L., The Amylase System of the Liver. Science 1934, 79, 17-18.
4.Stu, B., Lighting the Way from Dinitrogen to Ammonia. C&EN Global Enterprise 2016, 94, 9-9.
5.Han, G.-F.; Li, F.; Chen, Z.-W.; Coppex, C.; Kim, S.-J.; Noh, H.-J.; Fu, Z.; Lu, Y.; Singh, C. V.; Siahrostami, S.; Jiang, Q.; Baek, J.-B., Mechanochemistry for Ammonia Synthesis under Mild Conditions. Nat. Nanotechnol. 2021, 16, 325-330.
6.Čorić, I.; Mercado, B. Q.; Bill, E.; Vinyard, D. J.; Holland, P. L., Binding of Dinitrogen to an Iron–Sulfur–Carbon Site. Nature 2015, 526, 96-99.
7.Crossland, J. L.; Tyler, D. R., Iron–Dinitrogen Coordination Chemistry: Dinitrogen Activation and Reactivity. Coord. Chem. Rev. 2010, 254, 1883-1894.
8.Hohenberger, J.; Ray, K.; Meyer, K., The Biology and Chemistry of High-Valent Iron–Oxo and Iron–Nitrido Complexes. Nat. Commun. 2012, 3, 720.
9.Keilwerth, M.; Grunwald, L.; Mao, W.; Heinemann, F. W.; Sutter, J.; Bill, E.; Meyer, K., Ligand Tailoring toward an Air-Stable Iron(V) Nitrido Complex. J. Am. Chem. Soc. 2021, 143, 1458-1465.
10.Dorantes, M. J.; Moore, J. T.; Bill, E.; Mienert, B.; Lu, C. C., Bimetallic Iron–Tin Catalyst for N2 to NH3 and a Silyldiazenido Model Intermediate. Chem. Commun. 2020, 56, 11030-11033.
11.Cammarota, R. C.; Vollmer, M. V.; Xie, J.; Ye, J.; Linehan, J. C.; Burgess, S. A.; Appel, A. M.; Gagliardi, L.; Lu, C. C., A Bimetallic Nickel–Gallium Complex Catalyzes CO2 Hydrogenation via the Intermediacy of an Anionic d10 Nickel Hydride. J. Am. Chem. Soc. 2017, 139, 14244-14250.
12.Jorgensen, C. K., Differences between the Four Halide Ligands, and Discussion Remarks on Trigonal-Bipyramidal Complexes,on Oxidation States, and on Diagonal Elements of One Electron Engery. Cood. Chem. Rev 1966, 1, 164-178.
13.Manuel, T. D.; Rohde, J.-U., Reaction of a Redox-Active Ligand Complex of Nickel with Dioxygen Probes Ligand-Radical Character. J. Am. Chem. Soc. 2009, 131, 15582-15583.
14.Butschke, B.; Fillman, K. L.; Bendikov, T.; Shimon, L. J. W.; Diskin-Posner, Y.; Leitus, G.; Gorelsky, S. I.; Neidig, M. L.; Milstein, D., How Innocent are Potentially Redox Non-Innocent Ligands? Electronic Structure and Metal Oxidation States in Iron-PNN Complexes as a Representative Case Study. Inorg. Chem. 2015, 54, 4909-4926.
15.Lyaskovskyy, V.; De Bruin, B., Redox Non-Innocent Ligands: Versatile New Tools to Control Catalytic Reactions. ACS Catal. 2012, 2, 270-279.
16.Gelman, D.; Musa, S., Coordination Versatility of sp3-Hybridized Pincer Ligands toward Ligand–Metal Cooperative Catalysis. ACS Catal. 2012, 2, 2456-2466.
17.Higashi, T.; Kusumoto, S.; Nozaki, K., Cleavage of Si–H, B–H, and C–H Bonds by Metal–Ligand Cooperation. Chem. Rev. 2019, 119, 10393-10402.
18.Ringenberg, M. R.; Kokatam, S. L.; Heiden, Z. M.; Rauchfuss, T. B., Redox-Switched Oxidation of Dihydrogen Using a Non-Innocent Ligand. J. Am. Chem. Soc. 2008, 130, 788-789.
19.Du, H.-Y.; Chen, S.-C.; Su, X.-J.; Jiao, L.; Zhang, M.-T., Redox-Active Ligand Assisted Multielectron Catalysis: A Case of CoIII Complex as Water Oxidation Catalyst. J. Am. Chem. Soc. 2018, 140, 1557-1565.
20.Rawat, K. S.; Mahata, A.; Pathak, B., Catalytic Hydrogenation of CO2 by Fe Complexes Containing Pendant Amines: Role of Water and Base. The Journal of Physical Chemistry C 2016, 120, 26652-26662.
21.Gloaguen, F.; Rauchfuss, T. B., Small Molecule Mimics of Hydrogenases: Hydrides and Redox. Chem. Soc. Rev. 2009, 38, 100-108.
22.Dubois, D. L.; Bullock, R. M., Molecular Electrocatalysts for the Oxidation of Hydrogen and the Production of Hydrogen – the Role of Pendant Amines as Proton Relays. Eur. J. Inorg. Chem. 2011, 2011, 1017-1027.
23.Helm, M. L.; Stewart, M. P.; Bullock, R. M.; Dubois, M. R.; Dubois, D. L., A Synthetic Nickel Electrocatalyst with a Turnover Frequency above 100,000 s-1 for H2 Production. Science 2011, 333, 863-866.
24.Daw, P.; Sinha, A.; Rahaman, S. M. W.; Dinda, S.; Bera, J. K., Bifunctional Water Activation for Catalytic Hydration of Organonitriles. Organometallics 2012, 31, 3790-3797.
25.Thammavongsy, Z.; Mercer, I. P.; Yang, J. Y., Promoting Proton Coupled Electron Transfer in Redox Catalysts through Molecular Design. Chem. Commun. 2019, 55, 10342-10358.
26.Teller, H.; Krichevski, O.; Gur, M.; Gedanken, A.; Schechter, A., Ruthenium Phosphide Synthesis and Electroactivity toward Oxygen Reduction in Acid Solutions. ACS Catal. 2015, 5, 4260-4267.
27.Pegis, M. L.; Wise, C. F.; Martin, D. J.; Mayer, J. M., Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts. Chem. Rev. 2018, 118, 2340-2391.
28.Carver, C. T.; Matson, B. D.; Mayer, J. M., Electrocatalytic Oxygen Reduction by Iron Tetra-Arylporphyrins Bearing Pendant Proton Relays. J. Am. Chem. Soc. 2012, 134, 5444-5447.
29.Xiong, N.; Zhang, G.; Sun, X.; Zeng, R., Metal‐Metal Cooperation in Dinucleating Complexes Involving Late Transition Metals Directed Towards Organic Catalysis. Chin. J. Chem. 2020, 38, 185-201.
30.Bertermann, R.; Böhnke, J.; Braunschweig, H.; Dewhurst, R. D.; Kupfer, T.; Muessig, J. H.; Pentecost, L.; Radacki, K.; Sen, S. S.; Vargas, A., Dynamic, Reversible Oxidative Addition of Highly Polar Bonds to a Transition Metal. J. Am. Chem. Soc. 2016, 138, 16140-16147.
31.Breitenfeld, J.; Wodrich, M. D.; Hu, X., Bimetallic Oxidative Addition in Nickel-Catalyzed Alkyl–Aryl Kumada Coupling Reactions. Organometallics 2014, 33, 5708-5715.
32.Hartline, D. R.; Zeller, M.; Uyeda, C., Catalytic Carbonylative Rearrangement of Norbornadiene via Dinuclear Carbon–Carbon Oxidative Addition. J. Am. Chem. Soc. 2017, 139, 13672-13675.
33.Dutta, I.; Sarbajna, A.; Pandey, P.; Rahaman, S. M. W.; Singh, K.; Bera, J. K., Acceptorless Dehydrogenation of Alcohols on a Diruthenium(II,II) Platform. Organometallics 2016, 35, 1505-1513.
34.Okamura, M.; Kondo, M.; Kuga, R.; Kurashige, Y.; Yanai, T.; Hayami, S.; Praneeth, V. K. K.; Yoshida, M.; Yoneda, K.; Kawata, S.; Masaoka, S., A Pentanuclear Iron Catalyst Designed for Water Oxidation. Nature 2016, 530, 465-468.
35.Wang, Q.; Zhang, S.; Cui, P.; Weberg, A. B.; Thierer, L. M.; Manor, B. C.; Gau, M. R.; Carroll, P. J.; Tomson, N. C., Interdependent Metal–Metal Bonding and Ligand Redox-Activity in a Series of Dinuclear Macrocyclic Complexes of Iron, Cobalt, and Nickel. Inorg. Chem. 2020, 59, 4200-4214.
36.Velian, A.; Lin, S.; Miller, A. J. M.; Day, M. W.; Agapie, T., Synthesis and C−C Coupling Reactivity of a Dinuclear NiI−NiI Complex Supported by a Terphenyl Diphosphine. J. Am. Chem. Soc. 2010, 132, 6296-6297.
37.Zhou, Y.-Y.; Hartline, D. R.; Steiman, T. J.; Fanwick, P. E.; Uyeda, C., Dinuclear Nickel Complexes in Five States of Oxidation Using a Redox-Active Ligand. Inorg. Chem. 2014, 53, 11770-11777.
38.Behlen, M. J.; Uyeda, C., C2-Symmetric Dinickel Catalysts for Enantioselective [4 + 1]-Cycloadditions. J. Am. Chem. Soc. 2020, 142, 17294-17300.
39.Desnoyer, A. N.; Nicolay, A.; Rios, P.; Ziegler, M. S.; Tilley, T. D., Bimetallics in a Nutshell: Complexes Supported by Chelating Naphthyridine-Based Ligands. Acc. Chem. Res. 2020, 53, 1944-1956.
40.Huang, C.-Y.; Kuan, K.-Y.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T., Synthesis and Catalytic Activity of Water-Soluble Ruthenium(II) Complexes Bearing a Naphthyridine–Carboxylate Ligand. Organometallics 2014, 33, 2831-2836.
41.Isaac, J. A.; Gennarini, F.; López, I.; Thibon-Pourret, A.; David, R.; Gellon, G.; Gennaro, B.; Philouze, C.; Meyer, F.; Demeshko, S.; Le Mest, Y.; Réglier, M.; Jamet, H.; Le Poul, N.; Belle, C., Room-Temperature Characterization of a Mixed-Valent Μ-Hydroxodicopper(II,III) Complex. Inorg. Chem. 2016, 55, 8263-8266.
42.Sullivan, D. A.; Palenik, G. J., Binuclear Complexes. Synthesis and Characterization of the Binuclear Ligand 1,4-Dihydrazinophthalazine Bis(2'-pyridinecarboxaldimine) and the Nickel Complex -Chloro-tetraaqua[1,4-Dihydrazinophthlazine bis(2'-pyridinecarboxaldimine)]dinickel(II) Chloride Dihydrate. Inorg. Chem. 1977, 16, 1127-1133.
43.Kuzelka, J.; Mukhopadhyay, S.; Spingler, B.; Lippard, S. J., Synthesis and Characterization of Cu2(I,I), Cu2(I,II), and Cu2(II,II) Compounds Supported by Two Phthalazine-Based Ligands: Influence of a Hydrophobic Pocket. Inorg. Chem. 2004, 43, 1751-1761.
44.Barrios, A. M.; Lippard, S. J., Phthalazine-Based Dinucleating Ligands Afford Dinuclear Centers Often Encountered in Metalloenzyme Active Sites. Inorg. Chem. 2001, 40, 1060-1064.
45.Balogh-Hergovich, É.; Speier, G.; Réglier, M.; Giorgi, M.; Kuzmann, E.; Vértes, A., Synthesis, Structure and Characterization of new Complexes [Fe2(-OMe)2(PAP)(X)4] (PAP= 1,4-Di(2'-pyridyl)aminophthalazine, X=Cl, OAc) and their Oxidation Catalysis. Inorg. Chim. Acta 2004, 357, 3689-3696.
46.Andrew, J. E.; Blake, A. B., Crystal Structure of a Binuclear Nickel(II) Complex of 1,4-Dihydrazinophthalazine. J. Chem. Soc. A 1969, 1408-1415.
47.Shaikh, I. A.; Johnson, F.; Grollman, A. P., Streptonigrin. 1. Structure-Activity Relationships among Simple Bicyclic Analogs. Rate Dependence of DNA Degradation on Quinone Reduction Potential. J. Med. Chem. 1986, 29, 1329-1340.
48.Wang, X.-Z.; Zeng, C.-C., Iron-Catalyzed Minisci acylation of N-heteroarenes with α-keto acids. Tetrahedron 2019, 75, 1425-1430.
49.Pedersen, B., Isomerization of Phenylhydrazones of Dehydroascorbic Acid. Acta Chem. Scand. 1980, B 34, 429-433.
50.Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R., Tables of Bond Lengths Determined by X-Ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds. J. Chem. Soc., Perkin Trans. 2 1987, S1.
51.McNeece, A. J.; Jesse, K. A.; Xie, J.; Filatov, A. S.; Anderson, J. S., Generation and Oxidative Reactivity of a Ni(II) Superoxo Complex via Ligand-Based Redox Non-Innocence. J. Am. Chem. Soc. 2020, 142, 10824-10832.
52.Stroka, J. R.; Kandemir, B.; Matson, E. M.; Bren, K. L., Electrocatalytic Multielectron Nitrite Reduction in Water by an Iron Complex. ACS Catal. 2020, 10, 13968-13972.
53.Mo, Z.; Zhang, Q.; Deng, L., Dinuclear Iron Complex-Catalyzed Cross-Coupling of Primary Alkyl Fluorides with Aryl Grignard Reagents. Organometallics 2012, 31, 6518-6521.
54.Wei, D.; Darcel, C., Iron Catalysis in Reduction and Hydrometalation Reactions. Chem. Rev. 2019, 119, 2550-2610.
55.Shang, R.; Ilies, L.; Nakamura, E., Iron-Catalyzed C–H Bond Activation. Chem. Rev. 2017, 117, 9086-9139.
56.Hoyt, J. M.; Schmidt, V. A.; Tondreau, A. M.; Chirik, P. J., Iron-Catalyzed Intermolecular [2+2] Cycloadditions of Unactivated Alkenes. Science 2015, 349, 960-963.
57.Fatur, S. M.; Shepard, S. G.; Higgins, R. F.; Shores, M. P.; Damrauer, N. H., A Synthetically Tunable System to Control MLCT Excited-State Lifetimes and Spin States in Iron(II) Polypyridines. J. Am. Chem. Soc. 2017, 139, 4493-4505.
58.Shepard, S. G.; Fatur, S. M.; Rappé, A. K.; Damrauer, N. H., Highly Strained Iron(II) Polypyridines: Exploiting the Quintet Manifold to Extend the Lifetime of MLCT Excited States. J. Am. Chem. Soc. 2016, 138, 2949-2952.
59.Billups, J. R.; Fokakis, Z. N.; Creutz, S. E., Octahedral Iron Complexes of Pyrazine(diimine) Pincers: Ligand Electronic Effects and Protonation. Inorg. Chem. 2020, 59, 15228-15239.
60.Chen, L.; Su, X.-J.; Jurss, J. W., Selective Alkane C–H Bond Oxidation Catalyzed by a Non-Heme Iron Complex Featuring a Robust Tetradentate Ligand. Organometallics 2018, 37, 4535-4539.
61.Weiss, D. T.; Anneser, M. R.; Haslinger, S.; Pöthig, A.; Cokoja, M.; Basset, J.-M.; Kühn, F. E., NHC Versus Pyridine: How “Teeth” Change the Redox Behavior of Iron(II) Complexes. Organometallics 2015, 34, 5155-5166.
62.Li, M.; Kwong, F. Y., Cobalt‐Catalyzed Tandem C−H Activation/C−C Cleavage/C−H Cyclization of Aromatic Amides with Alkylidenecyclopropanes. Angewandte Chemie 2018, 130, 6622-6626.
63.Li, Y.; Handunneththige, S.; Farquhar, E. R.; Guo, Y.; Talipov, M. R.; Li, F.; Wang, D., Highly Reactive CoIII,IV2(-O)2 Diamond Core Complex That Cleaves C–H Bonds. J. Am. Chem. Soc. 2019, 141, 20127-20136.
64.Sun, J.; Deng, L., Cobalt Complex-Catalyzed Hydrosilylation of Alkenes and Alkynes. ACS Catal. 2016, 6, 290-300.
65.Moselage, M.; Li, J.; Ackermann, L., Cobalt-Catalyzed C–H Activation. ACS Catal. 2016, 6, 498-525.
66.Cowan, M. G.; Olguín, J.; Narayanaswamy, S.; Tallon, J. L.; Brooker, S., Reversible Switching of a Cobalt Complex by Thermal, Pressure, and Electrochemical Stimuli: Abrupt, Complete, Hysteretic Spin Crossover. J. Am. Chem. Soc. 2012, 134, 2892-2894.
67.Tong, L.; Zong, R.; Thummel, R. P., Visible Light-Driven Hydrogen Evolution from Water Catalyzed by A Molecular Cobalt Complex. J. Am. Chem. Soc. 2014, 136, 4881-4884.
68.Sun, Y.; Bigi, J. P.; Piro, N. A.; Tang, M. L.; Long, J. R.; Chang, C. J., Molecular Cobalt Pentapyridine Catalysts for Generating Hydrogen from Water. J. Am. Chem. Soc. 2011, 133, 9212-9215.
69.Connelly, N. G.; Geiger, W. E., Chemical Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96, 877-910.
70.Bobb, R.; Alhakimi, G.; Studnicki, L.; Lough, A.; Chin, J., Stereoselective Recognition of an Aziridine with a Co(III) Complex: A Potential Transition-State Analogue for Catalytic Epoxidation. J. Am. Chem. Soc. 2002, 124, 4544-4545.
71.Grohmann, A.; Knoch, F., A Square Pyramidal Coordination Cap: The Co(III) Complex of a Novel Tetrapodal Pentadentate Ligand with an NN4 Donor Set. Inorg. Chem. 1996, 35, 7932-7934.
72.Wei, Z.; Wang, Y.; Li, Y.; Ferraccioli, R.; Liu, Q., Bidentate NHC-Cobalt Catalysts for the Hydrogenation of Hindered Alkenes. Organometallics 2020, 39, 3082-3087.
73.Uehling, M. R.; King, R. P.; Krska, S. W.; Cernak, T.; Buchwald, S. L., Pharmaceutical Diversification via Palladium Oxidative Addition Complexes. Science 2019, 363, 405-408.
74.Selander, N.; Szabó, K. J., Catalysis by Palladium Pincer Complexes. Chem. Rev. 2011, 111, 2048-2076.
75.Wang, D.; Weinstein, A. B.; White, P. B.; Stahl, S. S., Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions. Chem. Rev. 2018, 118, 2636-2679.
76.Lin, J.; Zou, C.; Zhang, X.; Gao, Q.; Suo, S.; Zhuo, Q.; Chang, X.; Xie, M.; Lu, W., Highly Phosphorescent Organopalladium(II) Complexes with Metal–Metal-to-Ligand Charge-Transfer Excited States in Fluid Solutions. Dalton Trans. 2019, 48, 10417-10421.
77.Bandyopadhyay, N.; Pradhan, A. B.; Das, S.; Naskar, J. P., Comparative Study of an Osazone Based Ligand and Its Palladium(II) Complex with Human Serum Albumin: A Spectroscopic, Thermodynamic and Molecular Docking Approach. J. Photochem. Photobiol., B 2017, 173, 1-11.
78.Meyer, D.; Taige, M. A.; Zeller, A.; Hohlfeld, K.; Ahrens, S.; Strassner, T., Palladium Complexes with Pyrimidine-Functionalized N-Heterocyclic Carbene Ligands: Synthesis, Structure and Catalytic Activity. Organometallics 2009, 28, 2142-2149.
79.Sengupta, D.; Saha Chowdhury, N.; Samanta, S.; Ghosh, P.; Seth, S. K.; Demeshko, S.; Meyer, F.; Goswami, S., Regioselective ortho Amination of Coordinated 2-(Arylazo)pyridine. Isolation of Monoradical Palladium Complexes of a New Series of Azo-Aromatic Pincer Ligands. Inorg. Chem. 2015, 54, 11465-11476.
80.Wang, S.; Wei, D.; Yang, X.; Song, S.; Sun, L.; Xin, X.; Zheng, G.; Wang, R.; Liu, L.; Sun, J.; Wang, H.; Lv, F.; Mo, W.; Wang, H.; Luo, C.; Xiong, Z.; Wang, S.; Li, S.; Xia, Y., Study on a New Type of Environment-Friendly Polymer and Its Preliminary Application as Soil Consolidation Agent During Tree Transplanting. Sci. Rep. 2021, 11.
81.Zhu, Y.; Romain, C.; Williams, C. K., Sustainable Polymers from Renewable Resources. Nature 2016, 540, 354-362.
82.Jamshidian, M.; Tehrany, E. A.; Imran, M.; Jacquot, M.; Desobry, S., Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Compr. Rev. Food Sci. Food Saf. 2010, 9, 552-571.
83.Thomas, C.; Gladysz, J. A., Highly Active Families of Catalysts for the Ring-Opening Polymerization of Lactide: Metal Templated Organic Hydrogen Bond Donors Derived from 2-Guanidinobenzimidazole. ACS Catal. 2014, 4, 1134-1138.
84.Biernesser, A. B.; Li, B.; Byers, J. A., Redox-Controlled Polymerization of Lactide Catalyzed by Bis(imino)pyridine Iron Bis(alkoxide) Complexes. J. Am. Chem. Soc. 2013, 135, 16553-16560.
85.Coady, D. J.; Engler, A. C.; Horn, H. W.; Bajjuri, K. M.; Fukushima, K.; Jones, G. O.; Nelson, A.; Rice, J. E.; Hedrick, J. L., Catalyst Chelation Effects in Organocatalyzed Ring-Opening Polymerization of Lactide. ACS Macro Lett. 2012, 1, 19-22.
86.Csihony, S.; Culkin, D. A.; Sentman, A. C.; Dove, A. P.; Waymouth, R. M.; Hedrick, J. L., Single-Component Catalyst/Initiators for the Organocatalytic Ring-Opening Polymerization of Lactide. J. Am. Chem. Soc. 2005, 127, 9079-9084.
87.Song, H.; Kang, B.; Hong, S. H., Fe-Catalyzed Acceptorless Dehydrogenation of Secondary Benzylic Alcohols. ACS Catal. 2014, 4, 2889-2895.
88.Liu, J.; Ma, S., Iron-Catalyzed Aerobic Oxidation of Allylic Alcohols: The Issue of C═C Bond Isomerization. Org. Lett. 2013, 15, 5150-5153.
89.Jiang, X.; Liu, J.; Ma, S., Iron-Catalyzed Aerobic Oxidation of Alcohols: Lower Cost and Improved Selectivity. Organic Process Research & Development 2019, 23, 825-835.
90.Heins, S. P.; Schneider, P. E.; Speelman, A. L.; Hammes-Schiffer, S.; Appel, A. M., Electrocatalytic Oxidation of Alcohol with Cobalt Triphosphine Complexes. ACS Catal. 2021, 11, 6384-6389.
91.Karthikeyan, I.; Alamsetti, S. K.; Sekar, G., Isolation and Characterization of a Trinuclear Cobalt Complex Containing Trigonal-Prismatic Cobalt in Secondary Alcohol Aerobic Oxidation. Organometallics 2014, 33, 1665-1671.
92.Sinha, S.; Das, S.; Sikari, R.; Parua, S.; Brandaõ, P.; Demeshko, S.; Meyer, F.; Paul, N. D., Redox Noninnocent Azo-Aromatic Pincers and Their Iron Complexes. Isolation, Characterization, and Catalytic Alcohol Oxidation. Inorg. Chem. 2017, 56, 14084-14100.
93.Miyaura, N.; Suzuki, A., Stereoselective Synthesis of Arylated (E)-Alkenes by the Reaction of Alk-1-enylboranes with Aryl Halides in the Presence of Palladium Catalyst. J. Chem. Soc., Chem. Commun. 1979, 866.
94.Micksch, M.; Strassner, T., Palladium(II) Complexes with Chelating Biscarbene Ligands in the Catalytic Suzuki-Miyaura Cross-Coupling Reaction. Eur. J. Inorg. Chem. 2012, 2012, 5872-5880.
95.Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.; Nolan, S. P., Modified (NHC)Pd(allyl)Cl (NHC =N-Heterocyclic Carbene) Complexes for Room-Temperature Suzuki−Miyaura and Buchwald−Hartwig Reactions. J. Am. Chem. Soc. 2006, 128, 4101-4111.
96.Navarro, O.; Kaur, H.; Mahjoor, P.; Nolan, S. P., Cross-Coupling and Dehalogenation Reactions Catalyzed by (N-Heterocyclic Carbene)Pd(Allyl)Cl Complexes. The Journal of Organic Chemistry 2004, 69, 3173-3180.
97.Crockett, M. P.; Wong, A. S.; Li, B.; Byers, J. A., Rational Design of an Iron‐Based Catalyst for Suzuki–Miyaura Cross‐Couplings Involving Heteroaromatic Boronic Esters and Tertiary Alkyl Electrophiles. Angew. Chem. Int. Ed. 2020, 59, 5392-5397.
98.Tailor, S. B.; Manzotti, M.; Asghar, S.; Rowsell, B. J. S.; Luckham, S. L. J.; Sparkes, H. A.; Bedford, R. B., Revisiting Claims of the Iron-, Cobalt-, Nickel-, and Copper-Catalyzed Suzuki Biaryl Cross-Coupling of Aryl Halides with Aryl Boronic Acids. Organometallics 2019, 38, 1770-1777.
99.Chen, F.; Liu, N.; Dai, B., Iron(II) Bis-CNN Pincer Complex-Catalyzed Cyclic Carbonate Synthesis at Room Temperature. ACS Sustainable Chem. Eng. 2017, 5, 9065-9075.
100.Büttner, H.; Grimmer, C.; Steinbauer, J.; Werner, T., Iron-Based Binary Catalytic System for the Valorization of CO2 into Biobased Cyclic Carbonates. ACS Sustainable Chem. Eng. 2016, 4, 4805-4814.
101.Li, J.; Han, Y.; Lin, H.; Wu, N.; Li, Q.; Jiang, J.; Zhu, J., Cobalt–Salen-Based Porous Ionic Polymer: The Role of Valence on Cooperative Conversion of CO2 to Cyclic Carbonate. ACS Appl. Mater. Interfaces 2020, 12, 609-618.
102.Song, W.-Y.; Liu, Q.; Bu, Q.; Wei, D.; Dai, B.; Liu, N., Rational Design of Cobalt Complexes Based on the Trans Effect of Hybrid Ligands and Evaluation of Their Catalytic Activity in the Cycloaddition of Carbon Dioxide with Epoxide. Organometallics 2020, 39, 3546-3561.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top