跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/26 00:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯蘊恬
研究生(外文):Yun-Tien Ko
論文名稱:Tacrolimus 眼用微胞劑型之開發
論文名稱(外文):Development of Ophthalmic Tacrolimus-loaded Micellar Formulations
指導教授:陳進庭
指導教授(外文):Chin-Tin Chen
口試委員:吳亘承謝堅銘
口試委員(外文):Hsuan-Chen WuChien-Ming Hsieh
口試日期:2021-07-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:111
中文關鍵詞:微胞Tacrolimus眼藥遞送劑型開發眼藥水
外文關鍵詞:micellesTacrolimusocular drug deliveryformulation developmenteye drops
DOI:10.6342/NTU202101873
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於眼睛自身的保護機制,眼藥的遞送仍是一大挑戰。眼睛的物理屏障由淚膜、角膜和結膜所構成,不論是親水性或疏水性藥物的滲透都受到了阻礙;而淚液的分泌也導致藥物無法長時間停留在眼睛表面,使得眼藥的生體可利用率 (bioavailability) 僅有 5 %,甚至更低;因此眼藥的遞送為重要的研究課題。
Tacrolimus (TAC) 源自一土壤菌叢 Streptomyces tsukubaensis,最初用來預防移植手術引起的排斥反應;現今可針對乾眼症、春季性結膜炎等發炎症狀來做治療。近年來,許多研究開發利用懸浮液 (suspensions)、軟膏 (ointments)、奈米顆粒 (nanoparticles) 等載體來遞送TAC 至眼睛。考量 TAC 在水中的低溶解度、病患對於藥物的依順性 (compliance) 及藥物的滲透性,本研究選擇微胞 (micelles) 作為開發的劑型,並透過增稠劑的添加來延長藥物停留在眼睛表面的時間。
本研究重點在於 TAC 微胞劑型的開發與優化,首先依據美國食品藥物管理局 (FDA) 的資料庫從中篩選賦形劑來進行實驗設計,為符合規範及因應安全性考量須調整滲透壓及酸鹼值。之後於比較有無添加增稠劑兩種組成的差異時,發現有添加增稠劑組別的黏度有顯著的增加,並於藥物釋放的結果中得到較緩慢的釋放速率;另外,根據細胞毒性試驗的結果,劑型組成顯示具有低細胞毒性,而以細胞攝入的試驗結果得到,添加增稠劑至劑型中並不會影響細胞對於藥物的攝入。
本研究開發出能承載 TAC 的微胞溶液並證實這一劑型的安全性,未來可透過動物實驗,進一步驗證溶液的黏度對於眼藥停留在眼表的影響,同時藉由控制藥物釋放的速率,來達到提升眼藥生體可利用率的目的。
Current drug delivery towards ophthalmic preparations remains limited. The physical barrier of eye consists of the tear film, cornea and conjunctiva, hampering both hydrophilic and hydrophobic drugs to penetrate. Lacrimal secretions also impede the drugs to stay on the ocular surface, resulting in a low bioavailability of the ocular drugs, which is only 5% or even less.
Tacrolimus (TAC) is a macrolide immunosuppressant isolated from a strain of Streptomyces tsukubaensis. It was used to prevent immune rejection caused by transplant surgery, and now it can also be treated for dry eye syndrome, vernal conjunctivitis and other inflammatory symptoms. In recent years, many formulations have been developed as carriers to deliver TAC to eyes, such as suspensions, ointments, and nanoparticles.
This study focuses on the development and optimization of TAC-loaded micelle. The excipients used in this micelles preparation were selected from the U.S. Food and Drug Administration (FDA) database. In order to meet specifications and safety requirements, we adjusted the osmotic pressure and pH value of drugs. Furthermore, to prolong the retention time of TAC on the ocular surface, the viscosity enhancers were incorporated in the formulation. The sample containing viscosity enhancer had a higher viscosity and showed a slower drug release rate. Based on the in vitro cytotoxicity, we found the optimized formulation had good cellular tolerance and low cytotoxicity. The addition of viscosity enhancers has no obvious effects on the uptake of the drugs by the cells based on the results of cellular uptake study.
This study developed a micellar formulation and confirmed its safety. In the future, animal experiments would be conducted to further verify the effects of the eye drops’ viscosity on the ocular surfaces. Meanwhile, by adjusting the viscosity of eye drop and controlling the release of drugs, the formulation has potential to improve the poor bioavailability of hydrophobic drugs.
口試委員會審定書 i
謝辭 ii
中文摘要 iii
英文摘要 iv
目錄 vi
圖目錄 viii
表目錄 ix
第一章、 研究背景 1
1.1 Tacrolimus 1
1.2 眼睛生理學 3
1.3 眼用製劑 (Ophthalmic preparations) 5
1.4 微胞 (micelles) 7
1.5 增稠劑 (viscosity enhancers) 8
1.6 實驗設計 (design of experiments) 9
1.7 研究動機與目的 13
第二章、 材料與方法 14
2.1 藥品與儀器 14
2.2 細胞株 (Cell lines) 18
2.3 實驗方法 20
2.3.1 Tacrolimus-loaded 微胞開發及劑型優化 20
2.3.2 Tacrolimus 定量分析 22
2.3.3 微胞特性分析 23
2.3.4 安定性試驗 24
2.3.5 體外藥物釋放試驗 24
2.3.6 體外細胞毒性測定 26
2.3.7 體外細胞攝入試驗 27
2.4 統計方法 28
第三章、 結果 29
3.1 Tacrolimus-loaded 微胞開發、劑型優化及特性分析 29
3.2 增稠劑添加對劑型之影響 32
3.3 Tacrolimus 定量分析 35
3.4 Tacrolimus微胞溶液黏度測定 36
3.5 安定性試驗 37
3.6 體外藥物釋放試驗 37
3.7 體外細胞毒性測定 39
3.8 體外細胞攝入試驗 40
第四章、 討論 41
4.1 Tacrolimus-loaded 微胞溶液製備與其特性分析 41
4.2 增稠劑對於Tacrolimus微胞溶液黏度的影響與評估 43
4.3 微胞溶液於室溫貯放下的安定性評估 44
4.4 添加增稠劑對於藥物釋放之影響 45
4.5 透過細胞毒性試驗評估微胞溶液之安全性 46
4.6 添加增稠劑對於細胞攝入之影響 47
第五章、 結論 49
第六章、 未來發展 50
參考文獻 90
附錄 96
1.Matsuda, S. and S. Koyasu, Mechanisms of action of cyclosporine. Immunopharmacology, 2000. 47(2-3): p. 119-125.
2.Zhai, J., et al., Tacrolimus in the treatment of ocular diseases. BioDrugs, 2011. 25(2): p. 89-103.
3.Kapturczak, M., H. Meier-Kriesche, and B. Kaplan. Pharmacology of calcineurin antagonists. in Transplantation proceedings. 2004. Elsevier.
4.Pirsch, J.D., et al., A comparison of tacrolimus (fk506) and cyclosporine for immunosuppression after cadaveric renal transplantation1. Transplantation, 1997. 63(7): p. 977-983.
5.Erdinest, N., H. Ben-Eli, and A. Solomon, Topical tacrolimus for allergic eye diseases. Curr Opin Allergy Clin Immunol, 2019. 19(5): p. 535-543.
6.Gupta, A., A. Adamiak, and M. Chow, Tacrolimus: a review of its use for the management of dermatoses. Journal of the European Academy of Dermatology and Venereology, 2002. 16(2): p. 100-114.
7.Hazarika, A.K., & Singh, P. K., Efficacy of topical application of 0.03% tacrolimus eye ointment in the management of allergic conjunctivitis. Journal of natural science, biology, and medicine, 2015. 6(Suppl 1), S10.: p. S10.
8.Anand, P., & Bley, K., Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. British journal of anaesthesia, 2011. 107(4): p. 490-502.
9.Pereira, U., et al., Mechanisms of the sensory effects of tacrolimus on the skin. British Journal of Dermatology, 2010. 163(1): p. 70-77.
10.Shoughy, S.S., Topical tacrolimus in anterior segment inflammatory disorders. Eye and Vision, 2017. 4(1): p. 1-7.
11.Souto, E.B., et al., Advanced Formulation Approaches for Ocular Drug Delivery: State-Of-The-Art and Recent Patents. Pharmaceutics, 2019. 11(9).
12.Sharma, O.P., V. Patel, and T. Mehta, Nanocrystal for ocular drug delivery: hope or hype. Drug Deliv Transl Res, 2016. 6(4): p. 399-413.
13.Srinivasarao, D.A., G. Lohiya, and D.S. Katti, Fundamentals, challenges, and nanomedicine‐based solutions for ocular diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019. 11(4): p. e1548.
14.Almeida, H., et al., In situ gelling systems: a strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Drug discovery today, 2014. 19(4): p. 400-412.
15.Baranowski, P., et al., Ophthalmic drug dosage forms: characterisation and research methods. ScientificWorldJournal, 2014. 2014: p. 861904.
16.Ahuja, M., et al., Topical ocular delivery of NSAIDs. The AAPS journal, 2008. 10(2): p. 229-241.
17.Reinhard, T., et al., Topical FK506 as immunoprophylaxis after allogeneic penetrating normal‐risk keratoplasty: a randomized clinical pilot study. Transplant international, 2005. 18(2): p. 193-197.
18.Hazarika, A.K. and P.K. Singh, Efficacy of topical application of 0.03% tacrolimus eye ointment in the management of allergic conjunctivitis. Journal of natural science, biology, and medicine, 2015. 6(Suppl 1): p. S10.
19.Barot, R.K., et al., Therapeutic effect of 0.1% tacrolimus eye ointment in allergic ocular diseases. Journal of clinical and diagnostic research: JCDR, 2016. 10(6): p. NC05.
20.Miyazaki, D., et al., Steroid-sparing effect of 0.1% tacrolimus eye drop for treatment of shield ulcer and corneal epitheliopathy in refractory allergic ocular diseases. Ophthalmology, 2017. 124(3): p. 287-294.
21.Wu, Q., et al., Development and effects of tacrolimus-loaded nanoparticles on the inhibition of corneal allograft rejection. Drug delivery, 2019. 26(1): p. 290-299.
22.Liu, D., et al., A novel FK506 loaded nanomicelles consisting of amino-terminated poly (ethylene glycol)-block-poly (D, L)-lactic acid and hydroxypropyl methylcellulose for ocular drug delivery. International journal of pharmaceutics, 2019. 562: p. 1-10.
23.Zhang, J., et al., Cationic nanoemulsions with prolonged retention time as promising carriers for ophthalmic delivery of tacrolimus. European Journal of Pharmaceutical Sciences, 2020. 144: p. 105229.
24.Wadhwa, S., et al., Nanocarriers in Ocular Drug Delivery: An Update Review. Current Pharmaceutical Design, 2009. 15(23): p. 2724-2750.
25.Fukushima, A., et al., Therapeutic effects of 0.1% tacrolimus eye drops for refractory allergic ocular diseases with proliferative lesion or corneal involvement. British Journal of Ophthalmology, 2014. 98(8): p. 1023-1027.
26.Siegl, C., et al., Pharmacokinetics of topically applied tacrolimus dissolved in Marinosolv, a novel aqueous eye drop formulation. European Journal of Pharmaceutics and Biopharmaceutics, 2019. 134: p. 88-95.
27.Trivedi, R. and U.B. Kompella, Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine (Lond), 2010. 5(3): p. 485-505.
28.Mandal, A., et al., Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J Control Release, 2017. 248: p. 96-116.
29.Yokoyama, M., et al., CHARACTERIZATION AND ANTICANCER ACTIVITY OF THE MICELLE-FORMING POLYMERIC ANTICANCER DRUG ADRIAMYCIN-CONJUGATED POLY(ETHYLENE GLYCOL)-POLY(ASPARTIC ACID) BLOCK COPOLYMER. Cancer Research, 1990. 50(6): p. 1693-1700.
30.Owen, S.C., D.P.Y. Chan, and M.S. Shoichet, Polymeric micelle stability. Nano Today, 2012. 7(1): p. 53-65.
31.Lin, J.H. and M. Yamazaki, Role of P-glycoprotein in pharmacokinetics. Clinical pharmacokinetics, 2003. 42(1): p. 59-98.
32.Pepic, I., J. Lovric, and J. Filipovic-Grcic, Polymeric micelles in ocular drug delivery: rationale, strategies and challenges. Chemical and Biochemical Engineering Quarterly, 2012. 26(4): p. 365-377.
33.Malhotra, S., et al., Design and Evaluation of Voriconazole Eye Drops for the Treatment of Fungal Keratitis. Journal of Pharmaceutics, 2014. 2014: p. 1-9.
34.Vooturi, S., et al., Effect of Particle Size and Viscosity of Suspensions on Topical Ocular Bioavailability of Budesonide, a Corticosteroid. Journal of Ocular Pharmacology and Therapeutics, 2020. 36(6): p. 404-409.
35.Kortemeier, U., Venzmer, J., Howe, A., Grüning, B., & Herrwerth, S., Thickening agents for surfactant systems. SÖFW Journal, 2010. 136(3), 30.
36.Kumsah, C., G. Pass, and G. Phillips, The interaction between sodium carboxymethylcellulose and water. Journal of Solution Chemistry, 1976. 5(11): p. 799-806.
37.El Hami, A. and P. Pougnet, Embedded Mechatronic Systems 2: Analysis of Failures, Modeling, Simulation and Optimization. Vol. 2. 2020: Elsevier.
38.Venil, C. and P. Lakshmanaperumalsamy, Application of statistical design to the optimization of culture medium for prodigiosin production by Serratia marcescens SWML08. Malaysian Journal of Microbiology, 2009. 5(1): p. 55-61.
39.Motwani, S., et al., Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimisation and in vitro characterisation. European Journal of Pharmaceutics and Biopharmaceutics, 2007.
40.Zimmer, A. and J. Kreuter, Microspheres and nanoparticles used in ocular delivery systems. Advanced Drug Delivery Reviews, 1995. 16(1): p. 61-73.
41.Subasranjan, A. and R. Hemant, An improved validated ultra high pressure liquid chromatography method for separation of tacrolimus impurities and its tautomers. Drug testing and analysis, 2010. 2(3): p. 107-112.
42.Lallemand, F., et al., Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. Journal of drug delivery, 2012. 2012.
43.Garrett, Q., et al., Carboxymethylcellulose binds to human corneal epithelial cells and is a modulator of corneal epithelial wound healing. Investigative ophthalmology & visual science, 2007. 48(4): p. 1559-1567.
44.Mansuri, S., et al., Mucoadhesion: A promising approach in drug delivery system. Reactive and functional polymers, 2016. 100: p. 151-172.
45.Shaikh, R., et al., Mucoadhesive drug delivery systems. Journal of Pharmacy and Bioallied Sciences, 2011. 3(1): p. 89.
46.Eshel-Green, T. and H. Bianco-Peled, Mucoadhesive acrylated block copolymers micelles for the delivery of hydrophobic drugs. Colloids and Surfaces B: Biointerfaces, 2016. 139: p. 42-51.
47.Friuli, V., et al., Influence of dissolution media and presence of alcohol on the in vitro performance of pharmaceutical products containing an insoluble drug. Journal of pharmaceutical sciences, 2018. 107(1): p. 507-511.
48.Vaishya, R.D., et al., Controlled ocular drug delivery with nanomicelles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014. 6(5): p. 422-437.
49.Partearroyo, M.A., et al., Surfactant-induced cell toxicity and cell lysis: a study using B16 melanoma cells. Biochemical pharmacology, 1990. 40(6): p. 1323-1328.
50.Li, M., et al., New nanomicelle curcumin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment. Drug development and industrial pharmacy, 2017. 43(11): p. 1846-1857.
51.Song, K., et al., Novel ultra-small micelles based on rebaudioside A: a potential nanoplatform for ocular drug delivery. International journal of pharmaceutics, 2018. 552(1-2): p. 265-276.
52.Guo, C., et al., Nanomicelle formulation for topical delivery of cyclosporine A into the cornea: in vitro mechanism and in vivo permeation evaluation. Scientific reports, 2015. 5(1): p. 1-14.
53.Souto, E.B., et al., Advanced formulation approaches for ocular drug delivery: State-of-the-art and recent patents. Pharmaceutics, 2019. 11(9): p. 460.
54.Mojaddam, M. and K.R. Pullen, Optimization of a centrifugal compressor using the design of experiment technique. Applied Sciences, 2019. 9(2): p. 291.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top