跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/11 05:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宥任
研究生(外文):You-Ren Chen
論文名稱:氣候變遷下島嶼生態系植群組成的變化
論文名稱(外文):The shift of vegetation composition under climate change in an island ecosystem
指導教授:李承叡
指導教授(外文):Cheng- Ruei Lee
口試委員:胡哲明王俊能林奐宇
口試委員(外文):Jer-Ming HuChun-Neng WangHuan-Yu Lin
口試日期:2021-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生態學與演化生物學研究所
學門:生命科學學門
學類:生態學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:98
中文關鍵詞:氣候變遷族群變遷共存網絡植群組成極端天氣
外文關鍵詞:Climate changeCommunity changeNetworkvegetation compositionExtreme weather
DOI:10.6342/NTU202102520
相關次數:
  • 被引用被引用:1
  • 點閱點閱:340
  • 評分評分:
  • 下載下載:63
  • 收藏至我的研究室書目清單書目收藏:0
受全球暖化的影響,許多物種可能無法適應目前棲地的環境改變因而導致當地族群滅絕或向更適合的環境遷移,因此預測族群的變動是目前生態學急迫關切的課題之一。許多研究著重在預測個別物種分布受氣候變遷的影響,但忽略了物種不同遷移程度也可能影響物種間的交互作用網絡。台灣擁有從高海拔到低海拔的環境條件,物種將根據自身的棲位在合適的環境梯度上分佈,因此適合我們了解環境氣候的差異對於植群分佈的影響。本研究模擬氣候變遷對植群兩個面相的影響:當地原生族群受環境改變威脅的程度,及計入外來遷徙族群的群落整體改變。結果顯示,從原生地物種受威脅程度來說,低海拔地區(海拔 1,000 公尺以下)是較受威脅的地方,然而就整體改動而言,中海拔地區(海拔 1,000~2,800公尺)是改動最大的地方。而且,在高海拔地區(海拔2,800公尺以上)也須面臨一定程度的非生物逆境,以及部分中海拔物種上移所帶來的競爭。此兩種迥異結果源於大量低海拔物種相較於中海拔物種有更大規模的海拔垂直遷移,使低海拔原生物種消失程度較高,而中海拔植群將受到大量低海拔物種移入造成總體群落結構改變。物種共存網路分析證實此論點:由現有分布資料歸納出代表不同林相的植物群落,彼此間的分界在未來會變得更加模糊,尤其是低海拔與中海拔群落將有更多交疊。總結來說,雖然中海拔植群的未來分布受到非生物因子影響相對較小,但生物性因子可能使原生群落結構受到改變,限制當地原生種的生存空間。此外,極端天氣是必須被納入氣候變遷的討論中,從過去歷史氣候資料區的計算出的有較高頻的極端天氣事件的地區需要多加注意。
Under global warming, many species might be unable to adapt to the environmental changes, leading to extinction or migration. Predicting community changes is therefore an urgent issue. However, many studies focused on predicting the effects of climate change on individual species, ignoring that different magnitudes of climate-change-driven migration among species might affect their potential interaction. Given the limited geographical but wide altitudinal range, the island Taiwan is a suitable location to study the effects of differential altitudinal shift of species facing climate change. In this study, we modeled the impact of climate change on vegetation community from two aspects: the decline of local species and the overall community change after accounting for foreign migrating species. In terms of local species, regions in low altitude (below 1,000 m above sea level [asl]) are highly threatened. For overall community change, on the other hand, middle-altitude (1,000-2,800 m asl) mountains across Taiwan, has the highest community change. However, species at high altitudes (above 2,800 m asl) also face high abiotic stress, as well as competition from the upward shift of some mid-altitude species. Such discrepancy might result from the differential altitudinal migration of species: comparing to high-elevation species, those originally reside in low elevation have higher upward altitudinal shift, resulting in large local species decline in lower elevation and more immigrants causing overall community change in middle-altitude regions. This was supported by species co-existence network analyses: in the future, the boundaries among distinct vegetation community modules identified by their current co-existence become more obscure, especially between the modules originating from middle- and low-altitudes. Therefore, although the future distribution of middle-altitude species seems less affected by the change of abiotic climatic factors, such biotic factor of community structure disruption might restrict the living space available to local middle-altitude species. Furthermore, extreme weather must be considered in the discussion of climate change, and regions with high frequency of extreme weather events from historical climate data require more attention.
誌謝 --------------------------------------------------------------------------------------------------i
摘要 -------------------------------------------------------------------------------------------------ii
Abstract --------------------------------------------------------------------------------------------iii
Table of contents ---------------------------------------------------------------------------------v
Tables ------------------------------------------------------------------------------------------vii
Figures ----------------------------------------------------------------------------------------viii
Introduction -----------------------------------------------------------------------------------------1
Materials and Methods --------------------------------------------------------------------------7
Study area ------------------------------------------------------------------------------------7
Vegetation data ------------------------------------------------------------------------------8
Climate data ---------------------------------------------------------------------------------9
Species Distribution Modelling (SDM) ------------------------------------------------10
Community change in the future --------------------------------------------------------13
Community change with specialist and generalist ------------------------------------15
Identifying and characterizing plant co-existence modules --------------------------16
The phylogenetic structure of co-existing modules -----------------------------------18
The alteration of community structure -------------------------------------------------19
Extreme weather ---------------------------------------------------------------------------20
Results ---------------------------------------------------------------------------------------------21
Species distribution modelling (SDM) -------------------------------------------------21
Patterns of local decline and overall community change across Taiwan----------22
Mismatch between local decline and overall community change caused by Differential altitudinal shifts -------------------------------------------------------------26
The properties of species-co-existence network --------------------------------------28
The alteration of community structure -------------------------------------------------31
Extreme weather ---------------------------------------------------------------------------32
Discussion -----------------------------------------------------------------------------------------34
Novel approaches to investigate species’ fate -----------------------------------------34
Community change ------------------------------------------------------------------------38
Generalist & specialist --------------------------------------------------------------------45
Community restructuring-----------------------------------------------------------------46
Extreme weather ---------------------------------------------------------------------------48
Conclusion ---------------------------------------------------------------------------------49
Reference ------------------------------------------------------------------------------------------50
Tables ----------------------------------------------------------------------------------------------60
Figures ---------------------------------------------------------------------------------------------66
1.Crutzen, P.J., The “anthropocene”, in Earth system science in the anthropocene. 2006, Springer. p. 13-18.
2.Allen, M., et al., Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC Special Report, 2018.
3.Trenberth, K.E., Changes in precipitation with climate change. Climate Research, 2011. 47(1-2): p. 123-138.
4.Chen, I.-C., et al., Rapid range shifts of species associated with high levels of climate warming. Science, 2011. 333(6045): p. 1024-1026.
5.Thomas, C.D., et al., Extinction risk from climate change. Nature, 2004. 427(6970): p. 145-148.
6.Hooper, D.U., et al., A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 2012. 486(7401): p. 105-108.
7.Pecl, G.T., et al., Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 2017. 355(6332).
8.Woodward, F.I. and F. Woodward, Climate and plant distribution. 1987: Cambridge University Press.
9.Gosling, W.D. and M.J. Bunting, A role for palaeoecology in anticipating future change in mountain regions? Palaeogeography, Palaeoclimatology, Palaeoecology, 2007. 259(1): p. 1-5.
10.Fort, M., Impact of climate change on mountain environment dynamics. An introduction. Journal of Alpine Research| Revue de géographie alpine, 2015(103-2).
11.Hou, G., H. Zhang, and Y. Wang, Vegetation dynamics and its relationship with climatic factors in the Changbai Mountain Natural Reserve. Journal of Mountain Science, 2011. 8(6): p. 865-875.
12.Liu, Q., et al., NDVI-based vegetation dynamics and their response to recent climate change: a case study in the Tianshan Mountains, China. Environmental Earth Sciences, 2016. 75(16): p. 1-15.
13.Bellard, C., et al., Impacts of climate change on the future of biodiversity. Ecology letters, 2012. 15(4): p. 365-377.
14.Pauli, H., et al., Recent plant diversity changes on Europe’s mountain summits. Science, 2012. 336(6079): p. 353-355.
15.Lenoir, J., et al., A significant upward shift in plant species optimum elevation during the 20th century. science, 2008. 320(5884): p. 1768-1771.
16.Vanneste, T., et al., Impact of climate change on alpine vegetation of mountain summits in Norway. Ecological Research, 2017. 32(4): p. 579-593.
17.Britton, A.J., et al., Biodiversity gains and losses: evidence for homogenisation of Scottish alpine vegetation. Biological conservation, 2009. 142(8): p. 1728-1739.
18.Gottfried, M., et al., Continent-wide response of mountain vegetation to climate change. Nature climate change, 2012. 2(2): p. 111-115.
19.Pauli, G.G.M.G.H., Climate effects on mountain plants. Nature, 1994. 369: p. 448.
20.Walther, G.R., S. Beißner, and C.A. Burga, Trends in the upward shift of alpine plants. Journal of Vegetation Science, 2005. 16(5): p. 541-548.
21.Lamprecht, A., et al., Climate change leads to accelerated transformation of high‐elevation vegetation in the central Alps. New Phytologist, 2018. 220(2): p. 447-459.
22.Morueta-Holme, N., et al., Strong upslope shifts in Chimborazo's vegetation over two centuries since Humboldt. Proceedings of the National Academy of Sciences, 2015. 112(41): p. 12741-12745.
23.Brunner, L., et al., Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth System Dynamics, 2020. 11(4): p. 995-1012.
24.Beadling, R., et al., Representation of Southern Ocean properties across coupled model intercomparison project generations: CMIP3 to CMIP6. Journal of Climate, 2020. 33(15): p. 6555-6581.
25.Babaousmail, H., et al., Evaluation of the Performance of CMIP6 Models in Reproducing Rainfall Patterns over North Africa. Atmosphere, 2021. 12(4): p. 475.
26.Zimmermann, N.E., et al., New trends in species distribution modelling. Ecography, 2010. 33(6): p. 985-989.
27.Gonzalez, P., et al., Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Global Ecology and Biogeography, 2010. 19(6): p. 755-768.
28.Wan, J.-Z., et al., Vulnerability of forest vegetation to anthropogenic climate change in China. Science of the Total Environment, 2018. 621: p. 1633-1641.
29.Hufnagel, L. and Á. Garamvölgyi, Impacts of climate change on vegetation distribution No. 2-climate change induced vegetation shifts in the new world. Applied Ecology and Environmental Research, 2014. 12(2): p. 355-422.
30.Holsinger, L., et al., Climate change likely to reshape vegetation in North America's largest protected areas. Conservation Science and Practice, 2019. 1(7): p. e50.
31.Costion, C.M., et al., Will tropical mountaintop plant species survive climate change? Identifying key knowledge gaps using species distribution modelling in Australia. Biological Conservation, 2015. 191: p. 322-330.
32.Feeley, K.J., et al., Upslope migration of Andean trees. Journal of Biogeography, 2011. 38(4): p. 783-791.
33.Krishnaswamy, J., R. John, and S. Joseph, Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Global change biology, 2014. 20(1): p. 203-215.
34.Bendix, J., et al., Functional biodiversity and climate change along an altitudinal gradient in a tropical mountain rainforest, in Tropical rainforests and agroforests under global change. 2010, Springer. p. 239-268.
35.Bascompte, J., et al., Mutualistic interactions reshuffle the effects of climate change on plants across the tree of life. Science advances, 2019. 5(5): p. eaav2539.
36.Lin, H.Y., et al., Climate‐based approach for modeling the distribution of montane forest vegetation in Taiwan. Applied Vegetation Science, 2020. 23(2): p. 239-253.
37.Hsu, R.C.C., et al., Simulating climate change impacts on forests and associated vascular epiphytes in a subtropical island of East Asia. Diversity and distributions, 2012. 18(4): p. 334-347.
38.Jump, A.S., C. Mátyás, and J. Peñuelas, The altitude-for-latitude disparity in the range retractions of woody species. Trends in ecology & evolution, 2009. 24(12): p. 694-701.
39.Li, C.F., et al., Classification of T aiwan forest vegetation. Applied Vegetation Science, 2013. 16(4): p. 698-719.
40.Su, H.-J., Studies on the climate and vegetation types of the natural forests in Taiwan (II): altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Forestry, 1984. 17: p. 57-73.
41.林奐宇, 現行與未來氣候下的台灣森林植物分布預測研究, in 生態學與演化生物學研究所. 2020, 國立臺灣大學: 台北市. p. 177.
42.Elith, J. and J.R. Leathwick, Species distribution models: ecological explanation and prediction across space and time. Annual review of ecology, evolution, and systematics, 2009. 40: p. 677-697.
43.Chiou, C.-R., et al., The first national vegetation inventory in Taiwan. Taiwan Journal of Forest Science, 2009. 24(4): p. 295-302.
44.萬怡, 臺灣氣候分類與山地氣候之研究, in 地理學系在職進修碩士班. 2009, 國立臺灣師範大學: 台北市. p. 91.
45.蔣丙然, 臺灣氣候誌. 台灣研究叢刊第26種, 1954: p. 220.
46.陳正祥, 氣候之分類與分區. 農學季刊, 1957. 7.
47.Lin, H.Y., et al., A dynamic downscaling approach to generate scale-free regional climate data in Taiwan. Taiwania, 2018. 63(3).
48.Hijmans, R.J., et al., Package ‘raster’. R package, 2015. 734.
49.Hijmans, R.J., et al., Package ‘dismo’. Circles, 2017. 9(1): p. 1-68.
50.Lin, C.-Y. and C.-P. Tung, Procedure for selecting GCM datasets for climate risk assessment. Terrestrial, Atmospheric & Oceanic Sciences, 2017. 28(1).
51.Phillips, S.J., R.P. Anderson, and R.E. Schapire, Maximum entropy modeling of species geographic distributions. Ecological modelling, 2006. 190(3-4): p. 231-259.
52.Araújo, M.B. and M. New, Ensemble forecasting of species distributions. Trends in ecology & evolution, 2007. 22(1): p. 42-47.
53.McCullagh, P. and J.A. Nelder, Generalized linear models 2nd edition chapman and hall. London, UK, 1989.
54.Hastie, T. and R. Tibshirani, Generalized Additive Models (Chapman & Hall/CRC Monographs on Statistics & Applied Probability). Chapman and Hall/CRC. 1990.
55.Vapnik, V.N., The nature of statistical learning. Theory, 1995.
56.Hastie, T., R. Tibshirani, and A. Buja, Flexible discriminant analysis by optimal scoring. Journal of the American statistical association, 1994. 89(428): p. 1255-1270.
57.Friedman, J.H., Multivariate adaptive regression splines. The annals of statistics, 1991: p. 1-67.
58.Breiman, L., Random forests. Machine learning, 2001. 45(1): p. 5-32.
59.Friedman, J.H., Greedy function approximation: a gradient boosting machine. Annals of statistics, 2001: p. 1189-1232.
60.Fielding, A.H. and J.F. Bell, A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental conservation, 1997: p. 38-49.
61.Allouche, O., A. Tsoar, and R. Kadmon, Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of applied ecology, 2006. 43(6): p. 1223-1232.
62.Swets, J.A., Measuring the accuracy of diagnostic systems. Science, 1988. 240(4857): p. 1285-1293.
63.Liu, C., et al., Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 2005. 28(3): p. 385-393.
64.Cantor, S.B., et al., A comparison of C/B ratios from studies using receiver operating characteristic curve analysis. Journal of clinical epidemiology, 1999. 52(9): p. 885-892.
65.Manel, S., H.C. Williams, and S.J. Ormerod, Evaluating presence–absence models in ecology: the need to account for prevalence. Journal of applied Ecology, 2001. 38(5): p. 921-931.
66.Naimi, B., et al., Package ‘sdm’. 2016.
67.Team, R.C., R: A language and environment for statistical computing. 2013.
68.Ellis, N., S.J. Smith, and C.R. Pitcher, Gradient forests: calculating importance gradients on physical predictors. Ecology, 2012. 93(1): p. 156-168.
69.Fitzpatrick, M.C. and S.R. Keller, Ecological genomics meets community‐level modelling of biodiversity: Mapping the genomic landscape of current and future environmental adaptation. Ecology letters, 2015. 18(1): p. 1-16.
70.Levins, R., Evolution in changing environments. 2020: Princeton University Press.
71.Lawlor, L.R. and J.M. Smith, The coevolution and stability of competing species. The American Naturalist, 1976. 110(971): p. 79-99.
72.Futuyma, D.J. and G. Moreno, The evolution of ecological specialization. Annual review of Ecology and Systematics, 1988. 19(1): p. 207-233.
73.Wilson, D.S. and J. Yoshimura, On the coexistence of specialists and generalists. The American Naturalist, 1994. 144(4): p. 692-707.
74.Marvier, M., P. Kareiva, and M.G. Neubert, Habitat destruction, fragmentation, and disturbance promote invasion by habitat generalists in a multispecies metapopulation. Risk Analysis: An International Journal, 2004. 24(4): p. 869-878.
75.Jasmin, J.N. and R. Kassen, On the experimental evolution of specialization and diversity in heterogeneous environments. Ecology Letters, 2007. 10(4): p. 272-281.
76.Langfelder, P. and S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics, 2008. 9(1): p. 1-13.
77.Webb, C.O. and M.J. Donoghue, Phylomatic: tree assembly for applied phylogenetics. Molecular ecology notes, 2005. 5(1): p. 181-183.
78.Paradis, E. and K. Schliep, ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 2019. 35(3): p. 526-528.
79.McInnes, L., J. Healy, and J. Melville, Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.
80.Easterling, D.R., et al., Observed variability and trends in extreme climate events: a brief review. Bulletin of the American Meteorological Society, 2000. 81(3): p. 417-426.
81.Dodd, R.J., et al., Spatial co‐localisation of extreme weather events: a clear and present danger. Ecology Letters, 2021. 24(1): p. 60-72.
82.Botts, E.A., B.F. Erasmus, and G.J. Alexander, Small range size and narrow niche breadth predict range contractions in S outh A frican frogs. Global Ecology and Biogeography, 2013. 22(5): p. 567-576.
83.Schleuning, M., et al., Ecological networks are more sensitive to plant than to animal extinction under climate change. Nature communications, 2016. 7(1): p. 1-9.
84.Schwallier, R., et al., Phylogenetic analysis of niche divergence reveals distinct evolutionary histories and climate change implications for tropical carnivorous pitcher plants. Diversity and Distributions, 2016. 22(1): p. 97-110.
85.Yu, F., et al., Climatic niche breadth can explain variation in geographical range size of alpine and subalpine plants. International Journal of Geographical Information Science, 2017. 31(1): p. 190-212.
86.Verrall, B. and C.M. Pickering, Alpine vegetation in the context of climate change: A global review of past research and future directions. Science of the Total Environment, 2020: p. 141344.
87.Grabherr, G., M. Gottfried, and H. Pauli, Climate change impacts in alpine environments. Geography Compass, 2010. 4(8): p. 1133-1153.
88.Zhang, B. and S. Horvath, A general framework for weighted gene co-expression network analysis. Statistical applications in genetics and molecular biology, 2005. 4(1).
89.Johnson, S.C., Hierarchical clustering schemes. Psychometrika, 1967. 32(3): p. 241-254.
90.Hartigan, J.A. and M.A. Wong, Algorithm AS 136: A k-means clustering algorithm. Journal of the royal statistical society. series c (applied statistics), 1979. 28(1): p. 100-108.
91.Langfelder, P., B. Zhang, and S. Horvath, Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics, 2008. 24(5): p. 719-720.
92.Wu, S., et al., De novo transcriptome assembly of Chinese kale and global expression analysis of genes involved in glucosinolate metabolism in multiple tissues. Frontiers in plant science, 2017. 8: p. 92.
93.Huang, T.-C., Preface of Volumen One. In: Editorial Committee of the Flora of Taiwan (ed) Flora of Taiwan, vol 1, 2nd edn. 1994: Department of Botany, National Taiwan University, Taipei.
94.Lembrechts, J.J., I. Nijs, and J. Lenoir, Incorporating microclimate into species distribution models. Ecography, 2019. 42(7): p. 1267-1279.
95.Frey, S.J., et al., Spatial models reveal the microclimatic buffering capacity of old-growth forests. Science advances, 2016. 2(4): p. e1501392.
96.Dobrowski, S.Z., A climatic basis for microrefugia: the influence of terrain on climate. Global change biology, 2011. 17(2): p. 1022-1035.
97.Geiger, R., The climate near the ground. 1965.
98.Rosenberg, N.J., B.L. Blad, and S.B. Verma, Microclimate: the biological environment. 1983: John Wiley & Sons.
99.Duque, A., P.R. Stevenson, and K.J. Feeley, Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proceedings of the National Academy of Sciences, 2015. 112(34): p. 10744-10749.
100.Feeley, K.J., et al., Compositional shifts in C osta R ican forests due to climate‐driven species migrations. Global change biology, 2013. 19(11): p. 3472-3480.
101.Körner, C. and W. Larcher. Plant life in cold climates. in Symposia of the Society for Experimental Biology. 1988.
102.Körner, C., Alpine plant life: functional plant ecology of high mountain ecosystems. 2021: Springer Nature.
103.Lesica, P. and B.M. Steele, A method for monitoring long‐term population trends: An example using rare arctic‐alpine plants. Ecological Applications, 1996. 6(3): p. 879-887.
104.Klanderud, K. and Ø. Totland, Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology, 2005. 86(8): p. 2047-2054.
105.Pauli, H., et al., Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA* master site Schrankogel, Tyrol, Austria. Global change biology, 2007. 13(1): p. 147-156.
106.Guisan, A. and J.-P. Theurillat, Assessing alpine plant vulnerability to climate change: a modeling perspective. Integrated assessment, 2000. 1(4): p. 307-320.
107.Pauli, H., M. Gottfried, and G. Grabherr, Effects of climate change on mountain ecosystems--upward shifting of alpine plants. World resource review, 1996. 8(3).
108.Zhang, R., et al., Impact of climate change on vegetation growth in arid northwest of China from 1982 to 2011. Remote Sensing, 2016. 8(5): p. 364.
109.Anthelme, F., L.A. Cavieres, and O. Dangles, Facilitation among plants in alpine environments in the face of climate change. Frontiers in plant science, 2014. 5: p. 387.
110.Cannone, N., S. Sgorbati, and M. Guglielmin, Unexpected impacts of climate change on alpine vegetation. Frontiers in Ecology and the Environment, 2007. 5(7): p. 360-364.
111.Lenoir, J. and J.C. Svenning, Climate‐related range shifts–a global multidimensional synthesis and new research directions. Ecography, 2015. 38(1): p. 15-28.
112.Schulz, H.M., et al., Mapping the montane cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data. Plos one, 2017. 12(2): p. e0172663.
113.Pouteau, R., et al., Will climate change shift the lower ecotone of tropical montane cloud forests upwards on islands? Journal of Biogeography, 2018. 45(6): p. 1326-1333.
114.Neuschulz, E.L., et al., Biotic interactions and seed deposition rather than abiotic factors determine recruitment at elevational range limits of an alpine tree. Journal of Ecology, 2018. 106(3): p. 948-959.
115.Hilker, T., et al., Vegetation dynamics and rainfall sensitivity of the Amazon. Proceedings of the National Academy of Sciences, 2014. 111(45): p. 16041-16046.
116.Meier, E.S., et al., Climate, competition and connectivity affect future migration and ranges of European trees. Global Ecology and Biogeography, 2012. 21(2): p. 164-178.
117.Frei, E.R., et al., Biotic and abiotic drivers of tree seedling recruitment across an alpine treeline ecotone. Scientific reports, 2018. 8(1): p. 1-12.
118.Essl, F., et al., Distribution patterns, range size and niche breadth of Austrian endemic plants. Biological Conservation, 2009. 142(11): p. 2547-2558.
119.Dullinger, S., et al., Extinction debt of high-mountain plants under twenty-first-century climate change. Nature climate change, 2012. 2(8): p. 619-622.
120.Klanderud, K. and H.J.B. Birks, Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. The Holocene, 2003. 13(1): p. 1-6.
121.Gilman, S.E., et al., A framework for community interactions under climate change. Trends in ecology & evolution, 2010. 25(6): p. 325-331.
122.Schleuning, M., et al., Ecological networks are more sensitive to plant than to animal extinction under climate change. Nature communications, 2016. 7(1): p. 1-9.
123.Yuan, M.M., et al., Climate warming enhances microbial network complexity and stability. Nature Climate Change, 2021. 11(4): p. 343-348.
124.Schweiger, O., et al., Climate change can cause spatial mismatch of trophically interacting species. Ecology, 2008. 89(12): p. 3472-3479.
125.Descombes, P., et al., Novel trophic interactions under climate change promote alpine plant coexistence. Science, 2020. 370(6523): p. 1469-1473.
126.Inouye, D.W., Effects of climate change on alpine plants and their pollinators. Annals of the New York Academy of Sciences, 2020. 1469(1): p. 26-37.
127.Chalcoff, V.R., M.A. Aizen, and C. Ezcurra, Erosion of a pollination mutualism along an environmental gradient in a south Andean treelet, Embothrium coccineum (Proteaceae). Oikos, 2012. 121(3): p. 471-480.
128.Sanz-Lázaro, C., Climate extremes can drive biological assemblages to early successional stages compared to several mild disturbances. Scientific reports, 2016. 6(1): p. 1-9.
129.Smith, M.D., An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. Journal of Ecology, 2011. 99(3): p. 656-663.
130.Altwegg, R., et al., Learning from single extreme events. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017. 372(1723): p. 20160141.
131.Zhang, Q., et al., Avian responses to an extreme ice storm are determined by a combination of functional traits, behavioural adaptations and habitat modifications. Scientific reports, 2016. 6(1): p. 1-11.
132.Wernberg, T., et al., An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change, 2013. 3(1): p. 78-82.
133.Barrett, J., et al., Persistent effects of a discrete warming event on a polar desert ecosystem. Global Change Biology, 2008. 14(10): p. 2249-2261.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top