1.Crutzen, P.J., The “anthropocene”, in Earth system science in the anthropocene. 2006, Springer. p. 13-18.
2.Allen, M., et al., Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC Special Report, 2018.
3.Trenberth, K.E., Changes in precipitation with climate change. Climate Research, 2011. 47(1-2): p. 123-138.
4.Chen, I.-C., et al., Rapid range shifts of species associated with high levels of climate warming. Science, 2011. 333(6045): p. 1024-1026.
5.Thomas, C.D., et al., Extinction risk from climate change. Nature, 2004. 427(6970): p. 145-148.
6.Hooper, D.U., et al., A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 2012. 486(7401): p. 105-108.
7.Pecl, G.T., et al., Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 2017. 355(6332).
8.Woodward, F.I. and F. Woodward, Climate and plant distribution. 1987: Cambridge University Press.
9.Gosling, W.D. and M.J. Bunting, A role for palaeoecology in anticipating future change in mountain regions? Palaeogeography, Palaeoclimatology, Palaeoecology, 2007. 259(1): p. 1-5.
10.Fort, M., Impact of climate change on mountain environment dynamics. An introduction. Journal of Alpine Research| Revue de géographie alpine, 2015(103-2).
11.Hou, G., H. Zhang, and Y. Wang, Vegetation dynamics and its relationship with climatic factors in the Changbai Mountain Natural Reserve. Journal of Mountain Science, 2011. 8(6): p. 865-875.
12.Liu, Q., et al., NDVI-based vegetation dynamics and their response to recent climate change: a case study in the Tianshan Mountains, China. Environmental Earth Sciences, 2016. 75(16): p. 1-15.
13.Bellard, C., et al., Impacts of climate change on the future of biodiversity. Ecology letters, 2012. 15(4): p. 365-377.
14.Pauli, H., et al., Recent plant diversity changes on Europe’s mountain summits. Science, 2012. 336(6079): p. 353-355.
15.Lenoir, J., et al., A significant upward shift in plant species optimum elevation during the 20th century. science, 2008. 320(5884): p. 1768-1771.
16.Vanneste, T., et al., Impact of climate change on alpine vegetation of mountain summits in Norway. Ecological Research, 2017. 32(4): p. 579-593.
17.Britton, A.J., et al., Biodiversity gains and losses: evidence for homogenisation of Scottish alpine vegetation. Biological conservation, 2009. 142(8): p. 1728-1739.
18.Gottfried, M., et al., Continent-wide response of mountain vegetation to climate change. Nature climate change, 2012. 2(2): p. 111-115.
19.Pauli, G.G.M.G.H., Climate effects on mountain plants. Nature, 1994. 369: p. 448.
20.Walther, G.R., S. Beißner, and C.A. Burga, Trends in the upward shift of alpine plants. Journal of Vegetation Science, 2005. 16(5): p. 541-548.
21.Lamprecht, A., et al., Climate change leads to accelerated transformation of high‐elevation vegetation in the central Alps. New Phytologist, 2018. 220(2): p. 447-459.
22.Morueta-Holme, N., et al., Strong upslope shifts in Chimborazo's vegetation over two centuries since Humboldt. Proceedings of the National Academy of Sciences, 2015. 112(41): p. 12741-12745.
23.Brunner, L., et al., Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth System Dynamics, 2020. 11(4): p. 995-1012.
24.Beadling, R., et al., Representation of Southern Ocean properties across coupled model intercomparison project generations: CMIP3 to CMIP6. Journal of Climate, 2020. 33(15): p. 6555-6581.
25.Babaousmail, H., et al., Evaluation of the Performance of CMIP6 Models in Reproducing Rainfall Patterns over North Africa. Atmosphere, 2021. 12(4): p. 475.
26.Zimmermann, N.E., et al., New trends in species distribution modelling. Ecography, 2010. 33(6): p. 985-989.
27.Gonzalez, P., et al., Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Global Ecology and Biogeography, 2010. 19(6): p. 755-768.
28.Wan, J.-Z., et al., Vulnerability of forest vegetation to anthropogenic climate change in China. Science of the Total Environment, 2018. 621: p. 1633-1641.
29.Hufnagel, L. and Á. Garamvölgyi, Impacts of climate change on vegetation distribution No. 2-climate change induced vegetation shifts in the new world. Applied Ecology and Environmental Research, 2014. 12(2): p. 355-422.
30.Holsinger, L., et al., Climate change likely to reshape vegetation in North America's largest protected areas. Conservation Science and Practice, 2019. 1(7): p. e50.
31.Costion, C.M., et al., Will tropical mountaintop plant species survive climate change? Identifying key knowledge gaps using species distribution modelling in Australia. Biological Conservation, 2015. 191: p. 322-330.
32.Feeley, K.J., et al., Upslope migration of Andean trees. Journal of Biogeography, 2011. 38(4): p. 783-791.
33.Krishnaswamy, J., R. John, and S. Joseph, Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Global change biology, 2014. 20(1): p. 203-215.
34.Bendix, J., et al., Functional biodiversity and climate change along an altitudinal gradient in a tropical mountain rainforest, in Tropical rainforests and agroforests under global change. 2010, Springer. p. 239-268.
35.Bascompte, J., et al., Mutualistic interactions reshuffle the effects of climate change on plants across the tree of life. Science advances, 2019. 5(5): p. eaav2539.
36.Lin, H.Y., et al., Climate‐based approach for modeling the distribution of montane forest vegetation in Taiwan. Applied Vegetation Science, 2020. 23(2): p. 239-253.
37.Hsu, R.C.C., et al., Simulating climate change impacts on forests and associated vascular epiphytes in a subtropical island of East Asia. Diversity and distributions, 2012. 18(4): p. 334-347.
38.Jump, A.S., C. Mátyás, and J. Peñuelas, The altitude-for-latitude disparity in the range retractions of woody species. Trends in ecology & evolution, 2009. 24(12): p. 694-701.
39.Li, C.F., et al., Classification of T aiwan forest vegetation. Applied Vegetation Science, 2013. 16(4): p. 698-719.
40.Su, H.-J., Studies on the climate and vegetation types of the natural forests in Taiwan (II): altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Forestry, 1984. 17: p. 57-73.
41.林奐宇, 現行與未來氣候下的台灣森林植物分布預測研究, in 生態學與演化生物學研究所. 2020, 國立臺灣大學: 台北市. p. 177.
42.Elith, J. and J.R. Leathwick, Species distribution models: ecological explanation and prediction across space and time. Annual review of ecology, evolution, and systematics, 2009. 40: p. 677-697.
43.Chiou, C.-R., et al., The first national vegetation inventory in Taiwan. Taiwan Journal of Forest Science, 2009. 24(4): p. 295-302.
44.萬怡, 臺灣氣候分類與山地氣候之研究, in 地理學系在職進修碩士班. 2009, 國立臺灣師範大學: 台北市. p. 91.45.蔣丙然, 臺灣氣候誌. 台灣研究叢刊第26種, 1954: p. 220.
46.陳正祥, 氣候之分類與分區. 農學季刊, 1957. 7.
47.Lin, H.Y., et al., A dynamic downscaling approach to generate scale-free regional climate data in Taiwan. Taiwania, 2018. 63(3).
48.Hijmans, R.J., et al., Package ‘raster’. R package, 2015. 734.
49.Hijmans, R.J., et al., Package ‘dismo’. Circles, 2017. 9(1): p. 1-68.
50.Lin, C.-Y. and C.-P. Tung, Procedure for selecting GCM datasets for climate risk assessment. Terrestrial, Atmospheric & Oceanic Sciences, 2017. 28(1).
51.Phillips, S.J., R.P. Anderson, and R.E. Schapire, Maximum entropy modeling of species geographic distributions. Ecological modelling, 2006. 190(3-4): p. 231-259.
52.Araújo, M.B. and M. New, Ensemble forecasting of species distributions. Trends in ecology & evolution, 2007. 22(1): p. 42-47.
53.McCullagh, P. and J.A. Nelder, Generalized linear models 2nd edition chapman and hall. London, UK, 1989.
54.Hastie, T. and R. Tibshirani, Generalized Additive Models (Chapman & Hall/CRC Monographs on Statistics & Applied Probability). Chapman and Hall/CRC. 1990.
55.Vapnik, V.N., The nature of statistical learning. Theory, 1995.
56.Hastie, T., R. Tibshirani, and A. Buja, Flexible discriminant analysis by optimal scoring. Journal of the American statistical association, 1994. 89(428): p. 1255-1270.
57.Friedman, J.H., Multivariate adaptive regression splines. The annals of statistics, 1991: p. 1-67.
58.Breiman, L., Random forests. Machine learning, 2001. 45(1): p. 5-32.
59.Friedman, J.H., Greedy function approximation: a gradient boosting machine. Annals of statistics, 2001: p. 1189-1232.
60.Fielding, A.H. and J.F. Bell, A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental conservation, 1997: p. 38-49.
61.Allouche, O., A. Tsoar, and R. Kadmon, Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of applied ecology, 2006. 43(6): p. 1223-1232.
62.Swets, J.A., Measuring the accuracy of diagnostic systems. Science, 1988. 240(4857): p. 1285-1293.
63.Liu, C., et al., Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 2005. 28(3): p. 385-393.
64.Cantor, S.B., et al., A comparison of C/B ratios from studies using receiver operating characteristic curve analysis. Journal of clinical epidemiology, 1999. 52(9): p. 885-892.
65.Manel, S., H.C. Williams, and S.J. Ormerod, Evaluating presence–absence models in ecology: the need to account for prevalence. Journal of applied Ecology, 2001. 38(5): p. 921-931.
66.Naimi, B., et al., Package ‘sdm’. 2016.
67.Team, R.C., R: A language and environment for statistical computing. 2013.
68.Ellis, N., S.J. Smith, and C.R. Pitcher, Gradient forests: calculating importance gradients on physical predictors. Ecology, 2012. 93(1): p. 156-168.
69.Fitzpatrick, M.C. and S.R. Keller, Ecological genomics meets community‐level modelling of biodiversity: Mapping the genomic landscape of current and future environmental adaptation. Ecology letters, 2015. 18(1): p. 1-16.
70.Levins, R., Evolution in changing environments. 2020: Princeton University Press.
71.Lawlor, L.R. and J.M. Smith, The coevolution and stability of competing species. The American Naturalist, 1976. 110(971): p. 79-99.
72.Futuyma, D.J. and G. Moreno, The evolution of ecological specialization. Annual review of Ecology and Systematics, 1988. 19(1): p. 207-233.
73.Wilson, D.S. and J. Yoshimura, On the coexistence of specialists and generalists. The American Naturalist, 1994. 144(4): p. 692-707.
74.Marvier, M., P. Kareiva, and M.G. Neubert, Habitat destruction, fragmentation, and disturbance promote invasion by habitat generalists in a multispecies metapopulation. Risk Analysis: An International Journal, 2004. 24(4): p. 869-878.
75.Jasmin, J.N. and R. Kassen, On the experimental evolution of specialization and diversity in heterogeneous environments. Ecology Letters, 2007. 10(4): p. 272-281.
76.Langfelder, P. and S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics, 2008. 9(1): p. 1-13.
77.Webb, C.O. and M.J. Donoghue, Phylomatic: tree assembly for applied phylogenetics. Molecular ecology notes, 2005. 5(1): p. 181-183.
78.Paradis, E. and K. Schliep, ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 2019. 35(3): p. 526-528.
79.McInnes, L., J. Healy, and J. Melville, Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.
80.Easterling, D.R., et al., Observed variability and trends in extreme climate events: a brief review. Bulletin of the American Meteorological Society, 2000. 81(3): p. 417-426.
81.Dodd, R.J., et al., Spatial co‐localisation of extreme weather events: a clear and present danger. Ecology Letters, 2021. 24(1): p. 60-72.
82.Botts, E.A., B.F. Erasmus, and G.J. Alexander, Small range size and narrow niche breadth predict range contractions in S outh A frican frogs. Global Ecology and Biogeography, 2013. 22(5): p. 567-576.
83.Schleuning, M., et al., Ecological networks are more sensitive to plant than to animal extinction under climate change. Nature communications, 2016. 7(1): p. 1-9.
84.Schwallier, R., et al., Phylogenetic analysis of niche divergence reveals distinct evolutionary histories and climate change implications for tropical carnivorous pitcher plants. Diversity and Distributions, 2016. 22(1): p. 97-110.
85.Yu, F., et al., Climatic niche breadth can explain variation in geographical range size of alpine and subalpine plants. International Journal of Geographical Information Science, 2017. 31(1): p. 190-212.
86.Verrall, B. and C.M. Pickering, Alpine vegetation in the context of climate change: A global review of past research and future directions. Science of the Total Environment, 2020: p. 141344.
87.Grabherr, G., M. Gottfried, and H. Pauli, Climate change impacts in alpine environments. Geography Compass, 2010. 4(8): p. 1133-1153.
88.Zhang, B. and S. Horvath, A general framework for weighted gene co-expression network analysis. Statistical applications in genetics and molecular biology, 2005. 4(1).
89.Johnson, S.C., Hierarchical clustering schemes. Psychometrika, 1967. 32(3): p. 241-254.
90.Hartigan, J.A. and M.A. Wong, Algorithm AS 136: A k-means clustering algorithm. Journal of the royal statistical society. series c (applied statistics), 1979. 28(1): p. 100-108.
91.Langfelder, P., B. Zhang, and S. Horvath, Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics, 2008. 24(5): p. 719-720.
92.Wu, S., et al., De novo transcriptome assembly of Chinese kale and global expression analysis of genes involved in glucosinolate metabolism in multiple tissues. Frontiers in plant science, 2017. 8: p. 92.
93.Huang, T.-C., Preface of Volumen One. In: Editorial Committee of the Flora of Taiwan (ed) Flora of Taiwan, vol 1, 2nd edn. 1994: Department of Botany, National Taiwan University, Taipei.
94.Lembrechts, J.J., I. Nijs, and J. Lenoir, Incorporating microclimate into species distribution models. Ecography, 2019. 42(7): p. 1267-1279.
95.Frey, S.J., et al., Spatial models reveal the microclimatic buffering capacity of old-growth forests. Science advances, 2016. 2(4): p. e1501392.
96.Dobrowski, S.Z., A climatic basis for microrefugia: the influence of terrain on climate. Global change biology, 2011. 17(2): p. 1022-1035.
97.Geiger, R., The climate near the ground. 1965.
98.Rosenberg, N.J., B.L. Blad, and S.B. Verma, Microclimate: the biological environment. 1983: John Wiley & Sons.
99.Duque, A., P.R. Stevenson, and K.J. Feeley, Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proceedings of the National Academy of Sciences, 2015. 112(34): p. 10744-10749.
100.Feeley, K.J., et al., Compositional shifts in C osta R ican forests due to climate‐driven species migrations. Global change biology, 2013. 19(11): p. 3472-3480.
101.Körner, C. and W. Larcher. Plant life in cold climates. in Symposia of the Society for Experimental Biology. 1988.
102.Körner, C., Alpine plant life: functional plant ecology of high mountain ecosystems. 2021: Springer Nature.
103.Lesica, P. and B.M. Steele, A method for monitoring long‐term population trends: An example using rare arctic‐alpine plants. Ecological Applications, 1996. 6(3): p. 879-887.
104.Klanderud, K. and Ø. Totland, Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology, 2005. 86(8): p. 2047-2054.
105.Pauli, H., et al., Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA* master site Schrankogel, Tyrol, Austria. Global change biology, 2007. 13(1): p. 147-156.
106.Guisan, A. and J.-P. Theurillat, Assessing alpine plant vulnerability to climate change: a modeling perspective. Integrated assessment, 2000. 1(4): p. 307-320.
107.Pauli, H., M. Gottfried, and G. Grabherr, Effects of climate change on mountain ecosystems--upward shifting of alpine plants. World resource review, 1996. 8(3).
108.Zhang, R., et al., Impact of climate change on vegetation growth in arid northwest of China from 1982 to 2011. Remote Sensing, 2016. 8(5): p. 364.
109.Anthelme, F., L.A. Cavieres, and O. Dangles, Facilitation among plants in alpine environments in the face of climate change. Frontiers in plant science, 2014. 5: p. 387.
110.Cannone, N., S. Sgorbati, and M. Guglielmin, Unexpected impacts of climate change on alpine vegetation. Frontiers in Ecology and the Environment, 2007. 5(7): p. 360-364.
111.Lenoir, J. and J.C. Svenning, Climate‐related range shifts–a global multidimensional synthesis and new research directions. Ecography, 2015. 38(1): p. 15-28.
112.Schulz, H.M., et al., Mapping the montane cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data. Plos one, 2017. 12(2): p. e0172663.
113.Pouteau, R., et al., Will climate change shift the lower ecotone of tropical montane cloud forests upwards on islands? Journal of Biogeography, 2018. 45(6): p. 1326-1333.
114.Neuschulz, E.L., et al., Biotic interactions and seed deposition rather than abiotic factors determine recruitment at elevational range limits of an alpine tree. Journal of Ecology, 2018. 106(3): p. 948-959.
115.Hilker, T., et al., Vegetation dynamics and rainfall sensitivity of the Amazon. Proceedings of the National Academy of Sciences, 2014. 111(45): p. 16041-16046.
116.Meier, E.S., et al., Climate, competition and connectivity affect future migration and ranges of European trees. Global Ecology and Biogeography, 2012. 21(2): p. 164-178.
117.Frei, E.R., et al., Biotic and abiotic drivers of tree seedling recruitment across an alpine treeline ecotone. Scientific reports, 2018. 8(1): p. 1-12.
118.Essl, F., et al., Distribution patterns, range size and niche breadth of Austrian endemic plants. Biological Conservation, 2009. 142(11): p. 2547-2558.
119.Dullinger, S., et al., Extinction debt of high-mountain plants under twenty-first-century climate change. Nature climate change, 2012. 2(8): p. 619-622.
120.Klanderud, K. and H.J.B. Birks, Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. The Holocene, 2003. 13(1): p. 1-6.
121.Gilman, S.E., et al., A framework for community interactions under climate change. Trends in ecology & evolution, 2010. 25(6): p. 325-331.
122.Schleuning, M., et al., Ecological networks are more sensitive to plant than to animal extinction under climate change. Nature communications, 2016. 7(1): p. 1-9.
123.Yuan, M.M., et al., Climate warming enhances microbial network complexity and stability. Nature Climate Change, 2021. 11(4): p. 343-348.
124.Schweiger, O., et al., Climate change can cause spatial mismatch of trophically interacting species. Ecology, 2008. 89(12): p. 3472-3479.
125.Descombes, P., et al., Novel trophic interactions under climate change promote alpine plant coexistence. Science, 2020. 370(6523): p. 1469-1473.
126.Inouye, D.W., Effects of climate change on alpine plants and their pollinators. Annals of the New York Academy of Sciences, 2020. 1469(1): p. 26-37.
127.Chalcoff, V.R., M.A. Aizen, and C. Ezcurra, Erosion of a pollination mutualism along an environmental gradient in a south Andean treelet, Embothrium coccineum (Proteaceae). Oikos, 2012. 121(3): p. 471-480.
128.Sanz-Lázaro, C., Climate extremes can drive biological assemblages to early successional stages compared to several mild disturbances. Scientific reports, 2016. 6(1): p. 1-9.
129.Smith, M.D., An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. Journal of Ecology, 2011. 99(3): p. 656-663.
130.Altwegg, R., et al., Learning from single extreme events. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017. 372(1723): p. 20160141.
131.Zhang, Q., et al., Avian responses to an extreme ice storm are determined by a combination of functional traits, behavioural adaptations and habitat modifications. Scientific reports, 2016. 6(1): p. 1-11.
132.Wernberg, T., et al., An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change, 2013. 3(1): p. 78-82.
133.Barrett, J., et al., Persistent effects of a discrete warming event on a polar desert ecosystem. Global Change Biology, 2008. 14(10): p. 2249-2261.