|
Pfurtscheller, G., A. Stancak Jr, and C. Neuper, Event-related synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical idling: a review. International journal of psychophysiology, 1996. 24(1-2): p. 39-46. Jensen, O., et al., Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends Neurosci, 2014. 37(7): p. 357-69. Klimesch, W., alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci, 2012. 16(12): p. 606-17. Sadaghiani, S. and A. Kleinschmidt, Brain Networks and alpha-Oscillations: Structural and Functional Foundations of Cognitive Control. Trends Cogn Sci, 2016. 20(11): p. 805-817. Hughes, S.W. and V. Crunelli, Thalamic mechanisms of EEG alpha rhythms and their pathological implications. The Neuroscientist, 2005. 11(4): p. 357-372. Dosenbach, N.U., et al., Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A, 2007. 104(26): p. 11073-8. Seeley, W.W., et al., Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 2007. 27(9): p. 2349-2356. Bompas, A., et al., The contribution of pre-stimulus neural oscillatory activity to spontaneous response time variability. Neuroimage, 2015. 107: p. 34-45. Ruzzoli, M., et al., The relevance of alpha phase in human perception. Cortex, 2019. 120: p. 249-268. Benwell, C.S.Y., et al., Prestimulus EEG Power Predicts Conscious Awareness But Not Objective Visual Performance. eNeuro, 2017. 4(6). Sauseng, P. and W. Klimesch, What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci Biobehav Rev, 2008. 32(5): p. 1001-13. VanRullen, R., Perceptual Cycles. Trends Cogn Sci, 2016. 20(10): p. 723-735. VanRullen, R. and C. Koch, Is perception discrete or continuous? Trends in Cognitive Sciences, 2003. 7(5): p. 207-213. Kasten, F.H. and C.S. Herrmann, Discrete sampling in perception via neuronal oscillations-Evidence from rhythmic, non-invasive brain stimulation. Eur J Neurosci, 2020. Valera, F.J., et al., Perceptual framing and cortical alpha rhythm. Neuropsychologia, 1981. 19(5): p. 675-686. Busch, N.A., J. Dubois, and R. VanRullen, The phase of ongoing EEG oscillations predicts visual perception. J Neurosci, 2009. 29(24): p. 7869-76. Helfrich, R.F., et al., Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol, 2014. 24(3): p. 333-9. Jaegle, A. and T. Ro, Direct control of visual perception with phase-specific modulation of posterior parietal cortex. J Cogn Neurosci, 2014. 26(2): p. 422-32. Mathewson, K.E., et al., To see or not to see: prestimulus alpha phase predicts visual awareness. J Neurosci, 2009. 29(9): p. 2725-32. de Graaf, T.A., et al., Does alpha phase modulate visual target detection? Three experiments with tACS-phase-based stimulus presentation. Eur J Neurosci, 2020. 51(11): p. 2299-2313. Vigué‐Guix, I., et al., Can the occipital alpha‐phase speed up visual detection through a real‐time EEG‐based brain–computer interface (BCI)? European Journal of Neuroscience, 2020. Lakatos, P., J. Gross, and G. Thut, A New Unifying Account of the Roles of Neuronal Entrainment. Curr Biol, 2019. 29(18): p. R890-R905. Bruers, S. and R. VanRullen, At What Latency Does the Phase of Brain Oscillations Influence Perception? eNeuro, 2017. 4(3). Zrenner, C., et al., Closed-Loop Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two Loops. Front Cell Neurosci, 2016. 10: p. 92. Bergmann, T.O., Brain State-Dependent Brain Stimulation. Front Psychol, 2018. 9: p. 2108. Shirinpour, S., et al., Experimental evaluation of methods for real-time EEG phase-specific transcranial magnetic stimulation. Journal of neural engineering, 2020. 17(4): p. 046002. Chen, L.L., et al., Real-time brain oscillation detection and phase-locked stimulation using autoregressive spectral estimation and time-series forward prediction. IEEE Trans Biomed Eng, 2013. 60(3): p. 753-62. Blackwood, E., M.-c. Lo, and A.S. Widge. Continuous phase estimation for phase-locked neural stimulation using an autoregressive model for signal prediction. in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2018. IEEE. Zrenner, C., et al., The shaky ground truth of real-time phase estimation. Neuroimage, 2020. 214: p. 116761. Mansouri, F., et al., A Fast EEG Forecasting Algorithm for Phase-Locked Transcranial Electrical Stimulation of the Human Brain. Front Neurosci, 2017. 11: p. 401. Rodriguez Rivero, C. and J. Ditterich, A user-friendly algorithm for adaptive closed-loop phase-locked stimulation. J Neurosci Methods, 2021. 347: p. 108965. Simon, D., Optimal state estimation: Kalman, H infinity, and nonlinear approaches. 2006: John Wiley & Sons. Sudre, G., et al., rtMEG: a real-time software interface for magnetoencephalography. Computational intelligence and neuroscience, 2011. 2011: p. 11. Oostenveld, R., et al., FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational intelligence and neuroscience, 2011. 2011. Kleiner, M., D. Brainard, and D. Pelli, What's new in Psychtoolbox-3? 2007. Green, D.M. and J.A. Swets, Signal detection theory and psychophysics. Vol. 1. 1966: Wiley New York. Chou, E.P. and S.-M. Hsu, Cosine similarity as a sample size-free measure to quantify phase clustering within a single neurophysiological signal. Journal of neuroscience methods, 2018. 295: p. 111-120. Miller, J., T. Patterson, and R. Ulrich, Jackknife-based method for measuring LRP onset latency differences. Psychophysiology, 1998. 35(1): p. 99-115. Taylor, J.R., et al., The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample. Neuroimage, 2017. 144(Pt B): p. 262-269.
|