|
[1]J. N. Meyer, T. C. Leuthner, and A. L. Luz, “Mitochondrial fusion, fission, and mitochondrial toxicity.,” Toxicology, vol. 391, pp. 42–53, Nov. 2017. [2]W. Fu, Y. Liu, and H. Yin, “Mitochondrial dynamics: biogenesis, fission, fusion, and mitophagy in the regulation of stem cell behaviors.,” Stem Cells Int., vol. 2019, p. 9757201, Apr. 2019. [3]Y. Guo, D. Li, S. Zhang, Y. Yang, J.-J. Liu, X. Wang, C. Liu, D. E. Milkie, R. P. Moore, U. S. Tulu, D. P. Kiehart, J. Hu, J. Lippincott-Schwartz, E. Betzig, and D. Li, “Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales.,” Cell, vol. 175, no. 5, pp. 1430–1442.e17, Nov. 2018. [4]E. Schrepfer and L. Scorrano, “Mitofusins, from Mitochondria to Metabolism.,” Mol. Cell, vol. 61, no. 5, pp. 683–694, Mar. 2016. [5]Z. Song, M. Ghochani, J. M. McCaffery, T. G. Frey, and D. C. Chan, “Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion.,” Mol. Biol. Cell, vol. 20, no. 15, pp. 3525–3532, Aug. 2009. [6]A. Santel, S. Frank, B. Gaume, M. Herrler, R. J. Youle, and M. T. Fuller, “Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells.,” J. Cell Sci., vol. 116, no. Pt 13, pp. 2763–2774, Jul. 2003. [7]Y. J. Liu, R. L. McIntyre, G. E. Janssens, and R. H. Houtkooper, “Mitochondrial fission and fusion: A dynamic role in aging and potential target for age-related disease.,” Mech. Ageing Dev., vol. 186, p. 111212, Mar. 2020. [8]H. Chen, S. A. Detmer, A. J. Ewald, E. E. Griffin, S. E. Fraser, and D. C. Chan, “Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development.,” J. Cell Biol., vol. 160, no. 2, pp. 189–200, Jan. 2003. [9]R. Filadi, E. Greotti, G. Turacchio, A. Luini, T. Pozzan, and P. Pizzo, “Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling.,” Proc. Natl. Acad. Sci. USA, vol. 112, no. 17, pp. E2174–81, Apr. 2015. [10]S. C. Lewis, L. F. Uchiyama, and J. Nunnari, “ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells.,” Science, vol. 353, no. 6296, p. aaf5549, Jul. 2016. [11]J. J. Rahn, K. D. Stackley, and S. S. L. Chan, “Opa1 is required for proper mitochondrial metabolism in early development.,” PLoS One, vol. 8, no. 3, p. e59218, Mar. 2013. [12]C. Frezza, S. Cipolat, O. Martins de Brito, M. Micaroni, G. V. Beznoussenko, T. Rudka, D. Bartoli, R. S. Polishuck, N. N. Danial, B. De Strooper, and L. Scorrano, “OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion.,” Cell, vol. 126, no. 1, pp. 177–189, Jul. 2006. [13]L. Tilokani, S. Nagashima, V. Paupe, and J. Prudent, “Mitochondrial dynamics: overview of molecular mechanisms.,” Essays Biochem, vol. 62, no. 3, pp. 341–360, Jul. 2018. [14]E. Smirnova, L. Griparic, D. L. Shurland, and A. M. van der Bliek, “Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells.,” Mol. Biol. Cell, vol. 12, no. 8, pp. 2245–2256, Aug. 2001. [15]J. A. Mears, L. L. Lackner, S. Fang, E. Ingerman, J. Nunnari, and J. E. Hinshaw, “Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission.,” Nat. Struct. Mol. Biol., vol. 18, no. 1, pp. 20–26, Jan. 2011. [16]F. Korobova, V. Ramabhadran, and H. N. Higgs, “An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2.,” Science, vol. 339, no. 6118, pp. 464–467, Jan. 2013. [17]S. Gandre-Babbe and A. M. van der Bliek, “The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells.,” Mol. Biol. Cell, vol. 19, no. 6, pp. 2402–2412, Jun. 2008. [18]H. Otera, C. Wang, M. M. Cleland, K. Setoguchi, S. Yokota, R. J. Youle, and K. Mihara, “Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells.,” J. Cell Biol., vol. 191, no. 6, pp. 1141–1158, Dec. 2010. [19]K. Izuishi, K. Kato, T. Ogura, T. Kinoshita, and H. Esumi, “Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy.,” Cancer Res., vol. 60, no. 21, pp. 6201–6207, Nov. 2000. [20]I. Momose, S.-I. Ohba, D. Tatsuda, M. Kawada, T. Masuda, G. Tsujiuchi, T. Yamori, H. Esumi, and D. Ikeda, “Mitochondrial inhibitors show preferential cytotoxicity to human pancreatic cancer PANC-1 cells under glucose-deprived conditions.,” Biochem. Biophys. Res. Commun., vol. 392, no. 3, pp. 460–466, Feb. 2010. [21]B. S. Jhun, H. Lee, Z.-G. Jin, and Y. Yoon, “Glucose stimulation induces dynamic change of mitochondrial morphology to promote insulin secretion in the insulinoma cell line INS-1E.,” PLoS One, vol. 8, no. 4, p. e60810, Apr. 2013. [22]S. M. Ronnebaum, M. V. Jensen, H. E. Hohmeier, S. C. Burgess, Y.-P. Zhou, S. Qian, D. MacNeil, A. Howard, N. Thornberry, O. Ilkayeva, D. Lu, A. D. Sherry, and C. B. Newgard, “Silencing of cytosolic or mitochondrial isoforms of malic enzyme has no effect on glucose-stimulated insulin secretion from rodent islets.,” J. Biol. Chem., vol. 283, no. 43, pp. 28909–28917, Oct. 2008. [23]J. C. Henquin, M. A. Ravier, M. Nenquin, J. C. Jonas, and P. Gilon, “Hierarchy of the beta-cell signals controlling insulin secretion.,” Eur. J. Clin. Invest., vol. 33, no. 9, pp. 742–750, Sep. 2003. [24]M. Liesa and O. S. Shirihai, “Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure.,” Cell Metab., vol. 17, no. 4, pp. 491–506, Apr. 2013. [25]M. Prentki and C. J. Nolan, “Islet beta cell failure in type 2 diabetes.,” J. Clin. Invest., vol. 116, no. 7, pp. 1802–1812, Jul. 2006. [26]B. B. Lowell and G. I. Shulman, “Mitochondrial dysfunction and type 2 diabetes.,” Science, vol. 307, no. 5708, pp. 384–387, Jan. 2005. [27]M. Anello, R. Lupi, D. Spampinato, S. Piro, M. Masini, U. Boggi, S. Del Prato, A. M. Rabuazzo, F. Purrello, and P. Marchetti, “Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients.,” Diabetologia, vol. 48, no. 2, pp. 282–289, Feb. 2005. [28]Y. Yoon, C. A. Galloway, B. S. Jhun, and T. Yu, “Mitochondrial dynamics in diabetes.,” Antioxid. Redox Signal., vol. 14, no. 3, pp. 439–457, Feb. 2011. [29]V. P. Bindokas, A. Kuznetsov, S. Sreenan, K. S. Polonsky, M. W. Roe, and L. H. Philipson, “Visualizing superoxide production in normal and diabetic rat islets of Langerhans.,” J. Biol. Chem., vol. 278, no. 11, pp. 9796–9801, Mar. 2003. [30]N. Yokoi, M. Hoshino, S. Hidaka, E. Yoshida, M. Beppu, R. Hoshikawa, K. Sudo, A. Kawada, S. Takagi, and S. Seino, “A novel rat model of type 2 diabetes: the zucker fatty diabetes mellitus ZFDM rat.,” J. Diabetes Res., vol. 2013, p. 103731, Feb. 2013. [31]A. J. A. Molina, J. D. Wikstrom, L. Stiles, G. Las, H. Mohamed, A. Elorza, G. Walzer, G. Twig, S. Katz, B. E. Corkey, and O. S. Shirihai, “Mitochondrial networking protects beta-cells from nutrient-induced apoptosis.,” Diabetes, vol. 58, no. 10, pp. 2303–2315, Oct. 2009. [32]L.-D. Popov, “Mitochondrial biogenesis: An update.,” J. Cell Mol. Med., vol. 24, no. 9, pp. 4892–4899, Apr. 2020. [33]T. Wenz, “Regulation of mitochondrial biogenesis and PGC-1α under cellular stress.,” Mitochondrion, vol. 13, no. 2, pp. 134–142, Mar. 2013. [34]S.-J. Park, F. Ahmad, J.-H. Um, A. L. Brown, X. Xu, H. Kang, H. Ke, X. Feng, J. Ryall, A. Philp, S. Schenk, M. K. Kim, V. Sartorelli, and J. H. Chung, “Specific Sirt1 Activator-mediated Improvement in Glucose Homeostasis Requires Sirt1-Independent Activation of AMPK.,” EBioMedicine, vol. 18, pp. 128–138, Apr. 2017. [35]K. A. Moynihan, A. A. Grimm, M. M. Plueger, E. Bernal-Mizrachi, E. Ford, C. Cras-Méneur, M. A. Permutt, and S.-I. Imai, “Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice.,” Cell Metab., vol. 2, no. 2, pp. 105–117, Aug. 2005. [36]M. E. Patti, A. J. Butte, S. Crunkhorn, K. Cusi, R. Berria, S. Kashyap, Y. Miyazaki, I. Kohane, M. Costello, R. Saccone, E. J. Landaker, A. B. Goldfine, E. Mun, R. DeFronzo, J. Finlayson, C. R. Kahn, and L. J. Mandarino, “Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1.,” Proc. Natl. Acad. Sci. USA, vol. 100, no. 14, pp. 8466–8471, Jul. 2003. [37]M. Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver, and J. Auwerx, “Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha.,” Cell, vol. 127, no. 6, pp. 1109–1122, Dec. 2006. [38]S. Akhtar and H. M. Siragy, “Pro-renin receptor suppresses mitochondrial biogenesis and function via AMPK/SIRT-1/ PGC-1α pathway in diabetic kidney.,” PLoS One, vol. 14, no. 12, p. e0225728, Dec. 2019. [39]S. M. Jin, M. Lazarou, C. Wang, L. A. Kane, D. P. Narendra, and R. J. Youle, “Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL.,” J. Cell Biol., vol. 191, no. 5, pp. 933–942, Nov. 2010. [40]S. Sekine and R. J. Youle, “PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol.,” BMC Biol., vol. 16, no. 1, p. 2, Jan. 2018. [41]K. Palikaras, E. Lionaki, and N. Tavernarakis, “Mechanisms of mitophagy in cellular homeostasis, physiology and pathology.,” Nat. Cell Biol., vol. 20, no. 9, pp. 1013–1022, Sep. 2018. [42]G. Twig, A. Elorza, A. J. A. Molina, H. Mohamed, J. D. Wikstrom, G. Walzer, L. Stiles, S. E. Haigh, S. Katz, G. Las, J. Alroy, M. Wu, B. F. Py, J. Yuan, J. T. Deeney, B. E. Corkey, and O. S. Shirihai, “Fission and selective fusion govern mitochondrial segregation and elimination by autophagy.,” EMBO J., vol. 27, no. 2, pp. 433–446, Jan. 2008. [43]S. Rovira-Llopis, C. Bañuls, N. Diaz-Morales, A. Hernandez-Mijares, M. Rocha, and V. M. Victor, “Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications.,” Redox Biol, vol. 11, pp. 637–645, Apr. 2017. [44]V. Anesti and L. Scorrano, “The relationship between mitochondrial shape and function and the cytoskeleton.,” Biochim. Biophys. Acta, vol. 1757, no. 5–6, pp. 692–699, Jun. 2006. [45]P. J. Hollenbeck and W. M. Saxton, “The axonal transport of mitochondria.,” J. Cell Sci., vol. 118, no. Pt 23, pp. 5411–5419, Dec. 2005. [46]A. J. Kruppa and F. Buss, “Motor proteins at the mitochondria-cytoskeleton interface.,” J. Cell Sci., vol. 134, no. 7, Apr. 2021. [47]Y. Tanaka, Y. Kanai, Y. Okada, S. Nonaka, S. Takeda, A. Harada, and N. Hirokawa, “Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria.,” Cell, vol. 93, no. 7, pp. 1147–1158, Jun. 1998. [48]M. Nangaku, R. Sato-Yoshitake, Y. Okada, Y. Noda, R. Takemura, H. Yamazaki, and N. Hirokawa, “KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria.,” Cell, vol. 79, no. 7, pp. 1209–1220, Dec. 1994. [49]R. D. Vale, “The molecular motor toolbox for intracellular transport.,” Cell, vol. 112, no. 4, pp. 467–480, Feb. 2003. [50]A. L. Wells, A. W. Lin, L. Q. Chen, D. Safer, S. M. Cain, T. Hasson, B. O. Carragher, R. A. Milligan, and H. L. Sweeney, “Myosin VI is an actin-based motor that moves backwards.,” Nature, vol. 401, no. 6752, pp. 505–508, Sep. 1999. [51]K. Mitra and J. Lippincott-Schwartz, “Analysis of mitochondrial dynamics and functions using imaging approaches.,” Curr. Protoc. Cell Biol., vol. Chapter 4, p. Unit 4.25.1–21, Mar. 2010. [52]L. M. Westrate, J. A. Drocco, K. R. Martin, W. S. Hlavacek, and J. P. MacKeigan, “Mitochondrial morphological features are associated with fission and fusion events.,” PLoS One, vol. 9, no. 4, p. e95265, Apr. 2014. [53]K. Trudeau, A. J. A. Molina, and S. Roy, “High glucose induces mitochondrial morphology and metabolic changes in retinal pericytes.,” Invest. Ophthalmol. Vis. Sci., vol. 52, no. 12, pp. 8657–8664, Nov. 2011. [54]P. Marchetti, Q. Fovez, N. Germain, R. Khamari, and J. Kluza, “Mitochondrial spare respiratory capacity: Mechanisms, regulation, and significance in non-transformed and cancer cells.,” FASEB J., vol. 34, no. 10, pp. 13106–13124, Aug. 2020. [55]E. Carbognin, R. M. Betto, M. E. Soriano, A. G. Smith, and G. Martello, “Stat3 promotes mitochondrial transcription and oxidative respiration during maintenance and induction of naive pluripotency.,” EMBO J., vol. 35, no. 6, pp. 618–634, Mar. 2016. [56]E. Heart, R. F. Corkey, J. D. Wikstrom, O. S. Shirihai, and B. E. Corkey, “Glucose-dependent increase in mitochondrial membrane potential, but not cytoplasmic calcium, correlates with insulin secretion in single islet cells.,” Am. J. Physiol. Endocrinol. Metab., vol. 290, no. 1, pp. E143–E148, Jan. 2006. [57]D. Fu and J. Lippincott-Schwartz, “Monitoring the effects of pharmacological reagents on mitochondrial morphology.,” Curr. Protoc. Cell Biol., vol. 79, no. 1, p. e45, May 2018. [58]K. M. Davies, M. Strauss, B. Daum, J. H. Kief, H. D. Osiewacz, A. Rycovska, V. Zickermann, and W. Kühlbrandt, “Macromolecular organization of ATP synthase and complex I in whole mitochondria.,” Proc. Natl. Acad. Sci. USA, vol. 108, no. 34, pp. 14121–14126, Aug. 2011. [59]D. M. Wolf, M. Segawa, A. K. Kondadi, R. Anand, S. T. Bailey, A. S. Reichert, A. M. van der Bliek, D. B. Shackelford, M. Liesa, and O. S. Shirihai, “Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent.,” EMBO J., vol. 38, no. 22, p. e101056, Nov. 2019. [60]L. C. Gomes, G. Di Benedetto, and L. Scorrano, “During autophagy mitochondria elongate, are spared from degradation and sustain cell viability.,” Nat. Cell Biol., vol. 13, no. 5, pp. 589–598, May 2011. [61]A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang, O. Friman, D. A. Guertin, J. H. Chang, R. A. Lindquist, J. Moffat, P. Golland, and D. M. Sabatini, “CellProfiler: image analysis software for identifying and quantifying cell phenotypes.,” Genome Biol., vol. 7, no. 10, p. R100, Oct. 2006. [62]L. Kamentsky, T. R. Jones, A. Fraser, M.-A. Bray, D. J. Logan, K. L. Madden, V. Ljosa, C. Rueden, K. W. Eliceiri, and A. E. Carpenter, “Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software.,” Bioinformatics, vol. 27, no. 8, pp. 1179–1180, Apr. 2011. [63]C. McQuin, A. Goodman, V. Chernyshev, L. Kamentsky, B. A. Cimini, K. W. Karhohs, M. Doan, L. Ding, S. M. Rafelski, D. Thirstrup, W. Wiegraebe, S. Singh, T. Becker, J. C. Caicedo, and A. E. Carpenter, “CellProfiler 3.0: Next-generation image processing for biology.,” PLoS Biol., vol. 16, no. 7, p. e2005970, Jul. 2018. [64]“CellProfiler 4.0 Release: Improvements in speed, utility, and usability | Carpenter Lab.” [Online]. Available: https://carpenterlab.broadinstitute.org/blog/cellprofiler-40-release-improvements-speed-utility-and-usability. [Accessed: 10-Jun-2021]. [65]D. J. Rees, L. Roberts, M. Carla Carisi, A. H. Morgan, M. R. Brown, and J. S. Davies, “Automated quantification of mitochondrial fragmentation in an in vitro parkinson’s disease model.,” Curr Protoc Neurosci, vol. 94, no. 1, p. e105, 2020. [66]N. Li, K. Ragheb, G. Lawler, J. Sturgis, B. Rajwa, J. A. Melendez, and J. P. Robinson, “Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production.,” J. Biol. Chem., vol. 278, no. 10, pp. 8516–8525, Mar. 2003. [67]R. Betarbet, T. B. Sherer, G. MacKenzie, M. Garcia-Osuna, A. V. Panov, and J. T. Greenamyre, “Chronic systemic pesticide exposure reproduces features of Parkinson’s disease.,” Nat. Neurosci., vol. 3, no. 12, pp. 1301–1306, Dec. 2000. [68]Y. Reis, M. Bernardo-Faura, D. Richter, T. Wolf, B. Brors, A. Hamacher-Brady, R. Eils, and N. R. Brady, “Multi-parametric analysis and modeling of relationships between mitochondrial morphology and apoptosis.,” PLoS One, vol. 7, no. 1, p. e28694, Jan. 2012. [69]M. P. Viana, S. Lim, and S. M. Rafelski, “Quantifying mitochondrial content in living cells.,” Methods Cell Biol., vol. 125, pp. 77–93, Jan. 2015. [70]“293T | ATCC.” [Online]. Available: https://www.atcc.org/products/crl-3216. [Accessed: 10-Jun-2021]. [71]M. C. Harwig, M. P. Viana, J. M. Egner, J. J. Harwig, M. E. Widlansky, S. M. Rafelski, and R. B. Hill, “Methods for imaging mammalian mitochondrial morphology: A prospective on MitoGraph.,” Anal. Biochem., vol. 552, pp. 81–99, Jul. 2018. [72]S. M. Rafelski, M. P. Viana, Y. Zhang, Y.-H. M. Chan, K. S. Thorn, P. Yam, J. C. Fung, H. Li, L. da F. Costa, and W. F. Marshall, “Mitochondrial network size scaling in budding yeast.,” Science, vol. 338, no. 6108, pp. 822–824, Nov. 2012. [73]M. P. Viana, A. I. Brown, I. A. Mueller, C. Goul, E. F. Koslover, and S. M. Rafelski, “Mitochondrial fission and fusion dynamics generate efficient, robust, and evenly distributed network topologies in budding yeast cells.,” Cell Syst., vol. 10, no. 3, pp. 287–297.e5, Mar. 2020. [74]A. J. Valente, L. A. Maddalena, E. L. Robb, F. Moradi, and J. A. Stuart, “A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture.,” Acta Histochem., vol. 119, no. 3, pp. 315–326, Apr. 2017. [75]T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital patterns,” Commun ACM, vol. 27, no. 3, pp. 236–239, Mar. 1984. [76]A. Chaudhry, R. Shi, and D. S. Luciani, “A pipeline for multidimensional confocal analysis of mitochondrial morphology, function, and dynamics in pancreatic β-cells.,” Am. J. Physiol. Endocrinol. Metab., vol. 318, no. 2, pp. E87–E101, Feb. 2020. [77]D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “DeconvolutionLab2: An open-source software for deconvolution microscopy.,” Methods, vol. 115, pp. 28–41, Feb. 2017. [78]G. W. Brodland, “How computational models can help unlock biological systems.,” Semin. Cell Dev. Biol., vol. 47–48, pp. 62–73, Dec. 2015. [79]V. M. Sukhorukov, D. Dikov, A. S. Reichert, and M. Meyer-Hermann, “Emergence of the mitochondrial reticulum from fission and fusion dynamics.,” PLoS Comput. Biol., vol. 8, no. 10, p. e1002745, Oct. 2012. [80]N. Zamponi, E. Zamponi, S. A. Cannas, O. V. Billoni, P. R. Helguera, and D. R. Chialvo, “Mitochondrial network complexity emerges from fission/fusion dynamics.,” Sci. Rep., vol. 8, no. 1, p. 363, Jan. 2018. [81]S. I. Shah, J. G. Paine, C. Perez, and G. Ullah, “Mitochondrial fragmentation and network architecture in degenerative diseases.,” PLoS One, vol. 14, no. 9, p. e0223014, Sep. 2019. [82]E. Zamponi, N. Zamponi, P. Coskun, G. Quassollo, A. Lorenzo, S. A. Cannas, G. Pigino, D. R. Chialvo, K. Gardiner, J. Busciglio, and P. Helguera, “Nrf2 stabilization prevents critical oxidative damage in Down syndrome cells.,” Aging Cell, vol. 17, no. 5, p. e12812, Oct. 2018. [83]X. Wang, B. Su, S. L. Siedlak, P. I. Moreira, H. Fujioka, Y. Wang, G. Casadesus, and X. Zhu, “Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins.,” Proc. Natl. Acad. Sci. USA, vol. 105, no. 49, pp. 19318–19323, Dec. 2008. [84]V. M. Sukhorukov and M. Meyer-Hermann, “Structural heterogeneity of mitochondria induced by the microtubule cytoskeleton.,” Sci. Rep., vol. 5, p. 13924, Sep. 2015. [85]M. Liesa, M. Palacín, and A. Zorzano, “Mitochondrial dynamics in mammalian health and disease.,” Physiol. Rev., vol. 89, no. 3, pp. 799–845, Jul. 2009. [86]D. C. Chan, “Mitochondrial dynamics and its involvement in disease.,” Annu. Rev. Pathol., vol. 15, pp. 235–259, Jan. 2020. [87]G. W. Dorn, R. B. Vega, and D. P. Kelly, “Mitochondrial biogenesis and dynamics in the developing and diseased heart.,” Genes Dev., vol. 29, no. 19, pp. 1981–1991, Oct. 2015. [88]P. Mishra and D. C. Chan, “Mitochondrial dynamics and inheritance during cell division, development and disease.,” Nat. Rev. Mol. Cell Biol., vol. 15, no. 10, pp. 634–646, Oct. 2014. [89]H. Liang and W. F. Ward, “PGC-1alpha: a key regulator of energy metabolism.,” Adv Physiol Educ, vol. 30, no. 4, pp. 145–151, Dec. 2006. [90]J. Sauvola and M. Pietikäinen, “Adaptive document image binarization,” Pattern Recognit, vol. 33, no. 2, pp. 225–236, Feb. 2000. [91]“Auto Threshold and Auto Local Threshold – Novel context-based segmentation algorithms for intelligent microscopy.” [Online]. Available: https://blog.bham.ac.uk/intellimic/g-landini-software/auto-threshold-and-auto-local-threshold/. [Accessed: 14-Jul-2021]. [92]“AnalyzeSkeleton GUI prune by length - Usage & Issues - Image.sc Forum.” [Online]. Available: https://forum.image.sc/t/analyzeskeleton-gui-prune-by-length/3657. [Accessed: 14-Jul-2021]. [93]D. Legland, I. Arganda-Carreras, and P. Andrey, “MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ.,” Bioinformatics, vol. 32, no. 22, pp. 3532–3534, Nov. 2016. [94]“Subtract background [ImageJ Documentation Wiki].” [Online]. Available: https://imagejdocu.tudor.lu/gui/process/subtract_background. [Accessed: 14-Jul-2021]. [95]Sternberg, “Biomedical Image Processing,” Computer (Long. Beach. Calif), vol. 16, no. 1, pp. 22–34, Jan. 1983. [96]“Sigma Filter.” [Online]. Available: https://imagej.nih.gov/ij/plugins/sigma-filter.html. [Accessed: 14-Jul-2021]. [97]“Enhance Local Contrast (CLAHE).” [Online]. Available: https://imagej.net/plugins/clahe. [Accessed: 14-Jul-2021]. [98]“Math [ImageJ Documentation Wiki].” [Online]. Available: https://imagejdocu.tudor.lu/gui/process/math. [Accessed: 14-Jul-2021]. [99]“Brightness and Contrast.” [Online]. Available: https://imagej.net/learn/brightness-and-contrast. [Accessed: 14-Jul-2021]. [100]“ImageJ - Auto Brightness/Contrast and setMinAndMax.” [Online]. Available: http://imagej.1557.x6.nabble.com/Auto-Brightness-Contrast-and-setMinAndMax-td4968628.html. [Accessed: 14-Jul-2021]. [101]“Noise [ImageJ Documentation Wiki].” [Online]. Available: https://imagejdocu.tudor.lu/gui/process/noise. [Accessed: 14-Jul-2021]. [102]S. Bolte and F. P. Cordelières, “A guided tour into subcellular colocalization analysis in light microscopy.,” J. Microsc., vol. 224, no. Pt 3, pp. 213–232, Dec. 2006. [103]“Skeletonize3D [ImageJ Documentation Wiki].” [Online]. Available: https://imagejdocu.list.lu/doku.php?id=plugin:morphology:skeletonize3d:start. [Accessed: 14-Jul-2021]. [104]T. C. Lee, R. L. Kashyap, and C. N. Chu, “Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms,” CVGIP: Graphical Models and Image Processing, vol. 56, no. 6, pp. 462–478, Nov. 1994. [105]“Analyze Menu.” [Online]. Available: https://imagej.nih.gov/ij/docs/menus/analyze.html. [Accessed: 14-Jul-2021]. [106]I. Arganda-Carreras, R. Fernández-González, A. Muñoz-Barrutia, and C. Ortiz-De-Solorzano, “3D reconstruction of histological sections: Application to mammary gland tissue.,” Microsc. Res. Tech., vol. 73, no. 11, pp. 1019–1029, Oct. 2010. [107]W. J. H. Koopman, S. Verkaart, H.-J. Visch, F. H. van der Westhuizen, M. P. Murphy, L. W. P. J. van den Heuvel, J. A. M. Smeitink, and P. H. G. M. Willems, “Inhibition of complex I of the electron transport chain causes O2-. -mediated mitochondrial outgrowth.,” Am. J. Physiol. Cell Physiol., vol. 288, no. 6, pp. C1440–50, Jun. 2005. [108]M. Rosenblatt, “Remarks on some nonparametric estimates of a density function,” Ann. Math. Statist., vol. 27, no. 3, pp. 832–837, Sep. 1956. [109]E. Parzen, “On estimation of a probability density function and mode,” Ann. Math. Statist., vol. 33, no. 3, pp. 1065–1076, Sep. 1962. [110]“scipy.stats.gaussian_kde — SciPy v1.7.1 Manual.” [Online]. Available: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html. [Accessed: 22-Aug-2021]. [111]B. W. Silverman, Density Estimation for Statistics and Data Analysis. Boston, MA: Springer US, 1986. [112]N.-B. Heidenreich, A. Schindler, and S. Sperlich, “Bandwidth selection for kernel density estimation: a review of fully automatic selectors,” AStA Adv. Stat. Anal., vol. 97, no. 4, pp. 403–433, Oct. 2013. [113]J. R. Hershey and P. A. Olsen, “Approximating the kullback leibler divergence between gaussian mixture models,” in 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP' ' ’07, 2007, pp. IV–317–IV–320. [114]“geneticalgorithm · PyPI.” [Online]. Available: https://pypi.org/project/geneticalgorithm/. [Accessed: 29-Jul-2021]. [115]“Microscopy Image Analysis Software - Imaris - Oxford Instruments.” [Online]. Available: https://imaris.oxinst.com/. [Accessed: 21-Aug-2021]. [116]A. Merglen, S. Theander, B. Rubi, G. Chaffard, C. B. Wollheim, and P. Maechler, “Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells.,” Endocrinology, vol. 145, no. 2, pp. 667–678, Feb. 2004. [117]J. Huff, “The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution,” Nat. Methods, vol. 12, no. 12, pp. i–ii, Dec. 2015. [118]“Image-Pro.” [Online]. Available: https://www.mediacy.com/imagepro. [Accessed: 21-Aug-2021].
|