1. TH Maiman, “Stimulated optical radiation in ruby,” Nature, vol.187 (1960).
2. L. Tunna, A. Kearns, W. O’Neill, and C.J. Sutcliffe, “Micromachining of copper using Nd:YAG laser radiation at 1064, 532, and 355 nm wavelengths,” Opt. Laser Tech., vol.33(3):135–143 (2001).
3. Stefan W. Hell and Jan Wichmann, “Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy,” Optics Letters, Vol.19, No.11 (1994).
4. G. Vicidomini, P. Bianchini, and P. Bianchini, “ STED super-resolved microscopy,” Nature method, Vol.15, No.3(2018).
5. Fritjof Helmchen and Winfried Denk, “Deep tissue two-photon microscopy,” vol.2, No.12(2005).
6. David S. Hum and Martin M. Fejer, “Quasi-phasematching,” vol.8, pp. 180-198(2007).
7. W. Koechner, “Solid-State Laser Engineering,” Springer Series in Optical Sciences, Springer, London, UK, 6th edition, (2006).
8. DN Nikogosyan, “Nonlinear Optical Crystals: A Complete Survey,” (2005).
9. YVGS Murti and C. Vijayan, “Essentials of Nonlinear Optics” (2014).
10. M. Marangoni and R. Ramponi, “Ferroelectric Crystals for Photonic Applications,” ch.4, (2014).
11. S. Aoyagi, H. Osawa, K. Sugimoto, M. Iwata, S. Takeda, C. Moriyoshi, and Y. Kuroiwa, “Crystal structure analysis of LiTaO3 under electric field, ”Japanese Journal of Applied Physics, vol.54, 10NB03, (2015).
12. Guyonnet, J. Ferroelectric Domain Walls: Statics, Dynamics, and Functionalities Revealed by Atomic Force Microscopy; Springer Science & Business Media: New York, (2014).
13. K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Applied Physics Letters, vol. 73, no. 21, pp. 3073–3075, Nov. 23, (1998).
14. Y. Furukawa, K. Kitamura, E. Suzuki, K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” Journal of Crystal Growth, vol.197, pp.889-895, (1999).
15. D. Feng, N. B. Ming, J. F. Hong, Y. S. Zhu, Z. Yang, and Y. N., Wang, “Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett., Vol. 37, p. 607, (1980).
16. H. Ito, C. Takyu, and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. , Vol. 27, p. 1221, 1991.
17. I. Camlibel, “Spontaneous polarization measurements in several ferroelectric oxides using a pulsed-field method,” J. Appl. Phys., Vol. 40, p. 1690, (1969).
18. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodical poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett., Vol. 62, pp. 435, (1993).
19. Shintaro Miyazawa, “Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide,” Journal of Applied Physics, vol.50, pp.4599, (1979).
20. 韓志勇, “利用鎳擴散利用鎳擴散製程於週期性極化反轉鉭酸鋰垂直調制準相位匹配結構,” 國立臺灣大學光電工程學研究所碩士論文, (2018).21. Boyd, “Nonlinear Optics 3ed,” Academic Press, Inc., (2008).
22. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Physical Review, vol. 127, no. 6, pp. 1918–1939, Sep. 15, (1962).
23. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, “Handbook of Nonlinear Optical Crystals,” Springer, 3rd ed., vol.64, (1999).
24. G. D. Boyd, A. Ashkin, J. M. Dziedzic, and D. A. Kleinman, “Second-Harmonic Generation of Light with Double Refraction,” Phys. Rev., vol.137, A1305, (1965).
25. Martin M. Fejer, G. A. Magel, Dieter H. Jundt, and Robert L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE Journal of Quantum Electronics, vol.28, no.11, pp.2631 - 2654, (1992).
26. I. S. Baturin, A. R. Akhmatkhanov, V. YA. Shur, M. S. Nebogatikov, M. A. Dolbilov, and E. A. Rodina, “Characterization of Bulk Screening in Single Crystals of Lithium Niobate and Lithium Tantalate Family,” Ferroelectrics, vol.374, pp.1–13, (2008).
27. L.-H. Peng, Y.-C. Fang, and Y.-C. Lin, “Polarization switching of lithium niobate with giant internal field,” Applied Physics Letters, vol. 74, no. 14, pp. 2070–2072,Apr. 5,(1999).
28. Venkatraman Gopalan, and Terence E. Mitchell, “In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,” Journal of Applied Physics, vol.85, pp.2304, (1999).
29. Xi Yang, Lowell T. Wood, and John H. Miller, Jr., “Diffraction from tunable periodic structures: application for the determination of electro-optic coefficients,” Applied Optics, vol.40, No. 31, (1999).
30. Hermann A. HAUS, “Waves and fields in optoelectronic,”(1984).
31. Joseph W. Goodman, “Introduction to Fourier Optics,” (1996).
32. A. Yariv, P. Yeh, “Photonics: Optical Electronics in Modern Communications,” Oxford Series in Electrical and Computer Engineering, Oxford Univ. Press, New York, (2006).
33.楊國楨和顧本源, “衍射光學元件的設計方法,” 中國科學院物理研究所, 23卷, 4期.
34. M. G. Moharam and L. Young, “Criterion for Bragg and Raman-Nath diffraction regimes,” Applied Optics, vol.17, No. 11, (1978).
35. M. Müller, E. Soergel, and K. Busea, “Investigation of periodically poled lithium niobate crystals by light diffraction,” Journal of Applied Physics, vol.97 (2005).
36. M. Müller, E. Soergel, M.C. Wengler, and K. Buse, “Light deflection from ferroelectric domain boundaries,” Journal of Applied Physics, vol.78, 367–370 (2004).
37. Y. Chen, H. Zhan, and B. Zhou, “Refractive index modulation in periodically poled MgO-doped congruent LiNbO3 crystal,” Applied Physics Letters, vol. 93, no. 22, p. 222902, (2008).
38. M. de Angelis, S. De Nicola, A. Finizio, and G. Pierattini, “Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method,” Applied Physics Letters, vol.85, no.14, (2004).
39. S.E. Harris, “Tunable Optical Parametric Oscillators,” IEEE, vol.78, 12, (1969).
40.ISO/TR 11146-3:2004, Lasers and laser-related equipment — test methods for laser beam widths, divergence angles and beam propagation ratios — part 3: Intrinsic and geometrical laser beam classification, propagation and details of test methods, (2004).
41. https://zh.wikipedia.org/wiki/高斯光束
42. 吕百达, 激光光学:光束描述、传输变换与光腔技术物理. 高等教育出版社503, (2003).
43. Robert L.Byer , “Quantum electronics: A treatise,” chap.9 , pp. 588-694.
44. Walter R. Bosenberg, Alexander Drobshoff, Jason I. Alexander, Lawrence E. Myers ,and Robert L. Byer “93% pump depletion, 3.5-W continuous-wave, singly resonant,” Optics letters, vol. 21, No.17, (1996).
45. S. Brosnan and R. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE Journal of Quantum Electronics, vol.15, No. 6, pp. 415–431, (1979).
46. J. Bjorkholm, “Some effects of spatially nonuniform pumping in pulsed optical parametric oscillators,” IEEE Journal of Quantum Electronics, vol.7, No. 3, (1971).
47. I.T. Ho, and A.E. Siegman, “Passive Phase-Distortionless Parametric Limiting with Varactor Diodes,” IEEE Journal of Quantum Electronics, vol.9, No. 6, (1961).
48. A. E. Siegman, “Nonlinear Optical Effects: An Optical Power Limiter,” Applied Optics,vol.1, No.6, pp. 739-744 (1962)