跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/01 01:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳柏緯
研究生(外文):Bai-Wei Wu
論文名稱:利用非線性光子晶體鉭酸鋰以級聯光學參量振盪器之腔內倍頻架構產生多波長橘黃光雷射之研究
論文名稱(外文):A Study of the Orange-Yellow Laser Generated by Nonlinear Photonic Crystal Lithium Tantalate with Optical Parametric Oscillator Cascaded by Intra-cavity Second Harmonic Generation Structure
指導教授:彭隆瀚
指導教授(外文):Lung-Han Peng
口試委員:王維新賴志明鄭宇翔蔡宛卲
口試委員(外文):Way-Seen WangChih-Ming LaiYu-Hsiang ChengWan-Shao Tsai
口試日期:2021-01-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:136
中文關鍵詞:光參振盪器倍頻轉換腔內倍頻橘光雷射準相位匹配
外文關鍵詞:OPOSHGIntra-cavityorange laserQPM
DOI:10.6342/NTU202100434
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要分為四部分:(1)非線性晶體與三波混成基礎理論,(2)週期性極化反轉鉭酸鋰(PPLT)之設計、製作與以遠場繞射的方法評量晶體結構,(3)利用樣品與優化腔鏡進行腔內倍頻的方式產生橘黃光雷射之光學量測,(4)利用樣品與多組腔鏡進行腔內倍頻橘光以進行特徵參數萃取的模型建構與模擬分析。
筆者利用鎳擴散製程與高電壓極化反轉技術製作週期性極化反轉鉭酸鋰樣品,並使用線性光學之遠場繞射實驗與模擬評斷週期性結構製作的好壞。晶體設計上,以先並聯光參結構後結啁啾倍頻週期結構的方式與532 nm綠光雷射達成準相位匹配之條件,使532 nm泵浦光以先光參轉換成1160/1180/1200 nm近紅外光後,再以倍頻轉換成多波長的580/590/600 nm之橘黃光雷射。
光學量測部分,以脈衝之泵浦光經過筆者製造之僅拋光研磨未鍍膜樣品與設計的共振腔結構成功地產生斜線效率為10%、低閾值12.94 MW/cm2的多波長橘黃光雷射。在後續更換三種腔鏡與一組樣品後進行量測,對多組實驗數據進行特徵參數的萃取與分析,並歸納出腔鏡優化的結論。
最後,以光參振盪器耦合方程理論、共振光場空間變化緩慢與穩態條件(steady state)為基礎,以入射平面波光場均勻與高斯分佈分別建構筆者實驗架構上的級聯光學參量振盪器之腔內倍頻架構產生橘光轉換器之理論模型。以Matlab進行數值計算與模擬,並將理論模型與實驗數據比較後發現實驗數據之信號光功率與產生橘光功率的結果與本研究提出之理論模型吻合。
This thesis is mainly composed of four parts: (1) Non-linear crystal and fundamental three-wave mixing theory, (2) Design and fabrication of periodically poled lithium tantalate, and the assessment of crystal quality using far-field diffraction, (3) Optical measurement of a sample by using the optimized cavity in the laboratory, and(4) Optical measurement by using another cavity in the laboratory and analysis of intra-cavity second harmonic generation(SHG) theory.
The periodic structure for the ferroelectric domain is fabricated by using the high-voltage poling technique and then examined by far-field diffraction, which is supported by Fourier optics. A structure parallel to the optical parametric oscillator(OPO) cascaded by segment chirped SHG structure is designed. It is used to convert a 532 nm pump laser into 1160/1180/1200 nm wavelengths which are near infrareds. In addition, it can also be used to continuously convert 1160/1180/1200 into 580/590/600 nm wavelength orange-yellow lasers.
The optical power is measured by using a muti-wavelength spectrum with a slope efficiency of 10% and a laser threshold of 12 MW/cm2. When the data are measured, the experiment is performed again using different cavities for comparison.
The final step of this study is to propose a about theoretical model of the optical parametric oscillator cascaded by intra-cavity SHG structure, which is based on nonlinear optical coupled equations, resonant-light slowly-varying optical-field condition, and steady-state condition. Furthermore, the measured results are compared with those calculated by the theoretical model, and it was found the data figures are consistent.
第一章 簡介 1
1.1 研究背景與動機 1
1.2 非線性晶體介紹 3
1.3 鉭酸鋰晶體的結構與特性 5
1.3.1 鉭酸鋰之特性 5
1.3.2 長晶方法與比較 9
1.4 週期性極化反轉機制 10
1.4.1 高電壓致鐵電材料極化反轉介紹 10
1.4.2 金屬高溫擴散致表面鐵電域淺層反轉機制 11
1.5 論文內容概述 12
第二章非線性光學理論 14
2.1 非線性頻率轉換
2.1.1 三波混成與 介紹 14
2.1.2 三波混成轉換耦合方程式 15
2.1.3 基頻光場無損耗之和(倍)頻轉換 16
2.1.4 基頻光場考慮損耗之和倍頻轉換 21
2.1.5 基頻光場考慮高斯光束之電場強度空間分布 22
2.1.6 光參振盪器 23
2.2 雙折射相位匹配理論 27
2.3 準相位匹配理論 29
第三章 樣品製造及設計 35
3.1 週期性極化反轉鉭酸鋰製程 35
3.1.1 樣品製程流程介紹 35
3.1.2 高電壓極化反轉技術架構 39
3.1.3 電壓波形選擇與參數設計 40
3.2 光罩與樣品設計 45
3.2.1 光罩與樣品設計結構 45
3.2.2 啁啾結構傅立葉分析等效非線性係數 47
3.2.3 級聯光參振盪器腔內倍頻優缺點整理 48
3.3樣品之光學繞射結果與繞射模擬 49
3.3.1 極化反轉後鉭酸鋰的電光效應 50
3.3.2 繞射理論 52
3.3.3 光子晶體樣品之繞射結果與繞射模擬 56
3.3.4 繞射實驗與繞射模擬結論 66
3.4樣品內建電場方向確認 68
3.5折射率差總結 71
第四章 光學量測 72
4.1光學系統與腔內倍頻架構 72
4.1.1 光路設計 72
4.1.2 腔鏡組反射率選擇 74
4.2光學量測結果與分析 76
4.2.1 斜線效率 76
4.2.2 光譜與頻寬 77
4.2.3雷射品質量測結果 80
第五章 樣品參數萃取、模擬實驗對照 87
5.1不同腔鏡實驗數據與比較 87
5.1.1 腔鏡組:Exp1 88
5.1.2 腔鏡組:Exp2 89
5.1.3 腔鏡組:Exp3 90
5.1.4 腔鏡組:Exp4 91
5.1.5 腔鏡組:Exp5 91
5.1.6 實驗數據總整理與比較 93
5.2級聯光參振盪器之腔內倍頻理論模型建立 97
5.2.1 增益不隨空間截面變化 102
5.2.2 考慮增益隨空間截面變化 105
5.3實驗/理論比較與樣品參數萃取 108
5.3.1 參數萃取流程 108
5.3.2 實驗數據與理論模型比較 109
5.3.3 理論模型適用性小結與結果分析 117
5.3.4 其他觀點觀察數據 118
第六章 結論與未來展望 121
6.1結論 121
6.2未來展望 122
第七章 參考資料 124
附錄:程式(code) 130
1. TH Maiman, “Stimulated optical radiation in ruby,” Nature, vol.187 (1960).
2. L. Tunna, A. Kearns, W. O’Neill, and C.J. Sutcliffe, “Micromachining of copper using Nd:YAG laser radiation at 1064, 532, and 355 nm wavelengths,” Opt. Laser Tech., vol.33(3):135–143 (2001).
3. Stefan W. Hell and Jan Wichmann, “Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy,” Optics Letters, Vol.19, No.11 (1994).
4. G. Vicidomini, P. Bianchini, and P. Bianchini, “ STED super-resolved microscopy,” Nature method, Vol.15, No.3(2018).
5. Fritjof Helmchen and Winfried Denk, “Deep tissue two-photon microscopy,” vol.2, No.12(2005).
6. David S. Hum and Martin M. Fejer, “Quasi-phasematching,” vol.8, pp. 180-198(2007).
7. W. Koechner, “Solid-State Laser Engineering,” Springer Series in Optical Sciences, Springer, London, UK, 6th edition, (2006).
8. DN Nikogosyan, “Nonlinear Optical Crystals: A Complete Survey,” (2005).
9. YVGS Murti and C. Vijayan, “Essentials of Nonlinear Optics” (2014).
10. M. Marangoni and R. Ramponi, “Ferroelectric Crystals for Photonic Applications,” ch.4, (2014).
11. S. Aoyagi, H. Osawa, K. Sugimoto, M. Iwata, S. Takeda, C. Moriyoshi, and Y. Kuroiwa, “Crystal structure analysis of LiTaO3 under electric field, ”Japanese Journal of Applied Physics, vol.54, 10NB03, (2015).
12. Guyonnet, J. Ferroelectric Domain Walls: Statics, Dynamics, and Functionalities Revealed by Atomic Force Microscopy; Springer Science & Business Media: New York, (2014).
13. K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3,” Applied Physics Letters, vol. 73, no. 21, pp. 3073–3075, Nov. 23, (1998).
14. Y. Furukawa, K. Kitamura, E. Suzuki, K. Niwa, “Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” Journal of Crystal Growth, vol.197, pp.889-895, (1999).
15. D. Feng, N. B. Ming, J. F. Hong, Y. S. Zhu, Z. Yang, and Y. N., Wang, “Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett., Vol. 37, p. 607, (1980).
16. H. Ito, C. Takyu, and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. , Vol. 27, p. 1221, 1991.
17. I. Camlibel, “Spontaneous polarization measurements in several ferroelectric oxides using a pulsed-field method,” J. Appl. Phys., Vol. 40, p. 1690, (1969).
18. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodical poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett., Vol. 62, pp. 435, (1993).
19. Shintaro Miyazawa, “Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide,” Journal of Applied Physics, vol.50, pp.4599, (1979).
20. 韓志勇, “利用鎳擴散利用鎳擴散製程於週期性極化反轉鉭酸鋰垂直調制準相位匹配結構,” 國立臺灣大學光電工程學研究所碩士論文, (2018).
21. Boyd, “Nonlinear Optics 3ed,” Academic Press, Inc., (2008).
22. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Physical Review, vol. 127, no. 6, pp. 1918–1939, Sep. 15, (1962).
23. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, “Handbook of Nonlinear Optical Crystals,” Springer, 3rd ed., vol.64, (1999).
24. G. D. Boyd, A. Ashkin, J. M. Dziedzic, and D. A. Kleinman, “Second-Harmonic Generation of Light with Double Refraction,” Phys. Rev., vol.137, A1305, (1965).
25. Martin M. Fejer, G. A. Magel, Dieter H. Jundt, and Robert L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE Journal of Quantum Electronics, vol.28, no.11, pp.2631 - 2654, (1992).
26. I. S. Baturin, A. R. Akhmatkhanov, V. YA. Shur, M. S. Nebogatikov, M. A. Dolbilov, and E. A. Rodina, “Characterization of Bulk Screening in Single Crystals of Lithium Niobate and Lithium Tantalate Family,” Ferroelectrics, vol.374, pp.1–13, (2008).
27. L.-H. Peng, Y.-C. Fang, and Y.-C. Lin, “Polarization switching of lithium niobate with giant internal field,” Applied Physics Letters, vol. 74, no. 14, pp. 2070–2072,Apr. 5,(1999).
28. Venkatraman Gopalan, and Terence E. Mitchell, “In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy,” Journal of Applied Physics, vol.85, pp.2304, (1999).
29. Xi Yang, Lowell T. Wood, and John H. Miller, Jr., “Diffraction from tunable periodic structures: application for the determination of electro-optic coefficients,” Applied Optics, vol.40, No. 31, (1999).
30. Hermann A. HAUS, “Waves and fields in optoelectronic,”(1984).
31. Joseph W. Goodman, “Introduction to Fourier Optics,” (1996).
32. A. Yariv, P. Yeh, “Photonics: Optical Electronics in Modern Communications,” Oxford Series in Electrical and Computer Engineering, Oxford Univ. Press, New York, (2006).
33.楊國楨和顧本源, “衍射光學元件的設計方法,” 中國科學院物理研究所, 23卷, 4期.
34. M. G. Moharam and L. Young, “Criterion for Bragg and Raman-Nath diffraction regimes,” Applied Optics, vol.17, No. 11, (1978).
35. M. Müller, E. Soergel, and K. Busea, “Investigation of periodically poled lithium niobate crystals by light diffraction,” Journal of Applied Physics, vol.97 (2005).
36. M. Müller, E. Soergel, M.C. Wengler, and K. Buse, “Light deflection from ferroelectric domain boundaries,” Journal of Applied Physics, vol.78, 367–370 (2004).
37. Y. Chen, H. Zhan, and B. Zhou, “Refractive index modulation in periodically poled MgO-doped congruent LiNbO3 crystal,” Applied Physics Letters, vol. 93, no. 22, p. 222902, (2008).
38. M. de Angelis, S. De Nicola, A. Finizio, and G. Pierattini, “Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method,” Applied Physics Letters, vol.85, no.14, (2004).
39. S.E. Harris, “Tunable Optical Parametric Oscillators,” IEEE, vol.78, 12, (1969).
40.ISO/TR 11146-3:2004, Lasers and laser-related equipment — test methods for laser beam widths, divergence angles and beam propagation ratios — part 3: Intrinsic and geometrical laser beam classification, propagation and details of test methods, (2004).
41. https://zh.wikipedia.org/wiki/高斯光束
42. 吕百达, 激光光学:光束描述、传输变换与光腔技术物理. 高等教育出版社503, (2003).
43. Robert L.Byer , “Quantum electronics: A treatise,” chap.9 , pp. 588-694.
44. Walter R. Bosenberg, Alexander Drobshoff, Jason I. Alexander, Lawrence E. Myers ,and Robert L. Byer “93% pump depletion, 3.5-W continuous-wave, singly resonant,” Optics letters, vol. 21, No.17, (1996).
45. S. Brosnan and R. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE Journal of Quantum Electronics, vol.15, No. 6, pp. 415–431, (1979).
46. J. Bjorkholm, “Some effects of spatially nonuniform pumping in pulsed optical parametric oscillators,” IEEE Journal of Quantum Electronics, vol.7, No. 3, (1971).
47. I.T. Ho, and A.E. Siegman, “Passive Phase-Distortionless Parametric Limiting with Varactor Diodes,” IEEE Journal of Quantum Electronics, vol.9, No. 6, (1961).
48. A. E. Siegman, “Nonlinear Optical Effects: An Optical Power Limiter,” Applied Optics,vol.1, No.6, pp. 739-744 (1962)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊