跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/06 02:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉宗諺
研究生(外文):Tsung-Yen Liu
論文名稱:有機金屬氣相磊晶氮化合物緩衝層及深紫外光與綠光波段光電特性之開發研究
論文名稱(外文):The development of nitride-based buffer layer and deep ultraviolet and green band photoelectric properties by metal-organic vapor phase epitaxy
指導教授:管傑雄管傑雄引用關係
指導教授(外文):Chieh-Hsiung Kuan
口試委員:吳肇欣吳孟奇張連璧陳隆建蘇文生
口試委員(外文):Chao-Hsin WuMeng-Chyi WuLiann-Be ChangLung-Chien ChenVin-Cent Su
口試日期:2021-05-03
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:116
中文關鍵詞:有機金屬氣相磊晶氮化鎵氮化鋁鎵氮化銦鎵深紫外光發光二極體綠光發光二極體
外文關鍵詞:Metal-organic vapor phase epitaxyGallium nitrideAluminum gallium nitrideIndium gallium nitrideDeep ultraviolet light emitting diodesGreen light emitting diodes
DOI:10.6342/NTU202100877
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
磊晶為半導體光電元件不可或缺的技術。目前在高效率氮化銦鎵藍、綠光雷射二極體磊晶工藝上,需要好的氮化鎵基板,但因在高溫下氮的飽和蒸汽壓很高,現今的拉單晶技術無法做到。故現今皆是使用HVPE-權衡下之獨立式氮化鎵基板(Free-Standing GaN substrate)。本研究發現在使用此基板下做氮化鎵MOCVD同質磊晶時,因氮化鎵基板殘存的應力及材料品質,為了尋找低缺陷密度、熱力學穩定的氮化鎵磊晶層,我們發現磊晶的成長速率對此表面的品質影響頗大,在相同成長溫度下以較高的成長速率可以提昇氮化鎵磊晶品質以及更好表面的型態。第二部分在氮化鋁鎵 (AlGaN)異質接面磊晶中,我們克服了與AlGaN深紫外光發光二極體磊晶相關的幾個關鍵生長問題。在氮化鋁 (AlN)表面微米厚的AlGaN層中觀察到不規則的錯位聚集以及火山口深坑形貌。在AlGaN層和AlN層之間插入超晶格過渡層後,應力誘導的形貌和缺陷得到抑制,而主動區的缺陷發光是由於三族空缺相關的氧淺施主和深受主的輻射複合控制的,在優化生長條件和减少生長中斷後,藍光波段的寄生發光强度被抑制了95%。最後,在氮化銦鎵研究中提出了全新的思維,追求可得到高成分銦且高品質的InGaN最理想的解決方案,為了得到高成分的銦而犧牲材料中最重要之主動層的磊晶品質,無法真正達到元件的理想特性。長久以來一直研究如何突破高In成分的InGaN只能低溫成長的宿命,就磊晶技術而言成長溫度越高,原子的移動長度(migration length)更大,就更有機會找到可以使電子鍵結後能量降的更低的鍵結位置,可以得到更好的磊晶品質。我們提出可使氮化銦鎵材料去蕪補菁的淬火技術,在磊晶成長InGaN之後,我們升高反應腔溫度並通入銦前驅物,把In-N的弱鍵加速趕走的同時,藉由In-N的再鍵結,可在更高的溫度下維持高銦成分及更好品質的的氮化銦鎵。
Epitaxy is an indispensable technology for semiconductor optoelectronic devices. At present, good GaN substrate is needed for high efficiency InGaN Blue and green laser diode epitaxy. However, due to the high saturated vapor pressure of nitrogen at high temperature, the current single crystal pulling technology cannot achieve it. So nowadays, HVPE free-standing GaN substrate is a trade-off product. In this study, we found that the residual stress and material quality of GaN substrate will be affected when GaN MOCVD homo-epitaxy is performed on free-standing GaN substrate. In order to find a low defect density and thermodynamically stable Gan epitaxial layer, we found that the growth rate of epitaxial layer has a great influence on the surface quality. At the same growth temperature, higher growth rate can improve the quality of Gan epitaxial layer and better surface morphology. In the second part, we overcome several key growth problems related to AlGaN deep UV LED epitaxy in AlGaN heterojunction epitaxy. Irregular-shaped pits with dislocation clusters and volcano morphology were observed in micron-thick layers of AlGaN on AlN. The strain-induced morphology and defects were suppressed after the insertion of superlattice transition layers between the AlGaN and AlN layers. The defect luminescence in the active region was governed by radiative recombination through the oxygen shallow donors and deep acceptors related to III-vacancies. After optimization of the growth conditions and a decrease in growth interruption, the intensity of the parasitic blue-band emission was suppressed by up to 95%. Finally, a new idea is put forward in the research of InGaN, which pursues the most ideal solution to obtain high composition indium and high quality InGaN. In order to obtain high composition indium, the epitaxial quality of the most important active layer in the material is sacrificed, which cannot really achieve the ideal characteristics of the device. For a long time, we have been studying how to break through the fatalism that InGaN with high In content can only grow at low temperature. As far as the epitaxial technology is concerned, the higher the growth temperature is, the larger the migration length of atoms is, and there is a better chance to find a bonding site that can reduce the energy after electron bonding, so as to obtain better epitaxial quality. We propose a refined temper fire treatment technique. After epitaxial growth of InGaN, we increase the temperature of the reaction chamber and introduce In precursor to drive away the weak bond of In-N. at the same time, by In-N re-bonding, we can maintain high indium content and better quality of InGaN at higher temperature.
口試委員審定書 I
致謝 II
中文摘要 III
Abstract V
Content VII
List of Figures X
List of Tables XVI
Chapter 1 Introduction 1
Chapter 2 Experimental instruments 7
2.1 Metal-organic vapor phase epitaxy (MOVPE) 7
2.2 X-ray diffractometer (XRD) 10
2.3 Photoluminescence (PL) measurement 12
2.3 Atomic force microscopy (AFM) 14
2.3 Raman spectroscopy 16
Chapter 3 18
3.1 Introduction to metal-organic vapor phase epitaxy 18
3.1.1 Epitaxial growth mechanism model of nitride materials 20
3.1.2 Thermal decomposition of gallium nitride 21
3.1.3 Adsorption and decomposition of gallium / nitrogen precursors on wafer surface 22
3.1.4 Surface separation of gallium and nitrogen 24
3.1.5 Comparison of characteristics of atmospheric / low pressure nitride metal-organic vapor phase epitaxy system 25
3.2 To development high quality GaN on the trade-off free-standing GaN substrate 38
3.2.1 GaN crystal growth techniques, growth of bulk GaN crystals 42
3.2.2 Hydride vapor phase epitaxy (HVPE) 43
3.2.3 GaN on free-standing GaN substrate homojunction epitaxy 48
Chapter 4 Suppression of “volcano” morphology and parasitic defect luminescence in AlGaN-based deep-UV light-emitting diode epitaxy 61
4.1 Epitaxy structure and experiment design 64
4.2 Results and discussion 69
4.2.1 Morphological evolution and defect structures in AlGaN-on-AlN epitaxy 69
4.2.2 Suppression of radiative recombination through point defects 75
Chapter 5 Modulation and Refinement of In-N Re-Bonding of InGaN Through In Post-Flow During a Refined Temper Fire Treatment Process 87
5.1 Epitaxy structure and experiment design 90
5.2 In-N re-bonding of InGaN through In post-flow 94
Chapter 6 Conclusions and future works 105
Chapter 7 Reference 107
[1] G.P. Han, C.H. Oh, H. Kim, J.I. Shim, K.S. Kim, D.S. Shin, "Conduction mechanisms of leakage current in InGaN/GaN-based light-emitting diodes," IEEE Transactions on Electron Devices, vol. 62, pp. 587-592, 25 12 2015.
[2] Gaoqiang Deng, Yuantao Zhang, Ye Yu, Long Yan, Pengchong Li, Xu Han, Liang Chen, Degang Zhao and Guotong Du, "Study on the structural, optical, and electrical properties of the yellow light-emitting diode grown on free-standing (0001) GaN substrate," Superlattices and Microstructures, vol. 116, pp. 1-8, 2018.
[3] Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, "White light emitting diodes with super-high luminous efficacy," Journal of Physics D, vol. 43, no. 35, 19 8 2010.
[4] A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, and P. Hinze, "Suppression of Nonradiative Recombination by V-Shaped Pits in GaInN / GaN Quantum Wells Produces a Large Increase in the Light Emission Efficiency," Physical Review Letters, vol. 95, p. 127402, 14 9 2005.
[5] A. Vaitkevičius, J. Mickevičius, D. Dobrovolskas, Ö. Tuna, C. Giesen, M. Heuken, and G. Tamulaitis, "Influence of quantum-confined Stark effect on optical properties within trench defects in InGaN quantum wells with different indium content," Journal of Applied Physics, vol. 115, p. 213512, 24 5 2014.
[6] F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerwald, G. E. H¨ofler, K. G. Park, and F. M. Steranka, "Highly reliable and efficient semiconductor wafer-bonded AlGaInP/GaP light-emitting diodes," Electronics Letters, vol. 32, p. 132–134, 1996.
[7] Matthias Auf der Maur, Walter Rodrigues and Aldo Di Carlo, "Unraveling the "Green Gap" problem: The role of random alloy fluctuations in InGaN/GaN light emitting diodes," Physical Review Letters, vol. 116, no. 2, October 2015.
[8] "X-Ray Diffraction Analysis of Ⅲ - Ⅴ Superlattices: Characterization, Simulation and Fitting 1 Xiangyu Wu Enlong Liu Mentor: Clement Merckling EPI Group.," [Online]. Available: https://www.google.com/url?sa=i&url=https%3A%2F%2Fslideplayer.com%2Fslide%2F10057804%2F&psig=AOvVaw3ksLtCO3LNl5AKEYomZIOt&ust=1614840140491000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJiLvL3Ck-8CFQAAAAAdAAAAABAR.
[9] "Atomic Force Microscope (AFM)," [Online]. Available: https://zh.wikipedia.org/wiki/%E5%8E%9F%E5%AD%90%E5%8A%9B%E6%98%BE%E5%BE%AE%E9%95%9C.
[10] "Wikipedia Raman," [Online]. Available: https://zh.wikipedia.org/wiki/%E6%8B%89%E6%9B%BC%E5%85%89%E8%AD%9C%E5%AD%B8.
[11] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer," Applied Physics Letters, vol. 48, pp. 353-355, 1986.
[12] S. Nakamura, Y. Harada, and M. Seno, "Novel metalorganic chemical vapor deposition system for GaN growth," Applied Physics Letters, vol. 58, pp. 2021-2023, 1991.
[13] D. D. Koleske, A. E. Wickenden, R. L. Henry, W. J. DeSisto, and R. J. Gorman, "Growth model for GaN with comparison to structural, optical, and electrical properties," Journal of Applied Physics, vol. 84, pp. 1998-2010, 1998.
[14] C. Hwang, M. Schurman, W. Mayo, Y. Lu, R. Stall, and T. Salagaj, "Effect of structural defects and chemical impurities on hall mobilities in low pressure MOCVD grown GaN," Journal of Electronic Materials, vol. 26, pp. 243-251, 1997.
[15] S. Keller, B. P. Keller, Y. F. Wu, B. Heying, D. Kapolnek, J. S. Speck, U. K. Mishra, and S. P. DenBaars, "Influence of sapphire nitridation on properties of gallium nitride grown by metalorganic chemical vapor deposition," Applied Physics Letters, vol. 68, pp. 1525-1527, 1996.
[16] J. N. Kuznia, M. A. Khan, D. T. Olson, R. Kaplan, and J. Freitas, "Influence of buffer layers on the deposition of high quality single crystal GaN over sapphire substrates," Journal of Applied Physics, vol. 73, pp. 4700-4702, 1993.
[17] S. Yoshida, S. Misawa, and S. Gonda, "Epitaxial growth of GaN/AlN heterostructures," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 1, pp. 250-253, 1983.
[18] S. Keller, D. Kapolnek, B. Keller, nbsp, P, Y. Wu, B. Heying, J. Speck, S, U. Mishra, K, and S. Denbaars, "Effect of the Trimethylgallium Flow during Nucleation Layer Growth on the Properties of GaN Grown on Sapphire," Japanese Journal of Applied Physics, vol. 35, p. L285, 1996.
[19] S. Hersee, J. Ramer, K. Zheng, C. Kranenberg, K. Malloy, M. Banas, and M. Goorsky, "The role of the low temperature buffer layer and layer thickness in the optimization of OMVPE growth of GaN on sapphire," Journal of Electronic Materials, vol. 24, pp. 1519-1523, 1995.
[20] C. F. Lin, G. C. Chi, M. S. Feng, J. D. Guo, J. S. Tsang, and J. M. Hong, "The dependence of the electrical characteristics of the GaN epitaxial layer on the thermal treatment of the GaN buffer layer," Applied Physics Letters, vol. 68, pp. 3758-3760, 1996.
[21] B. P. Keller, S. Keller, D. Kapolnek, M. Kato, H. Masui, S. Imagi, U. K. Mishra, and S. P. DenBaars, "Effect of atmospheric pressure MOCVD growth conditions on UV band-edge photoluminescence in GaN thin films," Electronics Letters, vol. 31, pp. 1102-1103, 1995.
[22] K. Doverspike, L. Rowland, D. Gaskill, and J. Freitas, "The effect of GaN and ain buffer layers on GaN film properties grown on both C-plane and A-plane sapphire," Journal of Electronic Materials, vol. 24, pp. 269-273, 1995.
[23] R. C. Schoonmaker, A. Buhl, and J. Lemley, Journal of Physical Chemistry, vol. 69, p. 3455, 1965.
[24] R. J. Sime and J. L. Margrave, Journal of Physical Chemistry, vol. 60, p. 810, 1956.
[25] Z. A. Munir and A. W. Searcy, Journal of Physical Chemistry, vol. 42, p. 4223, 1965.
[26] J. M. Van Hove and P. I. Cohen, "Mass-action control of AlGaAs and GaAs growth in molecular beam epitaxy," Applied Physics Letters, vol. 47, pp. 726-728, 1985.
[27] T. Kojima, N. J. Kawai, T. Nakagawa, K. Ohta, T. Sakamoto, and M. Kawashima, "Layer-by-layer sublimation observed by reflection high-energy electron diffraction intensity oscillation in a molecular beam epitaxy system," Applied Physics Letters, vol. 47, pp. 286-288, 1985.
[28] G. B. Stringfellow, Organometallic vapor-phase epitaxy: theory and practice, 1999.
[29] M. Yoshida, H. Watanabe, and F. Uesugi, "Mass Spectrometric Study of Ga (  CH 3 ) 3 and Ga (  C 2 H 5 )    3 Decomposition Reaction in  H 2 and  N 2," Journal of The Electrochemical Society, vol. 132, pp. 677-679, 1985.
[30] A. Thon and T. F. Kuech, "High temperature adduct formation of trimethylgallium and ammonia," Applied Physics Letters, vol. 69, pp. 55-57, 1996.
[31] H. Yang, O. Brandt, and K. Ploog, "MBE growth of cubic GaN on GaAs substrates," physica status solidi (b), vol. 194, pp. 109-120, 1996.
[32] Y. Golan, P. Fini, S. P. DenBaars, and J. S. Speck, "Substrate Surface Treatments and “Controlled Contamination” in GaN / Sapphire MOCVD," Mater. Res. Soc. Symp. Proc. , vol. 482, p. 57, 1998.
[33] J. R. Arthur, "Surface stoichiometry and structure of GaAs," Surface Science, vol. 43, pp. 449-461, 1974.
[34] C. T. Foxon and B. A. Joyce, "Interaction kinetics of As4 and Ga on {100} GaAs surfaces using a modulated molecular beam technique," Surface Science, vol. 50, pp. 434-450, 1975.
[35] C. T. Foxon and B. A. Joyce, "Interaction kinetics of As2 and Ga on {100} GaAs surfaces," Surface Science, vol. 64, pp. 293-304, 1977.
[36] R. Shekhar and K. F. Jensen, "Temperature programmed desorption investigations of hydrogen and ammonia reactions on GaN," Surface Science, vol. 381, pp. L581-L588, 1997.
[37] E. Apen and J. L. Gland, "Ammonia adsorption and decomposition on the GaAs(100)-c(8 × 2) surface," Surface Science, vol. 321, pp. 301-307, 1994.
[38] J. Russell Jr, V. Bermudez, and A. Leming, "Adsorption and Thermal Decomposition of Hydrazoic Acid on Al (111)," Langmuir, vol. 12, pp. 6492-6500, 1996.
[39] C. Chiang, S. Gates, A. Bensaoula, and J. Schultz, "Hydrogen desorption and ammonia adsorption on polycrystalline GaN surfaces," Chemical Physics Letters, vol. 246, pp. 275-278, 1995.
[40] V. S. Ban, "Mass Spectrometric Studies of Vapor-Phase Crystal Growth," Journal of The Electrochemical Society, vol. 119, pp. 761-765, 1972.
[41] S. S. Liu and D. A. Stevenson, "Growth Kinetics and Catalytic Effects in the Vapor Phase Epitaxy of Gallium Nitride," Journal of The Electrochemical Society, vol. 125, pp. 1161-1169, 1978.
[42] M. Kamp, M. Mayer, A. Pelzmann, and K. Ebeling, "On surface cracking of ammonia for MBE growth of GaN," Mater. Res. Soc. Symp. Proc., vol. 449, pp. 161-172, 1997.
[43] O. Brandt, H. Yang, and K. Ploog, "Surface kinetics of zinc-blende (001) GaN," Physical Review B, vol. 54, pp. 4432-4435, 1996.
[44] K. Evans, C. Stutz, D. Lorance, and R. Jones, "Cation incorporation rate limitations in molecular-beam epitaxy: Effects of strain and surface composition," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 7, p. 259, 1989.
[45] P. Fini, X. Wu, E. Tarsa, nbsp, J, Y. Golan, V. Srikant, S. Keller, S. Denbaars, P, J. Speck, and S,, "The Effect of Growth Environment on the Morphological and Extended Defect Evolution in GaN Grown by Metalorganic Chemical Vapor Deposition," Japanese Journal of Applied Physics, vol. 37, p. 4460, 1998.
[46] X. Wu, nbsp, H, P. Fini, S. Keller, E. Tarsa, J, B. Heying, U. Mishra, K, S. DenBaars, P, J. Speck, and S,, "Morphological and Structural Transitions in GaN Films Grown on Sapphire by Metal-Organic Chemical Vapor Deposition," Japanese Journal of Applied Physics, vol. 35, p. L1648, 1996.
[47] 呂元傑, 常壓有機金屬氣相磊晶法成長氮化合物光電元件之研究, 2010.
[48] K. Y. Cheng, III–V Compound Semiconductors and Devices, Springer, 2020.
[49] H. Amano, "Progress and Prospect of the Growth of Wide-Band-Gap Group III Nitrides: Development of the Growth Method for Single-Crystal Bulk GaN," Japanese Journal of Applied Physics, vol. 52, no. 5R, p. 050001, 23 4 2013.
[50] Hajime Fujikura, Takehiro Yoshida, Masatomo Shibata, Yohei Otoki, "Recent progress of high-quality GaN substrates by HVPE method," in SPIE OPTO, San Francisco, CA (USA), 2017.
[51] "wikimedia Schema HVPE-Reaktor," [Online]. Available: https://commons.wikimedia.org/wiki/File:Schema_HVPE-Reaktor_de.png.
[52] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, "Metalorganic Vapor-Phase Epitaxial-Growth of a High-Quality GaN Film Using an AlN Buffer Layer," Applied Physics Letters, vol. 48, no. 5, pp. 353-355, 1986.
[53] Muhammad Alshahed, Lars Heuken, Mohammed Alomari, Ildikó Cora,Lajos Tóth, Bèla Pècz,, "Low-Dispersion, High-Voltage, Low-Leakage GaN HEMTs on Native GaN Substrates," IEEE Transactions on, vol. 65, pp. 939 - 2947, 2018.
[54] C. R. Miskys, M. K. Kelly, O. Ambacher, and M., "Freestanding GaN-substrates and devices," physica status solidi c, vol. 6, pp. 1627-1650, 2003.
[55] J.K. Hite, T.J. Anderson, L.E. Luna, J.C. Gallagher, M.A. Mastro, J.A. Freitas and C.R. Eddy, "Influence of HVPE substrates on homoepitaxy of GaN grown by MOCVD," Journal of Crystal Growth, vol. 498, pp. 352-356, 2018.
[56] K. M., III-Nitride ultraviolet emitters, Berlin: Springer, 2015.
[57] Max Shatalov, Wenhong Sun, Alex Lunev, Xuhong Hu, Alex Dobrinsky, Yuri Bilenko, Jinwei Yang, Michael Shur, Remis Gaska, Craig Moe, "AlGaN Deep-Ultraviolet Light-Emitting Diodes with External Quantum Efficiency above 10%," Applied Physics Express, vol. 5, no. 8, p. 082101, 2012.
[58] Hideto Miyake, Gou Nishio, Shuhei Suzuki, Kazumasa Hiramatsu, Hiroyuki Fukuyama, Jesbains Kaur and Noriyuki Kuwano, "Annealing of an AlN buffer layer in N2–CO for growth of a high-quality AlN film on sapphire," Applied Physics Express, vol. 9, no. 2, p. 025501, 2016.
[59] P.-Y. W. K.-S. C. Y.-H. L. W.-C. P. Y.-Y. C. J.-P. L. H.-W. Y. Y. S. W. H. M. a. H.-C. K. Chia-Yen Huang, "High-quality and highly-transparent AlN template on annealed sputter-deposited AlN buffer layer for deep ultra-violet light-emitting diodes," AIP Advances, vol. 7, p. 055110, 2017.
[60] A. Sedhain, L. Du, J. H. Edgar, J. Y. Lin, and H. X. Jiang, "The origin of 2.78 eV emission and yellow coloration in bulk AlN substrates," Applied Physics Letters, vol. 95, p. 262104, 2009.
[61] Qimin Yan, Anderson Janotti, Matthias Scheffler, and Chris G. Van de Walle, "Origins of optical absorption and emission lines in AlN," Applied Physics Letters, p. 111104, 2014.
[62] Benjamin E. Gaddy, Zachary Bryan, Isaac Bryan, Ronny Kirste, Jinqiao Xie, Rafael Dalmau, Baxter Moody, Yoshinao Kumagai, Toru Nagashima, Yuki Kubota, Toru Kinoshita, Akinori Koukitu, Zlatko Sitar, Ramón Collazo, and Douglas L. Irving, "Vacancy compensation and related donor-acceptor pair recombination in bulk AlN," Applied Physics Letters, vol. 103, p. 161901 , 2013.
[63] J. L. Lyons, A. Janotti, and C. G. Van de Walle, "Effects of carbon on the electrical and optical properties of InN, GaN, and AlN," Physical Review B, vol. 16, p. 035204, 2016.
[64] M. L. Nakarmi, N. Nepal, J. Y. Lin, and H. X. Jiang, "Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys," Applied Physics Letters, vol. 94, p. 091903, 2009.
[65] Frank Mehnke, Christian Kuhn, Martin Guttmann, Christoph Reich, Tim Kolbe, Viola Kueller, Arne Knauer, Mickael Lapeyrade, Sven Einfeldt, Jens Rass, Tim Wernicke, Markus Weyers, and Michael Kneissl, "Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes," Applied Physics Letters, vol. 105, p. 051113, 2014.
[66] A. Sedhain, J. Y. Lin, and H. X. Jiang, "Nature of optical transitions involving cation vacancies and complexes in AlN and AlGaN," Applied Physics Letters, vol. 100, p. 221107, 2012.
[67] Audrius Alkauskas, Matthew D. McCluskey, and Chris G. Van de Walle, "Tutorial: Defects in semiconductors—Combining experiment and theory," Journal of Applied Physics, vol. 119, p. 181101, 2016.
[68] Chunhua Du, Ziguang Ma, Junming Zhou, Taiping Lu, Yang Jiang, Peng Zuo, Haiqiang Jia, and Hong Chen, "Enhancing the quantum efficiency of InGaN yellow-green light-emitting diodes by growth interruption," Applied Physics Letters, vol. 105, p. 071108, 2014.
[69] M Dmukauskas, A Kadys, T Malinauskas, T Grinys, I Reklaitis, K Badokas, M Skapas, R Tomašiūnas, D Dobrovolskas, S Stanionytė, "Influence of metalorganic precursors flow interruption timing on green InGaN multiple quantum wells," Journal of Physics D: Applied Physics, vol. 49, no. 50, p. 505101, 2016.
[70] H. K. Cho and J. Y. Lee, "Effect of growth interruptions on the light emission and indium clustering of InGaN/GaN multiple quantum wells," Applied Physics Letters, vol. 79, p. 2594, 2001.
[71] Nicolas Jouvet, Menno J. Kappers, Colin J. Humphreys, and Rachel A. Oliver, "The impact of substrate miscut on the morphology of InGaN epitaxial layers subjected to a growth interruption," Journal of Applied Physics, vol. 113, p. 063503, 2013.
[72] Tomoe Shirasawa, Noriaki Mochida, Akira Inoue, Tohru Honda, Takahiro Sakaguchi, Fumio Koyama, KenichiIga, "Interface control of GaN/AlGaN quantum well structures in MOVPE growth," Journal of Crystal Growth, vol. 189, pp. 124-127, 1998.
[73] Jie Zhang, Xuelin Yang, Jianpeng Cheng, Yuxia Feng, Panfeng Ji, Anqi Hu, Fujun Xu, Ning Tang, Xinqiang Wang, and Bo Shen, "Enhanced transport properties in InAlGaN/AlN/GaN heterostructures on Si (111) substrates: The role of interface quality," Applied Physics Letters, vol. 110, p. 172101, 2017.
[74] Chia-Yen Huang, Kai-Shiang Chang, Cheng-Yao Huang, Yun-Hsiang Lin, Wei-Chih Peng, Hung-Wei Yen, Ray-Ming Lin and Hao-Chung Kuo, "The origin and mitigation of volcano-like morphologies in micron-thick AlGaN/AlN heteroepitaxy," Applied Physics Letters, vol. 111, p. 072110, 2017.
[75] C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu and S. C. Wang, "Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer," Applied Physics Letters, vol. 97, p. 261103, 2010.
[76] Chen X, Ho KY, Yuh-Renn Wu, "Modeling and optimization of p-AlGaN super lattice structure as the p-contact and transparent layer in AlGaN UVLEDs.," Optics Express, vol. 23, pp. 32367-32376, 2015.
[77] M. D. McCluskey, N. M. Johnson, C. G. Van de Walle, D. P. Bour, M. Kneissl, and W. Walukiewicz, "Metastability of Oxygen Donors in AlGaN," Physical Review Letters, vol. 80, p. 4008, 1998.
[78] M. Ajmal Khan, Takuma Matsumoto, Noritoshi Maeda, Norihiko Kamata, and Hideki Hirayama, "Improved external quantum efficiency of 293nm AlGaN UVB LED grown on an AlN template," Japanese Journal of Applied Physics, vol. 58, pp. SAAF01-1, 2019.
[79] M. Ajmal Khan, Eriko Matsuura, Yukio Kashima, and Hideki Hirayama, "Overcoming the current injection issue in the 310nm band AlGaN UVB light-emitting diode," Japanese Journal of Applied Physics, vol. 59, pp. SAAD01-1, 2020.
[80] M. Rao, D. Kim, and S. Mahajan, "Compositional dependence of phase separation in InGaN layers," Applied Physics Letters, vol. 85, no. 11, 2004.
[81] K. Ohkawa, T. Watanabe, M. Sakamoto, A. Hirako, and M. Deura, "740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE," Journal of Crystal Growth, vol. 343, no. 1, pp. 13-16, 2012.
[82] J. J. Wierer and N. Tansu, Laser & Photonics Reviews, vol. 13, no. 9, p. 1900141, 2019.
[83] D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, M. A. Najmi, and K. Ohkawa, "633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress," Applied Physics Letters, vol. 116, no. 16, p. 162101, 2020.
[84] S. Srinivasan, L. Geng, R. Liu, F. A. Ponce, Y. Narukawa, and S. Tanaka, Applied Physics Letters, vol. 83, no. 25, 2003.
[85] M. Iwaya, T. Yamamoto, D. Iida, Y. Kondo, M. Sowa, H. Matsubara, K. Ishihara, T. Takeuchi, S. Kamiyama, and I. Akasaki, Japanese Journal of Applied Physics, vol. 54, no. 11, p. 115501, 2015.
[86] F. Jiang, J. Zhang, L. Xu, J. Ding, G. Wang, X. Wu, X. Wang, C. Mo, Z. Quan, X. Guo, C. Zheng, S. Pan, and J. Liu, "Efficient InGaN-based yellow-light-emitting diodes," Photonics Research, vol. 7, no. 2, 2019.
[87] Q. Lv, J. Liu, C. Mo, J. Zhang, X.Wu, Q.Wu, and F. Jiang, ACS Photonics, vol. 6, no. 1, 2018.
[88] S. Saito, R. Hashimoto, J. Hwang, and S. Nunoue, Applied Physics Express, vol. 6, no. 11, p. 111004, 2013.
[89] K. N. S. K. a. K. O. D. Iida, "Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure," Applied Physics Express, vol. 9, no. 11, p. 111003, 2016.
[90] D. Iida, S. Lu, S. Hirahara, K. Niwa, S. Kamiyama, and K. Ohkawa, "Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers," Journal of Crystal Growth, vol. 448, 2016.
[91] T. Hubácek, A. Hospodková, J. Oswald, K.Kuldová, J. Pangrác, M. Zíková, F. Hájek, F. Dominec, N. Florini, P. Komninou, G. Ledoux, and C. Dujardin, "Strong suppression of in desorption from InGaN QW by improved technology of upper InGaN/GaN QW interface," Journal of Crystal Growth, vol. 507, Feb. 2019.
[92] S. Nakamura, "GaN Growth Using GaN Buffer Layer," Japanese Journal of Applied Physics, vol. 30, p. L1705, 1991.
[93] K. C. J.-S. L. T. L. X. X.-R. D. a. B.-H. Z.-T. Li, "Investigation of light-extraction mechanisms of multiscale patterned arrays with rough morphology for GaN-based thin film LEDs," IEEE Access, vol. 7, Jun. 2019.
[94] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, "High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures," Japanese Journal of Applied Physics, vol. 34, July 1995.
[95] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, "InGaN-GaN multiquantum-well blue and green light-emitting diodes," IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 2, Aug. 2002.
[96] D. Iida, K. Niwa, S. Kamiyama, and K. Ohkawa, "Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure," vol. 9, no. 11, p. 111003, Oct. 2016.
[97] P. Gay, P. B. Hirsch, and A. Kelly, "The estimation of dislocation densities in metals from X-ray data," Acta Metallurgica, vol. 1, no. 3, May 1953.
[98] X. H. Zheng, H. Chen, Z. B. Yan, Y. J. Han, H. B. Yu, D. S. Li, Q. Huang and J. M. Zhou, Journal of Crystal Growth, vol. 255, July 2003.
[99] E. Arslan, M. K. Ozturk, A. Teke, S. Ozcelik, and E. Ozbay, "Buffer optimization for crack-free GaN epitaxial layers grown on Si(1 1 1) substrate by MOCVD," Journal of Physics D: Applied Physics, vol. 41, no. 15, p. 155317, July 2008.
[100] V. K. Singh, P. Taya, D. Jana, R. Tyagi, S. Raghavan, and T. K. Sharma, "On the determination of alloy composition using optical spectroscopy in MOVPE grown InGaN layers on Si(111)," Superlattices Microstructures, vol. 134, p. 106234, Oct. 2019.
[101] M. Moret, B. Gil, S. Ruffenach, O. Briot, C. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, "Optical, structural investigations and band-gap bowing parameter of GaInN alloys," Journal of Crystal Growth, vol. 311, no. 10, pp. 2795-2797, May 2009.
[102] A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, and P. Hinze, "Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency," Physical Review Letters, vol. 95, no. 12, p. 127402, 2005.
[103] T. Hubácek, A. Hospodková, J. Oswald, K.Kuldová, J. Pangrác, M. Zíková, F. Hájek, F. Dominec, N. Florini, P. Komninou, G. Ledoux, and C. Dujardin,, "Strong suppression of in desorption from InGaN QW by improved technology of upper InGaN/GaN QW interface," Journal of Crystal Growth, vol. 507, 2019.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊