|
[1] G.P. Han, C.H. Oh, H. Kim, J.I. Shim, K.S. Kim, D.S. Shin, "Conduction mechanisms of leakage current in InGaN/GaN-based light-emitting diodes," IEEE Transactions on Electron Devices, vol. 62, pp. 587-592, 25 12 2015. [2] Gaoqiang Deng, Yuantao Zhang, Ye Yu, Long Yan, Pengchong Li, Xu Han, Liang Chen, Degang Zhao and Guotong Du, "Study on the structural, optical, and electrical properties of the yellow light-emitting diode grown on free-standing (0001) GaN substrate," Superlattices and Microstructures, vol. 116, pp. 1-8, 2018. [3] Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, "White light emitting diodes with super-high luminous efficacy," Journal of Physics D, vol. 43, no. 35, 19 8 2010. [4] A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, and P. Hinze, "Suppression of Nonradiative Recombination by V-Shaped Pits in GaInN / GaN Quantum Wells Produces a Large Increase in the Light Emission Efficiency," Physical Review Letters, vol. 95, p. 127402, 14 9 2005. [5] A. Vaitkevičius, J. Mickevičius, D. Dobrovolskas, Ö. Tuna, C. Giesen, M. Heuken, and G. Tamulaitis, "Influence of quantum-confined Stark effect on optical properties within trench defects in InGaN quantum wells with different indium content," Journal of Applied Physics, vol. 115, p. 213512, 24 5 2014. [6] F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerwald, G. E. H¨ofler, K. G. Park, and F. M. Steranka, "Highly reliable and efficient semiconductor wafer-bonded AlGaInP/GaP light-emitting diodes," Electronics Letters, vol. 32, p. 132–134, 1996. [7] Matthias Auf der Maur, Walter Rodrigues and Aldo Di Carlo, "Unraveling the "Green Gap" problem: The role of random alloy fluctuations in InGaN/GaN light emitting diodes," Physical Review Letters, vol. 116, no. 2, October 2015. [8] "X-Ray Diffraction Analysis of Ⅲ - Ⅴ Superlattices: Characterization, Simulation and Fitting 1 Xiangyu Wu Enlong Liu Mentor: Clement Merckling EPI Group.," [Online]. Available: https://www.google.com/url?sa=i&url=https%3A%2F%2Fslideplayer.com%2Fslide%2F10057804%2F&psig=AOvVaw3ksLtCO3LNl5AKEYomZIOt&ust=1614840140491000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJiLvL3Ck-8CFQAAAAAdAAAAABAR. [9] "Atomic Force Microscope (AFM)," [Online]. Available: https://zh.wikipedia.org/wiki/%E5%8E%9F%E5%AD%90%E5%8A%9B%E6%98%BE%E5%BE%AE%E9%95%9C. [10] "Wikipedia Raman," [Online]. Available: https://zh.wikipedia.org/wiki/%E6%8B%89%E6%9B%BC%E5%85%89%E8%AD%9C%E5%AD%B8. [11] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer," Applied Physics Letters, vol. 48, pp. 353-355, 1986. [12] S. Nakamura, Y. Harada, and M. Seno, "Novel metalorganic chemical vapor deposition system for GaN growth," Applied Physics Letters, vol. 58, pp. 2021-2023, 1991. [13] D. D. Koleske, A. E. Wickenden, R. L. Henry, W. J. DeSisto, and R. J. Gorman, "Growth model for GaN with comparison to structural, optical, and electrical properties," Journal of Applied Physics, vol. 84, pp. 1998-2010, 1998. [14] C. Hwang, M. Schurman, W. Mayo, Y. Lu, R. Stall, and T. Salagaj, "Effect of structural defects and chemical impurities on hall mobilities in low pressure MOCVD grown GaN," Journal of Electronic Materials, vol. 26, pp. 243-251, 1997. [15] S. Keller, B. P. Keller, Y. F. Wu, B. Heying, D. Kapolnek, J. S. Speck, U. K. Mishra, and S. P. DenBaars, "Influence of sapphire nitridation on properties of gallium nitride grown by metalorganic chemical vapor deposition," Applied Physics Letters, vol. 68, pp. 1525-1527, 1996. [16] J. N. Kuznia, M. A. Khan, D. T. Olson, R. Kaplan, and J. Freitas, "Influence of buffer layers on the deposition of high quality single crystal GaN over sapphire substrates," Journal of Applied Physics, vol. 73, pp. 4700-4702, 1993. [17] S. Yoshida, S. Misawa, and S. Gonda, "Epitaxial growth of GaN/AlN heterostructures," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 1, pp. 250-253, 1983. [18] S. Keller, D. Kapolnek, B. Keller, nbsp, P, Y. Wu, B. Heying, J. Speck, S, U. Mishra, K, and S. Denbaars, "Effect of the Trimethylgallium Flow during Nucleation Layer Growth on the Properties of GaN Grown on Sapphire," Japanese Journal of Applied Physics, vol. 35, p. L285, 1996. [19] S. Hersee, J. Ramer, K. Zheng, C. Kranenberg, K. Malloy, M. Banas, and M. Goorsky, "The role of the low temperature buffer layer and layer thickness in the optimization of OMVPE growth of GaN on sapphire," Journal of Electronic Materials, vol. 24, pp. 1519-1523, 1995. [20] C. F. Lin, G. C. Chi, M. S. Feng, J. D. Guo, J. S. Tsang, and J. M. Hong, "The dependence of the electrical characteristics of the GaN epitaxial layer on the thermal treatment of the GaN buffer layer," Applied Physics Letters, vol. 68, pp. 3758-3760, 1996. [21] B. P. Keller, S. Keller, D. Kapolnek, M. Kato, H. Masui, S. Imagi, U. K. Mishra, and S. P. DenBaars, "Effect of atmospheric pressure MOCVD growth conditions on UV band-edge photoluminescence in GaN thin films," Electronics Letters, vol. 31, pp. 1102-1103, 1995. [22] K. Doverspike, L. Rowland, D. Gaskill, and J. Freitas, "The effect of GaN and ain buffer layers on GaN film properties grown on both C-plane and A-plane sapphire," Journal of Electronic Materials, vol. 24, pp. 269-273, 1995. [23] R. C. Schoonmaker, A. Buhl, and J. Lemley, Journal of Physical Chemistry, vol. 69, p. 3455, 1965. [24] R. J. Sime and J. L. Margrave, Journal of Physical Chemistry, vol. 60, p. 810, 1956. [25] Z. A. Munir and A. W. Searcy, Journal of Physical Chemistry, vol. 42, p. 4223, 1965. [26] J. M. Van Hove and P. I. Cohen, "Mass-action control of AlGaAs and GaAs growth in molecular beam epitaxy," Applied Physics Letters, vol. 47, pp. 726-728, 1985. [27] T. Kojima, N. J. Kawai, T. Nakagawa, K. Ohta, T. Sakamoto, and M. Kawashima, "Layer-by-layer sublimation observed by reflection high-energy electron diffraction intensity oscillation in a molecular beam epitaxy system," Applied Physics Letters, vol. 47, pp. 286-288, 1985. [28] G. B. Stringfellow, Organometallic vapor-phase epitaxy: theory and practice, 1999. [29] M. Yoshida, H. Watanabe, and F. Uesugi, "Mass Spectrometric Study of Ga ( CH 3 ) 3 and Ga ( C 2 H 5 ) 3 Decomposition Reaction in H 2 and N 2," Journal of The Electrochemical Society, vol. 132, pp. 677-679, 1985. [30] A. Thon and T. F. Kuech, "High temperature adduct formation of trimethylgallium and ammonia," Applied Physics Letters, vol. 69, pp. 55-57, 1996. [31] H. Yang, O. Brandt, and K. Ploog, "MBE growth of cubic GaN on GaAs substrates," physica status solidi (b), vol. 194, pp. 109-120, 1996. [32] Y. Golan, P. Fini, S. P. DenBaars, and J. S. Speck, "Substrate Surface Treatments and “Controlled Contamination” in GaN / Sapphire MOCVD," Mater. Res. Soc. Symp. Proc. , vol. 482, p. 57, 1998. [33] J. R. Arthur, "Surface stoichiometry and structure of GaAs," Surface Science, vol. 43, pp. 449-461, 1974. [34] C. T. Foxon and B. A. Joyce, "Interaction kinetics of As4 and Ga on {100} GaAs surfaces using a modulated molecular beam technique," Surface Science, vol. 50, pp. 434-450, 1975. [35] C. T. Foxon and B. A. Joyce, "Interaction kinetics of As2 and Ga on {100} GaAs surfaces," Surface Science, vol. 64, pp. 293-304, 1977. [36] R. Shekhar and K. F. Jensen, "Temperature programmed desorption investigations of hydrogen and ammonia reactions on GaN," Surface Science, vol. 381, pp. L581-L588, 1997. [37] E. Apen and J. L. Gland, "Ammonia adsorption and decomposition on the GaAs(100)-c(8 × 2) surface," Surface Science, vol. 321, pp. 301-307, 1994. [38] J. Russell Jr, V. Bermudez, and A. Leming, "Adsorption and Thermal Decomposition of Hydrazoic Acid on Al (111)," Langmuir, vol. 12, pp. 6492-6500, 1996. [39] C. Chiang, S. Gates, A. Bensaoula, and J. Schultz, "Hydrogen desorption and ammonia adsorption on polycrystalline GaN surfaces," Chemical Physics Letters, vol. 246, pp. 275-278, 1995. [40] V. S. Ban, "Mass Spectrometric Studies of Vapor-Phase Crystal Growth," Journal of The Electrochemical Society, vol. 119, pp. 761-765, 1972. [41] S. S. Liu and D. A. Stevenson, "Growth Kinetics and Catalytic Effects in the Vapor Phase Epitaxy of Gallium Nitride," Journal of The Electrochemical Society, vol. 125, pp. 1161-1169, 1978. [42] M. Kamp, M. Mayer, A. Pelzmann, and K. Ebeling, "On surface cracking of ammonia for MBE growth of GaN," Mater. Res. Soc. Symp. Proc., vol. 449, pp. 161-172, 1997. [43] O. Brandt, H. Yang, and K. Ploog, "Surface kinetics of zinc-blende (001) GaN," Physical Review B, vol. 54, pp. 4432-4435, 1996. [44] K. Evans, C. Stutz, D. Lorance, and R. Jones, "Cation incorporation rate limitations in molecular-beam epitaxy: Effects of strain and surface composition," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 7, p. 259, 1989. [45] P. Fini, X. Wu, E. Tarsa, nbsp, J, Y. Golan, V. Srikant, S. Keller, S. Denbaars, P, J. Speck, and S,, "The Effect of Growth Environment on the Morphological and Extended Defect Evolution in GaN Grown by Metalorganic Chemical Vapor Deposition," Japanese Journal of Applied Physics, vol. 37, p. 4460, 1998. [46] X. Wu, nbsp, H, P. Fini, S. Keller, E. Tarsa, J, B. Heying, U. Mishra, K, S. DenBaars, P, J. Speck, and S,, "Morphological and Structural Transitions in GaN Films Grown on Sapphire by Metal-Organic Chemical Vapor Deposition," Japanese Journal of Applied Physics, vol. 35, p. L1648, 1996. [47] 呂元傑, 常壓有機金屬氣相磊晶法成長氮化合物光電元件之研究, 2010. [48] K. Y. Cheng, III–V Compound Semiconductors and Devices, Springer, 2020. [49] H. Amano, "Progress and Prospect of the Growth of Wide-Band-Gap Group III Nitrides: Development of the Growth Method for Single-Crystal Bulk GaN," Japanese Journal of Applied Physics, vol. 52, no. 5R, p. 050001, 23 4 2013. [50] Hajime Fujikura, Takehiro Yoshida, Masatomo Shibata, Yohei Otoki, "Recent progress of high-quality GaN substrates by HVPE method," in SPIE OPTO, San Francisco, CA (USA), 2017. [51] "wikimedia Schema HVPE-Reaktor," [Online]. Available: https://commons.wikimedia.org/wiki/File:Schema_HVPE-Reaktor_de.png. [52] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, "Metalorganic Vapor-Phase Epitaxial-Growth of a High-Quality GaN Film Using an AlN Buffer Layer," Applied Physics Letters, vol. 48, no. 5, pp. 353-355, 1986. [53] Muhammad Alshahed, Lars Heuken, Mohammed Alomari, Ildikó Cora,Lajos Tóth, Bèla Pècz,, "Low-Dispersion, High-Voltage, Low-Leakage GaN HEMTs on Native GaN Substrates," IEEE Transactions on, vol. 65, pp. 939 - 2947, 2018. [54] C. R. Miskys, M. K. Kelly, O. Ambacher, and M., "Freestanding GaN-substrates and devices," physica status solidi c, vol. 6, pp. 1627-1650, 2003. [55] J.K. Hite, T.J. Anderson, L.E. Luna, J.C. Gallagher, M.A. Mastro, J.A. Freitas and C.R. Eddy, "Influence of HVPE substrates on homoepitaxy of GaN grown by MOCVD," Journal of Crystal Growth, vol. 498, pp. 352-356, 2018. [56] K. M., III-Nitride ultraviolet emitters, Berlin: Springer, 2015. [57] Max Shatalov, Wenhong Sun, Alex Lunev, Xuhong Hu, Alex Dobrinsky, Yuri Bilenko, Jinwei Yang, Michael Shur, Remis Gaska, Craig Moe, "AlGaN Deep-Ultraviolet Light-Emitting Diodes with External Quantum Efficiency above 10%," Applied Physics Express, vol. 5, no. 8, p. 082101, 2012. [58] Hideto Miyake, Gou Nishio, Shuhei Suzuki, Kazumasa Hiramatsu, Hiroyuki Fukuyama, Jesbains Kaur and Noriyuki Kuwano, "Annealing of an AlN buffer layer in N2–CO for growth of a high-quality AlN film on sapphire," Applied Physics Express, vol. 9, no. 2, p. 025501, 2016. [59] P.-Y. W. K.-S. C. Y.-H. L. W.-C. P. Y.-Y. C. J.-P. L. H.-W. Y. Y. S. W. H. M. a. H.-C. K. Chia-Yen Huang, "High-quality and highly-transparent AlN template on annealed sputter-deposited AlN buffer layer for deep ultra-violet light-emitting diodes," AIP Advances, vol. 7, p. 055110, 2017. [60] A. Sedhain, L. Du, J. H. Edgar, J. Y. Lin, and H. X. Jiang, "The origin of 2.78 eV emission and yellow coloration in bulk AlN substrates," Applied Physics Letters, vol. 95, p. 262104, 2009. [61] Qimin Yan, Anderson Janotti, Matthias Scheffler, and Chris G. Van de Walle, "Origins of optical absorption and emission lines in AlN," Applied Physics Letters, p. 111104, 2014. [62] Benjamin E. Gaddy, Zachary Bryan, Isaac Bryan, Ronny Kirste, Jinqiao Xie, Rafael Dalmau, Baxter Moody, Yoshinao Kumagai, Toru Nagashima, Yuki Kubota, Toru Kinoshita, Akinori Koukitu, Zlatko Sitar, Ramón Collazo, and Douglas L. Irving, "Vacancy compensation and related donor-acceptor pair recombination in bulk AlN," Applied Physics Letters, vol. 103, p. 161901 , 2013. [63] J. L. Lyons, A. Janotti, and C. G. Van de Walle, "Effects of carbon on the electrical and optical properties of InN, GaN, and AlN," Physical Review B, vol. 16, p. 035204, 2016. [64] M. L. Nakarmi, N. Nepal, J. Y. Lin, and H. X. Jiang, "Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys," Applied Physics Letters, vol. 94, p. 091903, 2009. [65] Frank Mehnke, Christian Kuhn, Martin Guttmann, Christoph Reich, Tim Kolbe, Viola Kueller, Arne Knauer, Mickael Lapeyrade, Sven Einfeldt, Jens Rass, Tim Wernicke, Markus Weyers, and Michael Kneissl, "Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes," Applied Physics Letters, vol. 105, p. 051113, 2014. [66] A. Sedhain, J. Y. Lin, and H. X. Jiang, "Nature of optical transitions involving cation vacancies and complexes in AlN and AlGaN," Applied Physics Letters, vol. 100, p. 221107, 2012. [67] Audrius Alkauskas, Matthew D. McCluskey, and Chris G. Van de Walle, "Tutorial: Defects in semiconductors—Combining experiment and theory," Journal of Applied Physics, vol. 119, p. 181101, 2016. [68] Chunhua Du, Ziguang Ma, Junming Zhou, Taiping Lu, Yang Jiang, Peng Zuo, Haiqiang Jia, and Hong Chen, "Enhancing the quantum efficiency of InGaN yellow-green light-emitting diodes by growth interruption," Applied Physics Letters, vol. 105, p. 071108, 2014. [69] M Dmukauskas, A Kadys, T Malinauskas, T Grinys, I Reklaitis, K Badokas, M Skapas, R Tomašiūnas, D Dobrovolskas, S Stanionytė, "Influence of metalorganic precursors flow interruption timing on green InGaN multiple quantum wells," Journal of Physics D: Applied Physics, vol. 49, no. 50, p. 505101, 2016. [70] H. K. Cho and J. Y. Lee, "Effect of growth interruptions on the light emission and indium clustering of InGaN/GaN multiple quantum wells," Applied Physics Letters, vol. 79, p. 2594, 2001. [71] Nicolas Jouvet, Menno J. Kappers, Colin J. Humphreys, and Rachel A. Oliver, "The impact of substrate miscut on the morphology of InGaN epitaxial layers subjected to a growth interruption," Journal of Applied Physics, vol. 113, p. 063503, 2013. [72] Tomoe Shirasawa, Noriaki Mochida, Akira Inoue, Tohru Honda, Takahiro Sakaguchi, Fumio Koyama, KenichiIga, "Interface control of GaN/AlGaN quantum well structures in MOVPE growth," Journal of Crystal Growth, vol. 189, pp. 124-127, 1998. [73] Jie Zhang, Xuelin Yang, Jianpeng Cheng, Yuxia Feng, Panfeng Ji, Anqi Hu, Fujun Xu, Ning Tang, Xinqiang Wang, and Bo Shen, "Enhanced transport properties in InAlGaN/AlN/GaN heterostructures on Si (111) substrates: The role of interface quality," Applied Physics Letters, vol. 110, p. 172101, 2017. [74] Chia-Yen Huang, Kai-Shiang Chang, Cheng-Yao Huang, Yun-Hsiang Lin, Wei-Chih Peng, Hung-Wei Yen, Ray-Ming Lin and Hao-Chung Kuo, "The origin and mitigation of volcano-like morphologies in micron-thick AlGaN/AlN heteroepitaxy," Applied Physics Letters, vol. 111, p. 072110, 2017. [75] C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu and S. C. Wang, "Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer," Applied Physics Letters, vol. 97, p. 261103, 2010. [76] Chen X, Ho KY, Yuh-Renn Wu, "Modeling and optimization of p-AlGaN super lattice structure as the p-contact and transparent layer in AlGaN UVLEDs.," Optics Express, vol. 23, pp. 32367-32376, 2015. [77] M. D. McCluskey, N. M. Johnson, C. G. Van de Walle, D. P. Bour, M. Kneissl, and W. Walukiewicz, "Metastability of Oxygen Donors in AlGaN," Physical Review Letters, vol. 80, p. 4008, 1998. [78] M. Ajmal Khan, Takuma Matsumoto, Noritoshi Maeda, Norihiko Kamata, and Hideki Hirayama, "Improved external quantum efficiency of 293nm AlGaN UVB LED grown on an AlN template," Japanese Journal of Applied Physics, vol. 58, pp. SAAF01-1, 2019. [79] M. Ajmal Khan, Eriko Matsuura, Yukio Kashima, and Hideki Hirayama, "Overcoming the current injection issue in the 310nm band AlGaN UVB light-emitting diode," Japanese Journal of Applied Physics, vol. 59, pp. SAAD01-1, 2020. [80] M. Rao, D. Kim, and S. Mahajan, "Compositional dependence of phase separation in InGaN layers," Applied Physics Letters, vol. 85, no. 11, 2004. [81] K. Ohkawa, T. Watanabe, M. Sakamoto, A. Hirako, and M. Deura, "740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE," Journal of Crystal Growth, vol. 343, no. 1, pp. 13-16, 2012. [82] J. J. Wierer and N. Tansu, Laser & Photonics Reviews, vol. 13, no. 9, p. 1900141, 2019. [83] D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, M. A. Najmi, and K. Ohkawa, "633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress," Applied Physics Letters, vol. 116, no. 16, p. 162101, 2020. [84] S. Srinivasan, L. Geng, R. Liu, F. A. Ponce, Y. Narukawa, and S. Tanaka, Applied Physics Letters, vol. 83, no. 25, 2003. [85] M. Iwaya, T. Yamamoto, D. Iida, Y. Kondo, M. Sowa, H. Matsubara, K. Ishihara, T. Takeuchi, S. Kamiyama, and I. Akasaki, Japanese Journal of Applied Physics, vol. 54, no. 11, p. 115501, 2015. [86] F. Jiang, J. Zhang, L. Xu, J. Ding, G. Wang, X. Wu, X. Wang, C. Mo, Z. Quan, X. Guo, C. Zheng, S. Pan, and J. Liu, "Efficient InGaN-based yellow-light-emitting diodes," Photonics Research, vol. 7, no. 2, 2019. [87] Q. Lv, J. Liu, C. Mo, J. Zhang, X.Wu, Q.Wu, and F. Jiang, ACS Photonics, vol. 6, no. 1, 2018. [88] S. Saito, R. Hashimoto, J. Hwang, and S. Nunoue, Applied Physics Express, vol. 6, no. 11, p. 111004, 2013. [89] K. N. S. K. a. K. O. D. Iida, "Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure," Applied Physics Express, vol. 9, no. 11, p. 111003, 2016. [90] D. Iida, S. Lu, S. Hirahara, K. Niwa, S. Kamiyama, and K. Ohkawa, "Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers," Journal of Crystal Growth, vol. 448, 2016. [91] T. Hubácek, A. Hospodková, J. Oswald, K.Kuldová, J. Pangrác, M. Zíková, F. Hájek, F. Dominec, N. Florini, P. Komninou, G. Ledoux, and C. Dujardin, "Strong suppression of in desorption from InGaN QW by improved technology of upper InGaN/GaN QW interface," Journal of Crystal Growth, vol. 507, Feb. 2019. [92] S. Nakamura, "GaN Growth Using GaN Buffer Layer," Japanese Journal of Applied Physics, vol. 30, p. L1705, 1991. [93] K. C. J.-S. L. T. L. X. X.-R. D. a. B.-H. Z.-T. Li, "Investigation of light-extraction mechanisms of multiscale patterned arrays with rough morphology for GaN-based thin film LEDs," IEEE Access, vol. 7, Jun. 2019. [94] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, "High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures," Japanese Journal of Applied Physics, vol. 34, July 1995. [95] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, "InGaN-GaN multiquantum-well blue and green light-emitting diodes," IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 2, Aug. 2002. [96] D. Iida, K. Niwa, S. Kamiyama, and K. Ohkawa, "Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure," vol. 9, no. 11, p. 111003, Oct. 2016. [97] P. Gay, P. B. Hirsch, and A. Kelly, "The estimation of dislocation densities in metals from X-ray data," Acta Metallurgica, vol. 1, no. 3, May 1953. [98] X. H. Zheng, H. Chen, Z. B. Yan, Y. J. Han, H. B. Yu, D. S. Li, Q. Huang and J. M. Zhou, Journal of Crystal Growth, vol. 255, July 2003. [99] E. Arslan, M. K. Ozturk, A. Teke, S. Ozcelik, and E. Ozbay, "Buffer optimization for crack-free GaN epitaxial layers grown on Si(1 1 1) substrate by MOCVD," Journal of Physics D: Applied Physics, vol. 41, no. 15, p. 155317, July 2008. [100] V. K. Singh, P. Taya, D. Jana, R. Tyagi, S. Raghavan, and T. K. Sharma, "On the determination of alloy composition using optical spectroscopy in MOVPE grown InGaN layers on Si(111)," Superlattices Microstructures, vol. 134, p. 106234, Oct. 2019. [101] M. Moret, B. Gil, S. Ruffenach, O. Briot, C. Giesen, M. Heuken, S. Rushworth, T. Leese, and M. Succi, "Optical, structural investigations and band-gap bowing parameter of GaInN alloys," Journal of Crystal Growth, vol. 311, no. 10, pp. 2795-2797, May 2009. [102] A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, and P. Hinze, "Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency," Physical Review Letters, vol. 95, no. 12, p. 127402, 2005. [103] T. Hubácek, A. Hospodková, J. Oswald, K.Kuldová, J. Pangrác, M. Zíková, F. Hájek, F. Dominec, N. Florini, P. Komninou, G. Ledoux, and C. Dujardin,, "Strong suppression of in desorption from InGaN QW by improved technology of upper InGaN/GaN QW interface," Journal of Crystal Growth, vol. 507, 2019.
|