跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/05 21:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳致言
研究生(外文):Chih-Yen Chen
論文名稱:臺灣西部井下應變儀觀測研究-環境因子之影響與處理
論文名稱(外文):Study of Borehole Strainmeter Observation in Western Taiwan : Analysis of Environmental Factors
指導教授:胡植慶胡植慶引用關係
指導教授(外文):Jyr-Ching Hu
口試委員:劉啟清朱傚祖許雅儒陳卉瑄
口試委員(外文):Chi-Ching LiuHao-Tsu ChuYa-Ju HsuHui-Hsuan Chen
口試日期:2021-04-19
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:193
中文關鍵詞:井下應變儀環境因子應變變化地震前兆獨立成分分析
外文關鍵詞:Borehole strainmeterenvironmental responsestrain changeearthquake precursorIndependent Components Analysis
DOI:10.6342/NTU202102319
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
為了解臺灣褶皺逆衝帶斷層活動引致的地殼變形,本研究收集中央地質調查所設置的13座井下應變資料(2005 ~2017)進行分析,旨在建立臺灣西部地區GTSM井下應變儀觀測資料的處理技術,以及各觀測站因地形與地質因素差異的區域化修正。在此研究中,我們建立了井下應變儀資料的處理流程,利用雙指數曲線擬合的方式有效地去除井孔回復與混凝土膨脹效應,並針對不同環境因素諸如氣壓、潮汐與降雨等影響提出修正之方法與參數。在利用潮汐分潮進行觀測數值校正後,各站的氣壓響應應變約在1 ~ 10 nanostrain/mbar,與降雨產生的最大應變響應大小基本一致,呈現良好的線性關係。此外,我們也針對均質耦合(isotropic coupling)與垂直耦合(vertical coupling)兩種不同的校正方式進行對比,發現在對應垂直應力產生的應變,兩者的修正差距可達30%。同時降雨所產的額外荷重對於觀測結果也會產生一定影響,降雨落在地面後,短時間內無法進入地下的雨水化為地表逕流,因其累積重量的影響,應變儀迅速地達到最大響應量,然後呈現指數性衰減,影響時長可達200小時以上。由於地下水對於井下應變觀測的影響非常顯著,我們嘗試利用獨立成分分析的方法來解析地下水變化在應變觀測資料中的影響。透過模擬訊號測試發現,當較少訊號來源(兩個)時,獨立成分分析的方法可有效且良好地分離出個別訊號,但當訊號來源較多時(三個以上) ,則分離的效果就會逐步下降。從對比結果來看,若提取比重最高的主要訊號進行成分比對,獲得分離成分的效果能有所提升。我們也收集2010年至2014年底5年期的應變資料,與規模6以上的島內範圍地震之間進行比對,發現地震發生時除較近距離的觀測站有大小不一瞬時的同震變形現象外,一些較遠測站在地震發生過後也發生緩慢且持續的變形,這些變形可能為岩層為配合斷層滑動後應力變化的調適,或可能為表面波震動帶來的短暫變形行為,亦或者是因為表面波通過觸發當地構造活動所產生的非震性變形。根據我們的觀察結果,在2010/03/04甲仙地震發生前約2個禮拜,嘉南地區多個測站都可觀察到震前異常的發生,時間點也與長微震發生率與持續時間與GPS觀測發生異常時間接近,顯示出發生地震前岩層整體確實有些變化,但是並無直接證據顯示此為甲仙地震的前兆現象,仍有待後續進一步的研究。井下應變儀的暫態應變改變,反映不同的不同環境因子和構造活動,如何分離不同因子的訊號特性,是將來研究重點。更多對這些環境因子的研究(尤以地下水最甚)除了幫助我們能更了解井下應變儀這個儀器的特性外,也可為後續進行相關研究者提供更多之參考依據。
In order to understand the crustal strain in response to fault activity in fold-and-thrust belt in Taiwan, this study collects and analyzes the borehole strainmeter (BSM) data of Central Geological Survey (2005 ~ 2017) to establish the technology of processing BSM data and the method to diminish the environmental response caused by topographical and geological changes. We established the GTSM borehole strainmeter processing flow, using double exponential curve fitting to effectively remove the effects of borehole relaxation and grout curing, and proposed corrections and parameters for environmental responses such as air pressure, tides, and rainfall. After calibration using tidal constituents, the pressure response of each station ranges from 1 to 10 nanostrain/mbar, which is basically the same as the maximum rainfall response, and both show a good linear relationship. In addition, we also compared two different calibration methods, isotropic and vertical coupling, and found that the correction difference between both can be up to 30% in the strain corresponding to the vertical stress. The extra load produced by rainfall also plays a role on strain transient of the observations. In most cases, the rainfall response will reach the maximum in half an hour after heavy rainfall, and then show an exponential decay, which might persist more than 200 h depending on the hydrogeological condition around the station. In addition, groundwater also has a considerable impact on strain transient of observations. We try to use independent component analysis (ICA) to analyze groundwater changes in the strain data. When there are fewer signal sources (two), the ICA method can effectively separate out the individual signals, but when there are more signal sources (more than three), the results of separation will not be good enough. Since groundwater response accounts for a relatively high proportion of strain data, the use of principal component comparisons of different azimuth data can improve the results of hydrological data separation. We collected and compared the strain data since 2010 to 2014 and earthquakes with a magnitude of 6 or more in Taiwan. We found that not only instantaneous co-seismic deformations were recorded at some closer stations, but also some slow and persistent deformations were detected at relatively distant stations. These deformations may be the response to the adjustment of the stress changes after the triggering of far-field fault activity, or the dynamic transient deformation caused by the surface wave propagation, or some aseismic activities of the local structure triggered by the surface wave. According to our observations, the precursory anomalies can be observed at multiple stations in Jianan area about 2 weeks prior to the 2010/03/04 Jiasian earthquake, which some anomalies of tremor and GPS observation were reported in the same period of observation. This infers that the pre-seismic transient deformation could be detected with different observation. However, such precursory signals need to be analyzed in detail to characterize mechanical behavior of pre-seismic deformation. The data of the borehole strainmeter provides the valuable information for strain transient due to environmental change and tectonic activity, how to separate these factors is a crucial issue for future study. More research on these environmental factors (especially groundwater) will help us to better understand the characteristics of the borehole strainmeter, and also provide a good reference for those in follow-up study in the future.
誌謝 i
中文摘要 iii
ABSTRACT v
目錄 vii
圖目錄 x
表目錄 xviii
第1章 前言與研究動機 1
1.1 前言 1
1.2 研究地區概況 7
1.3 論文架構 11
第2章 儀器設置與資料分析 13
2.1 儀器設計 13
2.2 在臺灣的GTSM觀測網 18
2.3 資料分析 21
2.3.1 資料轉換 21
2.3.2 資料分解 24
2.4 資料校正 38
2.4.1 儀器、地層與區域性的應變張量 39
2.4.2 儀器與地層應變的耦合(coupling) 41
2.4.3 地表荷重對井下應變儀的垂直耦合影響 44
2.4.4 擾動性矩陣(perturbation matrix)與通用性轉換矩陣 46
2.4.5 校正矩陣的計算程序與結果 50
2.4.6 垂直耦合效應對於降雨及氣壓響應的影響 67
2.5 小結 68
第3章 觀測應變中的降雨響應 70
3.1 前言 70
3.2 資料處理與方法 73
3.3 降雨對觀測應變的影響 75
3.4 分離降雨快速與緩慢反應 77
3.5 資料與計算 79
3.6 降雨分析結果 82
3.6.1 複合外在因素影響(達邦) 86
3.6.2 模式化降雨快速反應 87
3.7 小結 94
第4章 長期地下水變化對觀測應變的影響 95
4.1 前言 95
4.2 應變資料中的地下水響應 96
4.3 共站設置的地下水壓觀測 97
4.4 地下水變化預測模型 101
4.5 觀測應變內的地下水響應 105
4.5.1 地下水變化在應變感測器的響應 106
4.5.2 盲訊號分離 108
4.5.3 利用獨立成分分析地下水成分 112
4.5.4 ICA模擬訊號檢驗 118
4.6 實際觀測結果中的獨立成分 124
4.6.1 太興觀測站(TAIS) 125
4.6.2 達邦觀測站(DARB) 129
4.6.3 錦和觀測站(JING) 132
4.7 小結 137
第5章 討論 139
5.1 岩層非等向性對於多分量應變儀觀測結果的影響 139
5.2 大雨對應變觀測的影響 148
5.2.1 影響達邦降雨響應的外在因素 148
5.2.2 氣壓與雨量效應之比對 149
5.2.3 河道額外荷重對觀測應變的影響 151
5.3 同震應變與地震發生前後之應變異常 154
5.3.1 20100304甲仙6.4地震 160
5.3.2 20101121 花蓮外海 6.42地震 163
5.3.3 20120226霧台6.35地震 164
5.3.4 20130327(6.2)與20130602 (6.5) 南投地震 165
5.3.5 20131031花蓮6.42地震 170
5.4 小結 173
第6章 結論 176
參考文獻 180
王林瑛、朱傳鎮,1984。唐山地震和海城地震前地溫的異常變化。地震研究,第7卷,第6期,649-656頁。
白志宏,1991。承受表面荷重後異向性岩體內應力、應變及變形分佈。國立交通大學土木工程系所學位論文,共55頁。
江崇榮、林燕初、陳建良、2011。地下水位與地表高程互動模式之研究。經濟部中央地質調查所彙刊,第24號,1-35頁。
吳方義,2004。非等向性岩層受拱彎褶皺之數值模擬初探。臺灣大學地質科學研究所學位論文,共108頁,doi:10.6342/NTU.2004.01867。
吳開統、嶽明生、武宦英、曹新玲、陳海通、黃偉瓊、田抗援、盧壽德,1976。海城地震序列的特徵。地球物理學報,第19卷,第2期,95-109頁。
胡植慶、劉啟清、饒瑞鈞、張午龍、鄭錦桐、陳卉瑄、李元希、吳善薇、唐昭榮,2011。斷層活動性觀測研究第二階段-斷層監測與潛勢分析研究(3/4)期末報告書,經濟部中央地質調查所。
陳宗顯,2006。降雨引致地下水位變化之研究-以那菝、六甲與東和地下水位站為例。國立成功大學水利及海洋工程學系學位論文,共243頁。
陳致言、胡植慶、劉啟清、賴慈華,2014。降雨對井下應變觀測資料的影響。經濟部中央地質調查所特刊,第28號,161-183頁。
廖志中,1993。承受表面荷重後異向性岩體之變形分佈。國科會研究計畫報告,NSC82-0115-E009-386。
蒲新杰、甘志文、邱俊達、何美儀、郭鎧紋、呂佩玲,2013。2013年臺灣地區地震活動回顧。氣象學報,第52卷,第2期,43-68頁。
鄭世楠、葉永田,1989。西元1604年至1988年台灣地區地震目錄。中研院地球科學研究所研究報告,IES-R-661,共255頁。
盧造勳、方昌流、石作亭、張茂樹、李潤江、楊均珍,1978。重力變化與海城地震。地球物理學報,第21卷,第9期,1-8頁。
Ágústsson, K., Linde, A. T., Stefánsson, R., and Sacks, S., 1999. Strain changes for the 1987 Vatnafjöll earthquake in south Iceland and possible magmatic triggering. J. Geophys. Res. Solid Earth, 104(B1), 1151-1161, doi: 10.1029/1998JB900027.
Agnew, D. C., 2012. SPOTL: Some programs for ocean-tide loading. SIO Ref. Ser. 96-8, Scripps Institution of Oceanography, La lolla, California.
Agnew, D. C., and Wyatt, F. K., 2014. Dynamic strains at regional and teleseismic distances. Bull. Seismol. Soc. Am., 104(4), 1846-1859, doi: 10.1785/0120140007.
Amadei, B., and Pan, E., 1992. Gravitational stresses in anisotropic rock masses with inclined strata. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 29, 225-236, doi: 10.1016/0148-9062(92)93657-6.
Amadei, B., Savage, W., and Swolfs, H., 1987. Gravitational stresses in anisotropic rock masses. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 24(1), 5-14, doi: 10.1016/0148-9062(87)91227-7.
Angelier, J., Lee, J- C., Chu, H.-T., and Hu, J.-C., 2003. Reconstruction of fault slip of the September 21st, 1999, Taiwan earthquake in the asphalted surface of a car park, and co-seismic slip partitioning. J. Struct. Geol., 25(3), 345-350, doi: 10.1016/S0191-8141(02)00038-X.
Bakun, W. H., and Lindh, A. G., 1985. The Parkfield, California, earthquake prediction experiment. Science, 229(4714), 619-624, doi: 10.1126/science.229.4714.619.
Barbour, A. J., and Wyatt, F. K., 2014. Modeling strain and pore pressure associated with fluid extraction: The Pathfinder Ranch experiment. J. Geophys. Res. Solid Earth, 119(6), 5254-5273, doi: 10.1002/2014JB011169.
Barbour, A. J., Agnew, D. C., and Wyatt, F. K., 2015. Coseismic strains on Plate Boundary Observatory borehole strainmeters in southern California. Bull. Seismol. Soc. Am., 105(1), 431-444, doi: 10.1785/0120140199.
Bardsley, W., and Campbell, D., 2000. Natural geological weighing lysimeters: Calibration tools for satellite and ground surface gravity monitoring of subsurface water-mass change. Nat. Resour. Res., 9(2), 147-156, doi: 10.1023/A:1010147527484.
Beaumont, C., and Berger, J., 1975. An analysis of tidal strain observations from the United States of America: I. The laterally homogeneous tide. Bull. Seismol. Soc. Am., 65(6), 1613-1629.
Beavan, J., Evans, K., Mousa, S., and Simpson, D., 1991. Estimating aquifer parameters from analysis of forced fluctuations in well level: An example from the Nubian Formation near Aswan, Egypt: 2. Poroelastic properties. J. Geophys. Res. Solid Earth, 96(B7), 12139-12160, doi: 10.1029/91JB00956.
Bell, A. J., and Sejnowski, T. J., 1995. An information-maximization approach to blind separation and blind deconvolution. Neural Comput., 7(6), 1129-1159, doi: 10.1162/neco.1995.7.6.1129.
Benioff, H., 1935. A linear strain seismograph. Bull. Seismol. Soc. Am., 25(4), 283-309.
Bernard, P., Boudin, F., Sacks, S., Linde, A., Blum, P.-A., Courteille, C., Esnoult, M.-F., Castarède, H., Felekis, S., and Billiris, H., 2004. Continuous strain and tilt monitoring on the Trizonia island, Rift of Corinth, Greece. C. R. Geosci., 336(4), 313-323, doi: 10.1016/j.crte.2003.11.015.
Bevis, M., Kendrick, E., Cser, A., and Smalley Jr, R., 2004. Geodetic measurement of the local elastic response to the changing mass of water in Lago Laja, Chile. Phys. Earth Planet. Inter., 141(2), 71-78, doi: 10.1016/j.pepi.2003.05.001.
Canitano, A., Hsu, Y.-J., Lee, H.-M., Linde, A. T., and Sacks, S., 2018. Calibration for the shear strain of 3-component borehole strainmeters in eastern Taiwan through Earth and ocean tidal waveform modeling. J. Geod., 92(3), 223-240, doi: 10.1007/s00190-017-1056-4.
Casenave, A., and Valentin, C., 1992. A runoff capability classification system based on surface features criteria in semi-arid areas of West Africa. J. Hydrol., 130(1-4), 231-249, doi: 10.1016/0022-1694(92)90112-9.
Chang, C.-P., Chang, T.-Y., Angelier, J., Kao, H., Lee, J.-C., and Yu, S.-B., 2003. Strain and stress field in Taiwan oblique convergent system: constraints from GPS observation and tectonic data. Earth Planet. Sci. Lett., 214(1), 115-127, doi: 10.1016/S0012-821X(03)00360-1.
Chao, K., Peng, Z., Wu, C., Tang, C.-C., and Lin, C.-H., 2012. Remote triggering of non-volcanic tremor around Taiwan. Geophys. J. Int., 188(1), 301-324, doi: 10.1111/j.1365-246X.2011.05261.x.
Chao, K., Peng, Z., Hsu, Y.-J., Obara, K., Wu, C., Ching, K.-E., van der Lee, S., Pu, H.-C., Leu, P.-L., and Wech, A., 2017. Temporal variation of tectonic tremor activity in southern Taiwan around the 2010 ML6.4 Jiashian earthquake. J. Geophys. Res. Solid Earth, 122(7), 5417-5434, doi: 10.1002/2016JB013925.
Ching, K.-E., Rau, R.-J., Johnson, K. M., Lee, J.-C., and Hu, J.-C., 2011. Present-day kinematics of active mountain building in Taiwan from GPS observations during 1995-2005. J. Geophys. Res. Solid Earth, 116(B9), B09405, doi: 10.1029/2010JB008058.
Comon, P., 1994. Independent component analysis, A new concept? Signal Process., 36(3), 287-314, doi: 10.1016/0165-1684(94)90029-9.
Currenti, G., Zuccarello, L., Bonaccorso, A., and Sicali, A., 2017. Borehole volumetric strainmeter calibration from a nearby seismic broadband array at Etna Volcano. J. Geophys. Res. Solid Earth, 122(10), 7729-7738, doi: 10.1002/2017JB014663.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., Hu, J.- C., Horng, M.-J., Chen, M.-C., and Stark, C. P., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648-651, doi: 10.1038/nature02150.
Dahlen, F. A., 1990. Critical taper model of fold-and-thrust belts and accretionary wedges. Annu. Rev. Earth Planet. Sci., 18(1), 55-99.
Das, B. M., and Sobhan, K., 2011. Principles of Geotechnical Engineering. Cengage, Stamford, CT, PWS Engineering, Boston.
Davis, D., Suppe, J., and Dahlen, F., 1983. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. Solid Earth, 88(B2), 1153-1172, doi: 10.1029/JB088iB02p01153.
Dobrovolsky, I., Zubkov, S., and Miachkin, V., 1979. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys., 117(5), 1025-1044, doi: 10.1007/BF00876083.
Engman, E. T., 1986. Roughness coefficients for routing surface runoff. J. Irrig. Drain. Eng., 112(1), 39-53, doi: 10.1061/(ASCE)0733-9437(1986)112:1(39).
Evertson, D. W., 1977. Borehole strainmenter for seismology. Rep. ARL-TR-77-62, Applied Research Laboratories, University of Texas, Austin, Texas.
Evett, S. R., and Dutt, G. R., 1985. Length and slope effects on runoff from sodium dispersed, compacted earth microcatchments. Soil Sci. Soc. Am. J., 49(3), 734-738, doi: 10.2136/sssaj1985.03615995004900030040x.
Fenicia, F., Savenije, H. H. G., Matgen, P., and Pfister, L., 2006. Is the groundwater reservoir linear? Learning from data in hydrological modelling. Hydrol. Earth Syst. Sci., 10, 139-150, doi: 10.5194/hess-10-139-2006.
Geller, R. J., Jackson, D. D., Kagan, Y. Y., and Mulargia, F., 1997. Earthquakes cannot be predicted. Science, 275(5306), 1616, doi: 10.1126/science.275.5306.1616.
Gladwin, M. T., 1984. High‐precision multicomponent borehole deformation monitoring. Rev. Sci. Instrum., 55(12), 2011-2016, doi: 10.1063/1.1137704.
Gladwin, M. T., and Hart, R., 1985. Design parameters for borehole strain instrumentation. Pure Appl. Geophys., 123(1), 59-80, doi: 10.1007/BF00877049.
Gladwin, M. T., Gwyther, R. L., Higbie, J. W., and Hart, R. G., 1991. A medium term precursor to the Loma Prieta Earthquake? Geophys. Res. Lett., 18(8), 1377-1380, doi: 10.1029/91GL01846.
Gladwin, M. T., Gwyther, R. L., and Hart, R. H. G., 1993. A shear-strain precursor. USGS Prof. Paper, 1550-C, 59-65.
Gomberg, J., 1996. Stress/strain changes and triggered seismicity following the Mw 7.3 Landers, California, earthquake. J. Geophys. Res. Solid Earth, 101(B1), 751-764, doi: 10.1029/95JB03251.
Hart, R. H. G., Gladwin, M. T., Gwyther, R. L., Agnew, D. C., and Wyatt, F. K., 1996. Tidal calibration of borehole strain meters: Removing the effects of small-scale inhomogeneity. J. Geophys. Res. Solid Earth, 101(B11), 25553-25571, doi: 10.1029/96JB02273.
Hasselman, D. P. H., Donaldson, K. Y., and Thomas Jr, J. R., 1993. Effective thermal conductivity of uniaxial composite with cylindrically orthotropic carbon fibers and interfacial thermal barrier. J. Compos. Mater., 27(6), 637-644, doi: 10.1177/002199839302700605.
Hawthorne, J. C., and Rubin, A. M., 2010. Tidal modulation of slow slip in Cascadia. J. Geophys. Res. Solid Earth, 115(B9), B09406, doi: 10.1029/2010JB007502.
Ho, C. S., 1986. A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1-3), 1-16, doi: 10.1016/0040-1951(86)90004-1.
Hobson, R. D., 1972. Surface roughness in topography: Quantitative approach, in Spatial Analysis in Geomorphology, edited by Chorley R. J., pp. 221-245, Harper and Row, New York, USA.
Hodgkinson, K., Langbein, J., Henderson, B., Mencin, D., and Borsa, A., 2013. Tidal calibration of plate boundary observatory borehole strainmeters. J. Geophys. Res. Solid Earth, 118(1), 447-458, doi: 10.1029/2012JB009651.
Holzer, T. L., 1979. Elastic expansion of the lithosphere caused by groundwater depletion. J. Geophys. Res. Solid Earth, 84(B9), 4689-4698, doi: 10.1029/JB084iB09p04689.
Hsu, Y.-J., Chang, Y.-S., Liu, C.-C., Lee, H.-M., Linde, A. T., Sacks, S., Kitagawa, G., and Chen, Y.-G., 2015. Revisiting borehole strain, typhoons and slow earthquakes using quantitative estimates of precipitation induced strain changes. J. Geophys. Res. Solid Earth, 120(6), 4556-4571, doi: 10.1002/2014JB011807.
Hu, C.-K., Chiu, C.-T., Chen, S.-H., Kuo, J.-Y., Jan, S., and Tseng, Y.-H., 2010. Numerical simulation of barotropic tides around Taiwan. Terr. Atmos. Ocean. Sci., 21(1), 71-84, doi: 10.3319/ TAO.2009.05.25.02(IWNOP).
Hu, J.-C., Hou, C.-S., Shen, L.-C., Chan, Y.-C., Chen, R.-F., Huang, C., Rau, R.-J., Chen, K. H. H., Lin, C.-W., and Huang, M.-H., 2007. Fault activity and lateral extrusion inferred from velocity field revealed by GPS measurements in the Pingtung area of southwestern Taiwan. J. Asian Earth Sci., 31(3), 287-302, doi: 10.1016/j.jseaes.2006.07.020.
Huang, M.-H., Hu, J.-C., Hsieh, C.-S., Ching, K.-E., Rau, R.-J., Pathier, E., Fruneau, B., and Deffontaines, B., 2006. A growing structure near the deformation front in SW Taiwan as deduced from SAR interferometry and geodetic observation. Geophys. Res. Lett., 33(12), L12305, doi: 10.1029/2005GL025613.
Hung, J.-H., Wiltschko, D. V., Lin, H.-C., Hickman, J. B., Fang, P., and Bock, Y., 1999. Structure and motion of the southwestern Taiwan fold and thrust belt. Terr. Atmos. Ocean. Sci., 10(3), 543-568.
Hyvärinen, A., 1999. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw., 10(3), 626-634, doi: 10.1109/72.761722.
Iio, Y., Sagiya, T., Kobayashi, Y., and Shiozaki, I., 2002. Water-weakened lower crust and its role in the concentrated deformation in the Japanese Islands. Earth Planet. Sci. Lett., 203(1), 245-253, doi: 10.1016/S0012-821X(02)00879-8.
Jan, C.-D., Chen, T.-H., and Lo, W.-C., 2007. Effect of rainfall intensity and distribution on groundwater level fluctuations J. Hydrol., 332(3-4), 348-360, doi: 10.1016/j.jhydrol.2006.07.010.
Jan, C.-D., Chen, T.-H., and Huang, H.-M., 2011. Analysis of rainfall-induced quick groundwater-level response by using a Kernel function. Paddy Water Environ., 11, 135–144, doi: 10.1007/s10333-011-0299-6.
Johnston, M. J. S., Linde, A. T., Sacks, I., and Myren, D., 1982. Borehole dilatometer strain array—Installation and preliminary results from the Mojave desert. Eos Trans AGU, 63, 430.
Johnston, M. J. S., Linde, A. T., and Agnew, D. C., 1994. Continuous borehole strain in the San Andreas fault zone before, during, and after the 28 June 1992, Mw 7.3 Landers, California, earthquake. Bull. Seismol. Soc. Am., 84(3), 799-805.
Jutten, C., and Hérault, J., 1991. Blind separation of sources, part I: An adaptive algorithm based on neu-romimetic architecture. Signal Process., 24(1), 1-10, doi: 10.1016/0165-1684(91)90079-X.
Langbein, J., 2010. Effect of error in theoretical Earth tide on calibration of borehole strainmeters. Geophys. Res. Lett., 37, L21303, doi: 10.1029/2010GL044454.
Langbein, J., 2015. Borehole strainmeter measurements spanning the 2014 Mw6.0 South Napa Earthquake, California: The effect from instrument calibration. J. Geophys. Res. Solid Earth, 120(10), 7190-7202, doi: 10.1002/2015JB012278.
Lee, T.-W., Girolami, M., and Sejnowski, T. J., 1999. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Comput., 11(2), 417-441, doi: 10.1162/089976699300016719.
Linde, A. T., and Sacks, I. S., 2002. Slow earthquakes and great earthquakes along the Nankai trough. Earth Planet. Sci. Lett., 203(1), 265-275, doi: 10.1016/S0012-821X(02)00849-X.
Linde, A. T., Gladwin, M. T., Johnston, M. J. S., Gwyther, R. L., and Bilham, R. G., 1996. A slow earthquake sequence on the San Andreas fault. Nature, 383(6595), 65-68, doi: 10.1038/383065a0.
Linsker, R., 1989a. An application of the principle of maximum information preservation to linear systems, in Proceedings Advances in Neural Information Processing Systems, edited by Touretzky, D. S., pp. 186-194, Morgan Kaufmann, San Mateo, CA.
Linsker, R., 1989b. How to generate ordered maps by maximizing the mutual information between input and output signals. Neural Comput., 1(3), 402-411, doi: 10.1162/neco.1989.1.3.402.
Liu, C.-C., Linde, A. T., and Sacks, I. S., 2009. Slow earthquakes triggered by typhoons. Nature, 460(7252), 833–836, doi: 10.1038/nature08042.
Loevenbruck, A., Cattin, R., Le Pichon, X., Courty, M.-L., and Yu, S.-B., 2001. Seismic cycle in Taiwan derived from GPS measurements. C. R. Acad. Sci., 333(1), 57-64, doi: 10.1016/S1251-8050(01)01567-1.
Luttrell, K., Mencin, D., Francis, O., and Hurwitz, S., 2013. Constraints on the upper crustal magma reservoir beneath Yellowstone Caldera inferred from lake-seiche induced strain observations. Geophys. Res. Lett., 40(3), 501-506, doi: 10.1002/grl.50155.
Lyne, V., and Hollick, M., 1979. Stochastic time-variable rainfall-runoff modelling, in Proceedings Institute of Engineers Australia National Conference Publication, 79, 89-93, Aust., Canberra.
Lynn, P., 1973. An Introduction to the Analysis and Processing of Signals, Macmillan Education Ltd, London.
Matsumoto, K., Sato, T., Takanezawa, T., and Ooe, M., 2001. GOTIC2: A program for computation of oceanic tidal loading effect. J. Geod. Soc. Jpn., 47(1), 243-248, doi: 10.11366/sokuchi1954.47.243.
Matsumoto, N., 1992. Regression-analysis for anomalous changes of ground-water level due to earthquakes. Geophys. Res. Lett., 19(12), 1193-1196, doi: 10.1029/92GL01042.
Melbourne, T. I., and Webb, F. H., 2002. Precursory transient slip during the 2001 Mw= 8.4 Peru earthquake sequence from continuous GPS. Geophys. Res. Lett., 29(21), 2032, doi: 10.1029/2002GL015533.
Mogi, K., 1985. Precursors of the 1983 Japan Sea earthquake, in Practical Approaches to Earthquake Prediction and Warning, edited by Kisslinger C., Rikitake T., pp. 493-517 Springer, Dordrecht, doi: 10.1007/978-94-017-2738-9_17.
Mouthereau, F., and Lacombe, O., 2006. Inversion of the Paleogene Chinese continental margin and thick-skinned deformation in the Western Foreland of Taiwan. J. Struct. Geol., 28(11), 1977-1993, doi: 10.1016/j.jsg.2006.08.007.
Mouyen, M., Canitano, A., Chao, B. F., Hsu, Y.-J., Steer, P., Longuevergne, L., and Boy, J. P., 2017. Typhoon-induced ground deformation. Geophys. Res. Lett., 44(21), 11,004-11,011, doi: 10.1002/2017GL075615.
Natale, L., and Todini, E., 1976. Stable estimator for linear-models: 1. Theoretical development and Monte-Carlo experiments. Water Resour. Res., 12(4), 667-671, doi: 10.1029/WR012i004p00667.
Nelder, J. A., and Mead, R., 1965. A simplex method for function minimization. The Comput. J., 7(4), 308-313, doi: 10.1093/comjnl/7.4.308.
Oda, M., 1985. Permeability tensor for discontinuous rock masses. Geotechnique, 35(4), 483-495, doi: 10.1680/geot.1985.35.4.483.
Pearson, C., Beavan, J., Darby, D., Blick, G., and Walcott, R., 1995. Strain distribution across the Australian‐Pacific plate boundary in the central South Island, New Zealand, from 1992 GPS and earlier terrestrial observations. J. Geophys. Res. Solid Earth, 100(B11), 22071-22081, doi: 10.1029/95JB02279.
Peng, Z. G., Vidale, J. E., Wech, A. G., Nadeau, R. M., and Creager, K. C., 2009. Remote triggering of tremor along the San Andreas Fault in central California. J. Geophys. Res. Solid Earth, 114, B00A06, doi: 10.1029/2008JB006049.
Piyal, W. P. L., and Konietzky, H. H., 2016. Geometrical properties of rock joints and theireffects on rock mechanical behaviour. Retrieved from: https://tu-freiberg.de/sites/default/files/media/professur-felsmechanik-32204/E-book/13_geometrical_properties_of_rock_joints_and_their_effects_on_rock_mechanical_behaviour_0.pdf
Qiu, Z., Tang, L., Zhang, B., and Guo, Y., 2013. In situ calibration of and algorithm for strain monitoring using four-gauge borehole strainmeters (FGBS). J. Geophys. Res. Solid Earth, 118(4), 1609-1618, doi: 10.1002/jgrb.50112.
Rüger, A., 1997. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics, 62(3), 713-722, doi: 10.1190/1.1444181.
Ramamurthy, T., and Arora, V. K., 1994. Strength predictions for jointed rocks in confined and unconfined states. Int. J. Rock Mech. Mining Sci. Geomech. Abstr., 31(1), 9-22, doi: 10.1016/0148-9062(94)92311-6.
Rice, J. R., and Cleary, M. P., 1976. Some basic stress diffusion solutions for fluid‐saturated elastic porous media with compressible constituents. Rev. Geophys., 14(2), 227-241, doi: 10.1029/RG014i002p00227.
Roeloffs, E., 1996. Poroelastic techniques in the study of earthquake-related hydrologic phenomena. Adv. Geophys., 37, 135-195, doi: 10.1016/S0065-2687(08)60270-8.
Roeloffs, E., 2010. Tidal calibration of Plate Boundary Observatory borehole strainmeters: Roles of vertical and shear coupling. J. Geophys. Res. Solid Earth, 115(B6), B06405, doi: 10.1029/2009JB006407.
Roeloffs, E., and Langbein, J., 1994. The earthquake prediction experiment at Parkfield, California. Rev. Geophys., 32(3), 315-336, doi: 10.1029/94RG01114.
Roeloffs, E., and Quilty, E., and Scholtz, C. H., 1997. Case 21 water level and strain changes preceding and following the August 4, 1985 Kettleman Hills, California, earthquake. Pure Appl. Geophys., 149(1), 21-60, doi: 10.1007/BF00945160.
Roeloffs, E., Hodgkinson, K., and Bryan, C., 2004. Review of Borehole Strainmeter Data Collected by the U.S. Geological Survey, 1985-2004. Review of USGS Borehole Strain Data, Rep. 55, EarthScope, Corvallis, Oreg.
Rojstaczer, S., 1988. Intermediate period response of water levels in wells to crustal strain: Sensitivity and noise level. J. Geophys. Res. Solid Earth, 93(B11), 13619-13634, doi: 10.1029/JB093iB11p13619.
Sacks, I. S., Suyehiro, S., and Evertson, D. W., 1971. Sacks-Evertson strainmeter, its installation in Japan and some preliminary results concerning strain steps. Proc. Jpn. Acad., 47(9), 707-712, doi: 10.2183/pjab1945.47.707.
Sakata, S., Shimada, S., and Noguchi, S., 1982. Development of new-type three-component borehole strainmeters, in the Proceedings Proceedings of The 3rd Joint Meeting of UJNR Panel on Earthquake Prediction Technology.
Savage, J. C., and Lisowski, M., 1995. Strain accumulation in Owens Valley, California, 1974 to 1988. Bull. Seismol. Soc. Am., 85(1), 151-158.
Segall, P., Jónsson, S., and Ágústsson, K., 2003. When is the strain in the meter the same as the strain in the rock? Geophys. Res. Lett., 30(19), 1990, doi: 10.1029/2003GL017995.
Seno, T., 1977, The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate: Tectonophysics, v. 42, no. 2-4, p. 209-226.
Seno, T., Stein, S., and Gripp, A. E., 1993. A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data. J. Geophys. Res. Solid Earth, 98(B10), 17941-17948, doi: 10.1029/93JB00782.
Stewart, R., 2008. Introduction to Physical Oceanography, Texas A&M University.
Takemoto, S., Lee, M., Chen, C.-Y., Kao, M.-C., Mukai, A., Ikawa, T., Kuroda, T., and Abe, T., 2006. Tidal strain observations in Chu-Chie, Taiwan. J. Geodyn., 41(1-3), 198-204, doi: 10.1016/j.jog.2005.08.004.
Takemoto, S., Yamamoto, T., Mukai, A., Otsuka, S., and Fujimori, K., 2003. Crustal strain observation for nine years with a laser strainmeter in Kobe, Japan. J. Geodyn., 35(4-5), 483-498, doi: 10.1016/S0264-3707(03)00009-7.
Tamura, Y., Sato, T., Ooe, M., and Ishiguro, M., 1991. A procedure for tidal analysis with a Bayesian information criterion. Geophys. J. Int., 104(3), 507-516, doi: 10.1111/j.1365-246X.1991.tb05697.x.
Wakita, H., 1975. Water wells as possible indicators of tectonic strain. Science, 189(202), 553-555, doi: 10.1126/science.189.4202.553.
Wang, K., Chen, Q.-F., Sun, S., and Wang, A., 2006. Predicting the 1975 Haicheng earthquake. Bull. Seismol. Soc. Am., 96(3), 757-795, doi: 10.1785/0120050191.
Wasantha, P. L. P., Ranjith, P. G., and Viete, D. R., 2014. Effect of joint orientation on the hydromechanical behavior of singly jointed sandstone experiencing undrained loading. J. Geophys. Res. Solid Earth, 119(3), 1701-1717, doi: 10.1002/2013JB010600.
Wech, A. G., and Bartlow, N. M., 2014. Slip rate and tremor genesis in Cascadia. Geophys. Res. Lett., 41(2), 392-398, doi: 10.1002/2013GL058607.
White, A. B., Kumar, P., Saco, P. M., Rhoads, B. L., and Yen, B. C., 2004. Hydrodynamic and geomorphologic dispersion: Scale effects in the Illinois River Basin. J. Hydrol., 288(3-4), 237-257, doi: 10.1016/j.jhydrol.2003.10.019.
Worotnicki, G., 1993. CSIRO triaxial stress measurement cell. in Comprehensive Rock Engineering, vol. 3, edited by Hudson J. A., pp. 329-394, Pergamon, New York.
Wyss, M., Aceves, R. L., Park, S. K., Geller, R. J., Jackson, D. D., Kagan, Y. Y., and Mulargia, F., 1997. Cannot earthquakes be predicted? Science, 278(5337), 487-490.
Yu, S.-B., and Chen, H.-Y., 1994. Global Positioning System measurements of crustal deformation in the Taiwan arc-continent collision zone. Terr. Atmos. Ocean. Sci., 5(4), 477 - 498.
Yu, S.-B., Chen, H.-Y., and Kuo, L.-C., 1997. Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59, doi: 10.1016/S0040-1951(96)00297-1
Yu, S.-B., Kuo, L.-C., Punongbayan, R. S., and Ramos, E. G., 1999. GPS observation of crustal deformation in the Taiwan-Luzon. Geophys. Res. Lett., 26(7), 923-926, doi: 10.1029/1999GL900148.
Zadro, M., and Braitenberg, C., 1999. Measurements and interpretations of tilt-strain gauges in seismically active areas. Earth-Sci. Rev., 47(3-4), 151-187, doi: 10.1016/S0012-8252(99)00028-8.
Zang, S. X., Chen, Q. Y., Ning, J. Y., Shen, Z. K., and Liu, Y. G., 2002. Motion of the Philippine Sea plate consistent with the NUVEL-1A model. Geophys. J. Int. 150(3), 809-819, doi: 10.1046/j.1365-246X.2002.01744.x.
Zhao, Y., Semnani, S. J., Yin, Q., and Borja, R. I., 2018. On the strength of transversely isotropic rocks. Int. J. Numer. Anal. Methods Geomech., 42(6), 1917-1934, doi: 10.1002/nag.2809.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top