跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/11 01:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃信祥
研究生(外文):Hsin-Hsiang Huang
論文名稱:延長有機金屬鹵化物鈣鈦礦太陽能電池壽命之研究
論文名稱(外文):Enhancement in Operation Lifespan of Organometal Halide Perovskite Solar Cells
指導教授:林金福林金福引用關係王立義
指導教授(外文):King-Fu LinLeeyih Wang
口試委員:林維芳鄭弘隆陳志平柯崇文施彥辰
口試委員(外文):Wei-Fang SuHorng-Long ChengChih-Ping ChenChung-Wen KoYen-Chen Shih
口試日期:2021-06-28
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:224
中文關鍵詞:鈣鈦礦太陽能電池奈米蒙脫土氟化富勒烯電子傳輸層長效穩定性原位掠入射廣角X射線散射定向晶體形成
外文關鍵詞:perovskite solar cellsmontmorillonitefluorinated fullerene electron transporting layerlong-term operation stabilityin situ grazing incidence wide-angle X-ray scatteringorients crystal formation
DOI:10.6342/NTU202101239
相關次數:
  • 被引用被引用:0
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
以有機銨碘化鉛作為光敏材料的鈣鈦礦太陽能電池(Perovskite solar cells, PSCs)具有較高的光電轉換效率和較低的加工成本,因此被認為具有商業化的潛力,但如何提升PSCs的元件使用壽命仍然為目前最重要的研究課題。蒙脫土(Montmorillonite, MMT)是一種天然的近晶粘土,具有多層堆疊的奈米片(厚度約為1 nm,橫向長度約為300 nm),脫層完的MMT (exfoliated MMT, exMMT)就像屏障一樣,可以阻止水分滲透到膜中。除此之外,exMMT還可以通過陽離子交換與有機碘化胺相互作用產生作用力(氫鍵)。本論文發現在鈣鈦礦層旋塗成膜之前,將exMMT參雜進MAPbI3的鈣鈦礦前驅溶液中,可以在鈣鈦礦的晶粒表面上形成一保護殼,使得未封裝的PSCs抗濕能力大幅提升,在相對濕度50%的環境下儲存半年後,效率仍然保持在17.29%以上。值得注意的是,MMT可以在水中溶脹後再利用超聲波的方式來達到脫層的效果,其方法簡單且成本低廉,整個脫層過程也受到Derjaguin-Landau-Verwey-Overbeek的理論支持。
接著,我們引入一種新的氟化富勒烯,用作鈣鈦礦(CsFAMA)光伏電池中的電子傳輸層(Electron transporting layer, ETL),效率可達21.27%,並顯著的提高了濕度,熱和離子遷移的耐久性。因氟化富勒烯的疏水特性使得未封裝的PSCs在相對濕度85%的條件下,仍然超過1,400個小時以上的溼度穩定性,且該設備在水下浸泡了600秒後仍保持其原始性能的70%。此外,我們也發現氟化的富勒烯可以固定鈣鈦礦中的有機離子並使表面缺陷鈍化,提升元件的光熱穩定性。結果對長期的光浸泡以及高溫老化表現出極好的耐受性,在氮氣的環境下持續的光照(1-sun)或在85oC加熱1,000小時,可保持其超過95%的初始效率。由於氟化富勒烯的電子傳導層在PSCs中的成功可以激發進一步的研究,為未來的光伏技術帶來真正的動力。
我們進一步利用原位同步加速器X射線表徵來明確揭示鈣鈦礦薄膜在不同相對濕度的退火過程中材料轉變和結晶過程,水的結合對晶粒尺寸和轉化率表現出顯著的促進作用。我們確定了鈣鈦礦的晶體取向、晶格常數、晶粒尺寸和退火過程中的轉變速率與水分子之間的相關性,在當相對濕度為40%的氮氣中退火時,鈣鈦礦晶體顯示出較好的取向性和較大的晶粒尺寸。我們的工作對於鈣鈦礦薄膜在結晶過程中的水混入效果提出了深入地瞭解,更重要的是,透過簡易的水結合方式即可大幅提升元件的光穩定性和熱穩定性,使得原本較為不穩定的MAPbI3鹵化物鈣鈦礦可與他人所使用較為穩定的鈣鈦礦系統(CsFAMA)所提出的研究成果相提並論。
The perovskite solar cells (PSCs) with organic ammonium lead iodide as photoactive material have been highly regarded to have potential for commercialization because of their high-power conversion efficiency (PCE) and low processing cost. However, long-term stability still needs to be addressed. Montmorillonite (MMT) is a natural smectic clay of multiple stacked nanoplatelets (the thickness of the layer is approximately 1 nm, and the lateral dimensions of these layers vary from 300 angstroms to several microns) Once MMT is exfoliated to fabricate the polymer composite film, the exfoliated MMT (exMMT) function like a barrier blocking the moisture from penetrating into the films. Moreover, exMMTs are anionic in nature and can interact with organic ammonium iodide through cation exchange. In this dissertation, we found they formed as a shell on the surface of perovskite crystalline grains when incorporated into the MAPbI3 perovskite precursor solution after spin-coating into a film. The as-fabricated unencapsulated PSCs are extremely stable, with the PCE of 17.29% barely changed after half a year of storage in the controlled ambient environment (relative humidity, RH 50%). Notably, exMMT can be easily fabricated by sonicating the MMT in aqueous solution after swelling in water, the process of which is manifestly supported by Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and is also low cost.
Next, we introduce a new fluorinated fullerene to serve as a robust electron-transporting layer (ETL) in perovskite (CsFAMA) photovoltaic cell that deliver high PCE of 21.27% with substantially improved durability against humidity, heat and ion migration. The hydrophobic nature of the new fullerene protects the un-encapsulated perovskite cell in 85% relative humidity for over 1,400 hours. Notably, the device maintained 70% of its original performance when immersed under water for 600 seconds. Moreover, we found the fluorinated fullerene can immobilize the organic ions in the perovskites and passivate the surface traps. As a result, the device exhibits excellent tolerance to long-term light soaking as well as high-temperature aging, which retained >95% of the peak PCE under constant 1-sun illumination or heating at 85oC for 1,000 hours in a nitrogen atmosphere. It is expected that the success of fluorinated fullerene-based ETL in PSCs can stimulate further research and bring real momentum to future photovoltaic technologies.
We further utilized in situ synchrotron X-ray characterization to explicitly reveal the material transformation and crystallization process of perovskite films during annealing over various RH and time scales. The water incorporation exhibits a significant promoting effect on grain size and transformation rate. We identified the water-content-dependence of the perovskite crystal orientation, lattice constant, grain size, and transformation rate during annealing. The perovskite crystal displays a preferred orientation, the fast-annealing rate, and the largest grain size when annealing in nitrogen with 40% humidity. Clearly, our work presents an insightful understanding in the water incorporation effect of perovskite films during the annealing process. More importantly, it is explicit to see that our simple water-incorporated approach (at mild RH = 40%) sustains the device photo- and thermal- stability as well as those nontrivial instability-mitigation approaches (e.g. ion insertion, composite additive, grain boundary reduction, passivation layer) for the well-known unstable MAPbI3 halide perovskite.
口試委員審定書 i
摘要 ii
ABSTRACT iv
CONTENTS vii
LIST OF FIGURES x
LIST OF TABLES xxv
Chapter 1 Introduction 1
1.1 Renewable energy 1
1.2 Photovoltaics 3
1.2.1 Theory and working principles of photovoltaics 6
1.2.2 Solar spectra 7
1.2.3 Photovoltaic parameters 8
1.3 Introduction of perovskite solar cells 12
1.3.1 Fundamentals of organometal halide perovskites and their origin 12
1.3.2 Phase transition 14
1.3.3 Band position and bandgap tuning 18
1.3.4 Compositional engineering 20
1.3.5 Evolution of architecture design 23
1.3.6 Solution chemistry 28
1.3.7 Preparation methods 32
1.3.8 Issues and challenges 35
1.4 Objectives and Scope 39
Chapter 2 Experimental Methods 44
2.1 Materials 44
2.1.1 MMT Preparation and Characterization 48
2.2 Device fabrication 52
2.2.1 HTL fabrication 53
2.2.2 Perovskite layer 53
2.2.3 ETL fabrication 55
2.2.4 Hole blocking layer and electrode 56
2.3 Instrument 56
Chapter 3 Boosting the ultra-stable unencapsulated perovskite solar cells by using montmorillonite CH3NH3PbI3 nanocomposite as photoactive layer 64
3.1 Motivation 64
3.2 Results and Discussion 65
3.2.1 Superior environmental stability of exMMT/MAPbI3 films 69
3.2.2 Superior photovoltaic stability of PSCs with exMMT 75
3.2.3 ExMMTs formed as a shell on the surface of MAPbI3 film 79
3.2.4 Damp-heat tests of PSCs 83
3.2.5 Light soaking tests of PSCs 87
3.3 Summary 88
Chapter 4 Robust un-encapsulated perovskite solar cells protected by fluorinated fullerene electron transporting layer 90
4.1 Motivation 90
4.2 Results and Discussion 94
4.2.1 Surface segregation of fluorinated fullerene 94
4.2.2 Device performance 98
4.2.3 Photovoltaic thermal stability 104
4.2.4 Environmental stability 113
4.2.5 Photo-induced ion migration 125
4.3 Summary 136
Chapter 5 Mild Water Intake Orients Crystal Formation and Imparts Highly Tolerable Unencapsulated Halide Perovskite Solar Cells 137
5.1 Motivation 137
5.2 Results and Discussion 141
5.2.1 Impact of humidity on crystal formation and orientation 141
5.2.2 Crystal structure analysis and optical property characterizations 151
5.2.3 Device performance 161
5.2.4 Stability of perovskite solar cells 166
5.3 Summary 173
Chapter 6 Conclusion 175
References 180
1.Ackermann, T.; Prevost, T.; Vittal, V.; Roscoe, A. J.; Matevosyan, J.; Miller, N., Paving the Way: A Future Without Inertia Is Closer Than You Think. IEEE Power and Energy Magazine 2017, 15 (6), 61-69.
2.Masson, G.; Kaizuka, I. Trends in Photovoltaic Applications 2019; IEA PVPS T1-36; 2019.
3.Chapin, D. M.; Fuller, C. S.; Pearson, G. L., A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. J. Appl. Phys. 1954, 25 (5), 676-677.
4.Gall, S.; Becker, C.; Conrad, E.; Dogan, P.; Fenske, F.; Gorka, B.; Lee, K. Y.; Rau, B.; Ruske, F.; Rech, B., Polycrystalline silicon thin-film solar cells on glass. Sol. Energ. Mat. Sol. Cells 2009, 93 (6-7), 1004-1008.
5.Deng, Y. H.; Peng, E.; Shao, Y. C.; Xiao, Z. G.; Dong, Q. F.; Huang, J. S., Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ. Sci. 2015, 8 (5), 1544-1550.
6.Deng, Y. H.; Zheng, X. P.; Bai, Y.; Wang, Q.; Zhao, J. J.; Huang, J. S., Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 2018, 3 (7), 560-566.
7.Li, Z.; Klein, T. R.; Kim, D. H.; Yang, M. J.; Berry, J. J.; van Hest, M. F. A. M.; Zhu, K., Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 2018, 3 (4).
8.Park, N. G., Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 2015, 18 (2), 65-72.
9.Wei, H.; Huang, J., Halide lead perovskites for ionizing radiation detection. Nat. Commun. 2019, 10 (1), 1066.
10.Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342 (6156), 341-4.
11.Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J., Electron-hole diffusion lengths > 175 mum in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347 (6225), 967-70.
12.Gong, X.; Huang, Z.; Sabatini, R.; Tan, C. S.; Bappi, G.; Walters, G.; Proppe, A.; Saidaminov, M. I.; Voznyy, O.; Kelley, S. O.; Sargent, E. H., Contactless measurements of photocarrier transport properties in perovskite single crystals. Nat. Commun. 2019, 10 (1), 1591.
13.Du, M. H., Effects of impurity doping on ionic conductivity and polarization phenomenon in TlBr. Appl. Phys. Lett. 2013, 102 (8), 082102.
14.Yang, T. Y.; Gregori, G.; Pellet, N.; Gratzel, M.; Maier, J., The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer. Angew. Chem. Int. Ed. Engl. 2015, 54 (27), 7905-10.
15.Kim, G. Y.; Senocrate, A.; Yang, T. Y.; Gregori, G.; Gratzel, M.; Maier, J., Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat. Mater. 2018, 17 (5), 445-449.
16.Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200406.pdf.
17.Fonash, S. J., Solar Cell Device Physics. Second ed.; Elsevier: 2010.
18.Standard Solar Spectra. https://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra.
19.Lin, C. F.; Zhang, M.; Liu, S. W.; Chiu, T. L.; Lee, J. H., High photoelectric conversion efficiency of metal phthalocyanine/fullerene heterojunction photovoltaic device. Int J Mol Sci 2011, 12 (1), 476-505.
20.Rose, G., Beschreibung einiger neuen Mineralien des Urals. Ann. Phys. 1839, 124 (12), 551-573.
21.Goldschmidt, V. M., Die gesetze der krystallochemie. Naturwissenschaften 1926, 14 (21), 477-485.
22.Kniep, J.; Lin, Y. S., Effect of Zirconium Doping on Hydrogen Permeation through Strontium Cerate Membranes. Industrial & Engineering Chemistry Research 2010, 49 (6), 2768-2774.
23.Li, C.; Lu, X.; Ding, W.; Feng, L.; Gao, Y.; Guo, Z., Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta crystallographica. Section B, Structural science 2008, 64 (Pt 6), 702-7.
24.Ava, T. T.; Al Mamun, A.; Marsillac, S.; Namkoong, G., A Review: Thermal Stability of Methylammonium Lead Halide Based Perovskite Solar Cells. Appl Sci-Basel 2019, 9 (1), 188.
25.Bakulin, A. A.; Selig, O.; Bakker, H. J.; Rezus, Y. L.; Muller, C.; Glaser, T.; Lovrincic, R.; Sun, Z.; Chen, Z.; Walsh, A.; Frost, J. M.; Jansen, T. L., Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites. J Phys Chem Lett 2015, 6 (18), 3663-9.
26.Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J. J.; Zhu, K., Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chem. Mater. 2015, 28 (1), 284-292.
27.Lee, J. W.; Seol, D. J.; Cho, A. N.; Park, N. G., High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2 PbI3. Adv. Mater. 2014, 26 (29), 4991-8.
28.Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G., On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem Sci 2016, 7 (7), 4548-4556.
29.Leijtens, T.; Eperon, G. E.; Noel, N. K.; Habisreutinger, S. N.; Petrozza, A.; Snaith, H. J., Stability of Metal Halide Perovskite Solar Cells. Adv. Energy Mater. 2015, 5 (20), 1500963.
30.Jung, H. S.; Park, N. G., Perovskite solar cells: from materials to devices. Small 2015, 11 (1), 10-25.
31.Knop, O.; Wasylishen, R. E.; White, M. A.; Cameron, T. S.; Oort, M. J. M. V., Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X=Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation. Can. J. Chem. 1990, 68 (3), 412-422.
32.Geng, W.; Zhang, L.; Zhang, Y. N.; Lau, W. M.; Liu, L. M., First-Principles Study of Lead Iodide Perovskite Tetragonal and Orthorhombic Phases for Photovoltaics. J. Phys. Chem. C 2014, 118 (34), 19565-19571.
33.Oku, T., Crystal Structures of CH3NH3PbI3 and Related Perovskite Compounds Used for Solar Cells. IntechOpen: 2014.
34.Alharbi, F.; Bass, J. D.; Salhi, A.; Alyamani, A.; Kim, H. C.; Miller, R. D., Abundant non-toxic materials for thin film solar cells: Alternative to conventional materials. Renew Energ 2011, 36 (10), 2753-2758.
35.Law, M. E.; Solley, E.; Liang, M.; Burk, D. E., Self-Consistent Model of Minority-Carrier Lifetime, Diffusion Length, and Mobility. IEEE Electron Device Lett. 1991, 12 (8), 401-403.
36.Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3 (10), 4088-93.
37.Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Gratzel, M.; Park, N. G., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2012, 2, 591.
38.Hao, F.; Stoumpos, C. C.; Chang, R. P.; Kanatzidis, M. G., Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 2014, 136 (22), 8094-9.
39.Umebayashi, T.; Asai, K.; Kondo, T.; Nakao, A., Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B 2003, 67 (15), 155405.
40.Hoke, E. T.; Slotcavage, D. J.; Dohner, E. R.; Bowring, A. R.; Karunadasa, H. I.; McGehee, M. D., Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem Sci 2015, 6 (1), 613-617.
41.Jesper Jacobsson, T.; Correa-Baena, J.-P.; Pazoki, M.; Saliba, M.; Schenk, K.; Grätzel, M.; Hagfeldt, A., Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ. Sci. 2016, 9 (5), 1706-1724.
42.Koh, T. M.; Fu, K. W.; Fang, Y. N.; Chen, S.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G.; Boix, P. P.; Baikie, T., Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells. J. Phys. Chem. C 2014, 118 (30), 16458-16462.
43.Correa-Baena, J. P.; Saliba, M.; Buonassisi, T.; Gratzel, M.; Abate, A.; Tress, W.; Hagfeldt, A., Promises and challenges of perovskite solar cells. Science 2017, 358 (6364), 739-744.
44.Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517 (7535), 476-80.
45.McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Horantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351 (6269), 151-5.
46.Yi, C.; Luo, J.; Meloni, S.; Boziki, A.; Ashari-Astani, N.; Grätzel, C.; Zakeeruddin, S. M.; Röthlisberger, U.; Grätzel, M., Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 2016, 9 (2), 656-662.
47.Lee, J. W.; Kim, D. H.; Kim, H. S.; Seo, S. W.; Cho, S. M.; Park, N. G., Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell. Adv. Energy Mater. 2015, 5 (20), 1501310.
48.Saliba, M.; Matsui, T.; Domanski, K.; Seo, J. Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J. P.; Tress, W. R.; Abate, A.; Hagfeldt, A.; Gratzel, M., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354 (6309), 206-209.
49.Turren-Cruz, S. H.; Hagfeldt, A.; Saliba, M., Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 2018, 362 (6413), 449-453.
50.Nam, J. K.; Chai, S. U.; Cha, W.; Choi, Y. J.; Kim, W.; Jung, M. S.; Kwon, J.; Kim, D.; Park, J. H., Potassium Incorporation for Enhanced Performance and Stability of Fully Inorganic Cesium Lead Halide Perovskite Solar Cells. Nano Lett. 2017, 17 (3), 2028-2033.
51.Abdi-Jalebi, M.; Dar, M. I.; Sadhanala, A.; Senanayak, S. P.; Franckevicius, M.; Arora, N.; Hu, Y. Y.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Gratzel, M.; Friend, R. H., Impact of Monovalent Cation Halide Additives on the Structural and Optoelectronic Properties of CH3NH3PbI3 Perovskite. Adv. Energy Mater. 2016, 6 (10), 1502472.
52.Tsai, H.; Nie, W.; Blancon, J.-C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S.; Pedesseau, L.; Even, J.; Alam, M. A.; Gupta, G.; Lou, J.; Ajayan, P. M.; Bedzyk, M. J.; Kanatzidis, M. G.; Mohite, A. D., High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 2016, 536, 312.
53.Blancon, J. C.; Tsai, H.; Nie, W.; Stoumpos, C. C.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Soe, C. M.; Appavoo, K.; Sfeir, M. Y.; Tretiak, S.; Ajayan, P. M.; Kanatzidis, M. G.; Even, J.; Crochet, J. J.; Mohite, A. D., Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 2017, 355 (6331), 1288-1292.
54.Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131 (17), 6050-6051.
55.Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338 (6107), 643-7.
56.Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J., Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 2013, 6 (6), 1739-1743.
57.Conings, B.; Baeten, L.; De Dobbelaere, C.; D'Haen, J.; Manca, J.; Boyen, H. G., Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Adv. Mater. 2014, 26 (13), 2041-6.
58.Liu, D.; Kelly, T. L., Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 2013, 8, 133.
59.Kim, J.; Kim, G.; Kim, T. K.; Kwon, S.; Back, H.; Lee, J.; Lee, S. H.; Kang, H.; Lee, K., Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol-gel ZnO electron collection layer. J. Mater. Chem. A 2014, 2 (41), 17291-17296.
60.Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y., Interface engineering of highly efficient perovskite solar cells. Science 2014, 345 (6196), 542-546.
61.You, J.; Meng, L.; Song, T. B.; Guo, T. F.; Yang, Y. M.; Chang, W. H.; Hong, Z.; Chen, H.; Zhou, H.; Chen, Q.; Liu, Y.; De Marco, N.; Yang, Y., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2016, 11 (1), 75-81.
62.Yin, X.; Yao, Z.; Luo, Q.; Dai, X.; Zhou, Y.; Zhang, Y.; Zhou, Y.; Luo, S.; Li, J.; Wang, N.; Lin, H., High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed NiOx Hole Contact. ACS Appl. Mater. Interfaces 2017, 9 (3), 2439-2448.
63.Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C., CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 2013, 25 (27), 3727-32.
64.You, J. B.; Yang, Y. M.; Hong, Z. R.; Song, T. B.; Meng, L.; Liu, Y. S.; Jiang, C. Y.; Zhou, H. P.; Chang, W. H.; Li, G.; Yang, Y., Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 2014, 105 (18), 183902.
65.Wu, C. G.; Chiang, C. H.; Tseng, Z. L.; Nazeeruddin, M. K.; Hagfeldt, A.; Gratzel, M., High efficiency stable inverted perovskite solar cells without current hysteresis. Energy Environ. Sci. 2015, 8 (9), 2725-2733.
66.Chiang, C. H.; Nazeeruddin, M. K.; Gratzel, M.; Wu, C. G., The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy Environ. Sci. 2017, 10 (3), 808-817.
67.Hussain, I.; Tran, H. P.; Jaksik, J.; Moore, J.; Islam, N.; Uddin, M. J., Functional materials, device architecture, and flexibility of perovskite solar cell. Emergent Materials 2018, 1 (3-4), 133-154.
68.Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316-+.
69.Chen, Q.; Zhou, H.; Song, T. B.; Luo, S.; Hong, Z.; Duan, H. S.; Dou, L.; Liu, Y.; Yang, Y., Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 2014, 14 (7), 4158-63.
70.Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7 (3), 982-988.
71.Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-j.; Sarkar, A.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I., Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 2013, 7, 486.
72.Laban, W. A.; Etgar, L., Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 2013, 6 (11), 3249.
73.Jeon, N. J.; Lee, J.; Noh, J. H.; Nazeeruddin, M. K.; Gratzel, M.; Seok, S. I., Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. J. Am. Chem. Soc. 2013, 135 (51), 19087-90.
74.Zhao, Y.; Nardes, A. M.; Zhu, K., Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length. J Phys Chem Lett 2014, 5 (3), 490-4.
75.Wu, Y. Z.; Islam, A.; Yang, X. D.; Qin, C. J.; Liu, J.; Zhang, K.; Peng, W. Q.; Han, L. Y., Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 2014, 7 (9), 2934-2938.
76.Im, J. H.; Kim, H. S.; Park, N. G., Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Mater. 2014, 2 (8), 081510.
77.Jung, M.; Ji, S. G.; Kim, G.; Seok, S. I., Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chem. Soc. Rev. 2019, 48 (7), 2011-2038.
78.Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897.
79.Rong, Y.; Tang, Z.; Zhao, Y.; Zhong, X.; Venkatesan, S.; Graham, H.; Patton, M.; Jing, Y.; Guloy, A. M.; Yao, Y., Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale 2015, 7 (24), 10595-9.
80.Jo, Y.; Oh, K. S.; Kim, M.; Kim, K.-H.; Lee, H.; Lee, C.-W.; Kim, D. S., High Performance of Planar Perovskite Solar Cells Produced from PbI2(DMSO) and PbI2(NMP) Complexes by Intramolecular Exchange. Adv. Mater. Interfaces 2016, 3 (10), 1500768.
81.Li, L.; Chen, Y.; Liu, Z.; Chen, Q.; Wang, X.; Zhou, H., The Additive Coordination Effect on Hybrids Perovskite Crystallization and High-Performance Solar Cell. Adv. Mater. 2016, 28 (44), 9862-9868.
82.Lee, J. W.; Bae, S. H.; Hsieh, Y. T.; De Marco, N.; Wang, M. K.; Sun, P. Y.; Yang, Y., A Bifunctional Lewis Base Additive for Microscopic Homogeneity in Perovskite Solar Cells. Chem 2017, 3 (2), 290-302.
83.Zhi, L.; Li, Y.; Cao, X.; Li, Y.; Cui, X.; Ci, L.; Wei, J., Perovskite Solar Cells Fabricated by Using an Environmental Friendly Aprotic Polar Additive of 1,3-Dimethyl-2-imidazolidinone. Nanoscale Res Lett 2017, 12 (1), 632.
84.Xie, L.; Cho, A. N.; Park, N. G.; Kim, K., Efficient and Reproducible CH3NH3PbI3 Perovskite Layer Prepared Using a Binary Solvent Containing a Cyclic Urea Additive. ACS Appl. Mater. Interfaces 2018, 10 (11), 9390-9397.
85.Cao, X.; Zhi, L.; Li, Y.; Fang, F.; Cui, X.; Yao, Y.; Ci, L.; Ding, K.; Wei, J., Elucidating the Key Role of a Lewis Base Solvent in the Formation of Perovskite Films Fabricated from the Lewis Adduct Approach. ACS Appl. Mater. Interfaces 2017, 9 (38), 32868-32875.
86.Zhang, Y.; Gao, P.; Oveisi, E.; Lee, Y.; Jeangros, Q.; Grancini, G.; Paek, S.; Feng, Y.; Nazeeruddin, M. K., PbI2-HMPA Complex Pretreatment for Highly Reproducible and Efficient CH3NH3PbI3 Perovskite Solar Cells. J. Am. Chem. Soc. 2016, 138 (43), 14380-14387.
87.Fateev, S. A.; Petrov, A. A.; Khrustalev, V. N.; Dorovatovskii, P. V.; Zubavichus, Y. V.; Goodilin, E. A.; Tarasov, A. B., Solution Processing of Methylammonium Lead Iodide Perovskite from γ-Butyrolactone: Crystallization Mediated by Solvation Equilibrium. Chem. Mater. 2018, 30 (15), 5237-5244.
88.Hendriks, K. H.; van Franeker, J. J.; Bruijnaers, B. J.; Anta, J. A.; Wienk, M. M.; Janssen, R. A. J., 2-Methoxyethanol as a new solvent for processing methylammonium lead halide perovskite solar cells. J. Mater. Chem. A 2017, 5 (5), 2346-2354.
89.Wu, W. Q.; Chen, D.; McMaster, W. A.; Cheng, Y. B.; Caruso, R. A., Solvent-Mediated Intragranular-Coarsening of CH3NH3PbI3 Thin Films toward High-Performance Perovskite Photovoltaics. ACS Appl. Mater. Interfaces 2017, 9 (37), 31959-31967.
90.Chen, J.; Gan, L.; Zhuge, F.; Li, H.; Song, J.; Zeng, H.; Zhai, T., A Ternary Solvent Method for Large-Sized Two-Dimensional Perovskites. Angew. Chem. Int. Ed. Engl. 2017, 56 (9), 2390-2394.
91.Im, J. H.; Jang, I. H.; Pellet, N.; Gratzel, M.; Park, N. G., Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 2014, 9 (11), 927-32.
92.Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501 (7467), 395-8.
93.Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y.; Li, G.; Yang, Y., Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 2014, 136 (2), 622-5.
94.Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A., Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 2014, 14 (5), 2584-90.
95.Niu, G. D.; Guo, X. D.; Wang, L. D., Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 2015, 3 (17), 8970-8980.
96.Rong, Y. G.; Liu, L. F.; Mei, A. Y.; Li, X.; Han, H. W., Beyond Efficiency: the Challenge of Stability in Mesoscopic Perovskite Solar Cells. Adv. Energy Mater. 2015, 5 (20), 1501066.
97.Juarez-Perez, E. J.; Hawash, Z.; Raga, S. R.; Ono, L. K.; Qi, Y., Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis. Energy Environ. Sci. 2016, 9 (11), 3406-3410.
98.Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A., Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 2017, 8, 15218.
99.Bryant, D.; Aristidou, N.; Pont, S.; Sanchez-Molina, I.; Chotchunangatchaval, T.; Wheeler, S.; Durrant, J. R.; Haque, S. A., Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 2016, 9 (5), 1655-1660.
100.Futscher, M. H.; Lee, J. M.; McGovern, L.; Muscarella, L. A.; Wang, T. Y.; Haider, M. I.; Fakharuddin, A.; Schmidt-Mende, L.; Ehrler, B., Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements. Materials Horizons 2019, 6 (7), 1497-1503.
101.Lee, J. W.; Kim, S. G.; Yang, J. M.; Yang, Y.; Park, N. G., Verification and mitigation of ion migration in perovskite solar cells. APL Mater. 2019, 7 (4), 041111.
102.Grancini, G.; Nazeeruddin, M. K., Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater. 2018, 4 (1), 4-22.
103.Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Gratzel, M., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 2016, 9 (6), 1989-1997.
104.Zuo, L.; Guo, H.; deQuilettes, D. W.; Jariwala, S.; De Marco, N.; Dong, S.; DeBlock, R.; Ginger, D. S.; Dunn, B.; Wang, M.; Yang, Y., Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci Adv 2017, 3 (8), e1700106.
105.Koushik, D.; Verhees, W. J. H.; Kuang, Y.; Veenstra, S.; Zhang, D.; Verheijen, M. A.; Creatore, M.; Schropp, R. E. I., High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture. Energy Environ. Sci. 2017, 10 (1), 91-100.
106.Li, W.; Zhang, W.; Van Reenen, S.; Sutton, R. J.; Fan, J.; Haghighirad, A. A.; Johnston, M. B.; Wang, L.; Snaith, H. J., Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ. Sci. 2016, 9 (2), 490-498.
107.Grancini, G.; Roldan-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M.; Nazeeruddin, M. K., One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 2017, 8, 15684.
108.Cao, D. H.; Stoumpos, C. C.; Farha, O. K.; Hupp, J. T.; Kanatzidis, M. G., 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. J. Am. Chem. Soc. 2015, 137 (24), 7843-7850.
109.Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I., A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. Engl. 2014, 53 (42), 11232-5.
110.Pedesseau, L.; Sapori, D.; Traore, B.; Robles, R.; Fang, H. H.; Loi, M. A.; Tsai, H.; Nie, W.; Blancon, J. C.; Neukirch, A.; Tretiak, S.; Mohite, A. D.; Katan, C.; Even, J.; Kepenekian, M., Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors. ACS Nano 2016, 10 (11), 9776-9786.
111.Yuan, M.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y.; Beauregard, E. M.; Kanjanaboos, P.; Lu, Z.; Kim, D. H.; Sargent, E. H., Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 2016, 11 (10), 872-877.
112.Zheng, X.; Hou, Y.; Bao, C.; Yin, J.; Yuan, F.; Huang, Z.; Song, K.; Liu, J.; Troughton, J.; Gasparini, N.; Zhou, C.; Lin, Y.; Xue, D.-J.; Chen, B.; Johnston, A. K.; Wei, N.; Hedhili, M. N.; Wei, M.; Alsalloum, A. Y.; Maity, P.; Turedi, B.; Yang, C.; Baran, D.; Anthopoulos, T. D.; Han, Y.; Lu, Z.-H.; Mohammed, O. F.; Gao, F.; Sargent, E. H.; Bakr, O. M., Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 2020, 5 (2), 131-140.
113.Bai, S.; Da, P.; Li, C.; Wang, Z.; Yuan, Z.; Fu, F.; Kawecki, M.; Liu, X.; Sakai, N.; Wang, J. T.; Huettner, S.; Buecheler, S.; Fahlman, M.; Gao, F.; Snaith, H. J., Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 2019, 571 (7764), 245-250.
114.Wang, Z.; Lin, Q.; Wenger, B.; Christoforo, M. G.; Lin, Y.-H.; Klug, M. T.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., High irradiance performance of metal halide perovskites for concentrator photovoltaics. Nat. Energy 2018, 3 (10), 855-861.
115.Wang, R.; Xue, J.; Wang, K. L.; Wang, Z. K.; Luo, Y.; Fenning, D.; Xu, G.; Nuryyeva, S.; Huang, T.; Zhao, Y.; Yang, J. L.; Zhu, J.; Wang, M.; Tan, S.; Yavuz, I.; Houk, K. N.; Yang, Y., Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 2019, 366 (6472), 1509-1513.
116.Min, H.; Kim, M.; Lee, S. U.; Kim, H.; Kim, G.; Choi, K.; Lee, J. H.; Seok, S. I., Efficient, stable solar cells by using inherent bandgap of alpha-phase formamidinium lead iodide. Science 2019, 366 (6466), 749-753.
117.Li, N. X.; Tao, S. X.; Chen, Y. H.; Niu, X. X.; Onwudinanti, C. K.; Hu, C.; Qiu, Z. W.; Xu, Z. Q.; Zheng, G. H. J.; Wang, L. G.; Zhang, Y.; Li, L.; Liu, H. F.; Lun, Y. Z.; Hong, J. W.; Wang, X. Y.; Liu, Y. Q.; Xie, H. P.; Gao, Y. L.; Bai, Y.; Yang, S. H.; Brocks, G.; Chen, Q.; Zhou, H. P., Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 2019, 4 (5), 408-415.
118.Wang, L.; Zhou, H.; Hu, J.; Huang, B.; Sun, M.; Dong, B.; Zheng, G.; Huang, Y.; Chen, Y.; Li, L.; Xu, Z.; Li, N.; Liu, Z.; Chen, Q.; Sun, L. D.; Yan, C. H., A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 2019, 363 (6424), 265-270.
119.Tsai, H.; Asadpour, R.; Blancon, J. C.; Stoumpos, C. C.; Durand, O.; Strzalka, J. W.; Chen, B.; Verduzco, R.; Ajayan, P. M.; Tretiak, S.; Even, J.; Alam, M. A.; Kanatzidis, M. G.; Nie, W.; Mohite, A. D., Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science 2018, 360 (6384), 67-70.
120.Algar, I.; Garcia-Astrain, C.; Gonzalez, A.; Martin, L.; Gabilondo, N.; Retegi, A.; Eceiza, A., Improved Permeability Properties for Bacterial Cellulose/Montmorillonite Hybrid Bionanocomposite Membranes by In-Situ Assembling. Journal of Renewable Materials 2016, 4 (1), 57-65.
121.Chang, C. Y.; Wang, C. P.; Raja, R.; Wang, L.; Tsao, C. S.; Su, W. F., High-efficiency bulk heterojunction perovskite solar cell fabricated by one-step solution process using single solvent: synthesis and characterization of material and film formation mechanism. J. Mater. Chem. A 2018, 6 (9), 4179-4188.
122.Hiemenz, P. C.; Rajagopalan, R., Principles of colloid and Surface chemistry. Third ed.; 1997.
123.Yadav, P. S.; Dupre, D.; Tadmor, R.; Park, J. S.; Katoshevski, D., Effective refractive index and intermolecular forces associated with a phase of functional groups. Surf. Sci. 2007, 601 (19), 4582-4585.
124.Martinez, A.; Byrnes, A. P. Modeling Dielectric-constant values of Geologic Materials: An Aid to Ground-Penetrating Radar Data Collection and Interpretation. http://www.kgs.ukans.edu/Current/2001/martinez/martinez1.hmtl.
125.NOVICH, B. E.; RING, T. A., Colloid Stability Of Clays Using Photon Correlation Spectroscopy. Clays Clay Miner. 1984, 32, 400-406.
126.Shih, Y. C.; Wang, L.; Hsieh, H. C.; Lin, K. F., Effect of Fullerene Passivation on the Charging and Discharging Behavior of Perovskite Solar Cells: Reduction of Bound Charges and Ion Accumulation. ACS Appl. Mater. Interfaces 2018, 10 (14), 11722-11731.
127.Li, Y.; Cole, M. D.; Gao, Y.; Emrick, T.; Xu, Z.; Liu, Y.; Russell, T. P., High-Performance Perovskite Solar Cells with a Non-doped Small Molecule Hole Transporting Layer. ACS Applied Energy Materials 2019, 2 (3), 1634-1641.
128.Bag, M.; Renna, L. A.; Adhikari, R. Y.; Karak, S.; Liu, F.; Lahti, P. M.; Russell, T. P.; Tuominen, M. T.; Venkataraman, D., Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. J. Am. Chem. Soc. 2015, 137 (40), 13130-7.
129.Franceschetti, D. R., Interpretation of Finite-Length-Warburg-Type Impedances in Supported and Unsupported Electrochemical Cells with Kinetically Reversible Electrodes. J. Electrochem. Soc. 1991, 138 (5), 1368.
130.Asghar, M. I.; Zhang, J.; Wang, H.; Lund, P. D., Device stability of perovskite solar cells - A review. Renewable and Sustainable Energy Reviews 2017, 77, 131-146.
131.Berhe, T. A.; Su, W. N.; Chen, C. H.; Pan, C. J.; Cheng, J. H.; Chen, H. M.; Tsai, M. C.; Chen, L. Y.; Dubale, A. A.; Hwang, B. J., Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 2016, 9 (2), 323-356.
132.Wang, D.; Wright, M.; Elumalai, N. K.; Uddin, A., Stability of perovskite solar cells. Sol. Energ. Mat. Sol. Cells 2016, 147, 255-275.
133.Zhang, M.; Yun, J. S.; Ma, Q.; Zheng, J.; Lau, C. F. J.; Deng, X.; Kim, J.; Kim, D.; Seidel, J.; Green, M. A.; Huang, S.; Ho-Baillie, A. W. Y., High-Efficiency Rubidium-Incorporated Perovskite Solar Cells by Gas Quenching. ACS Energy Lett. 2017, 2 (2), 438-444.
134.Qiu, W.; Ray, A.; Jaysankar, M.; Merckx, T.; Bastos, J. P.; Cheyns, D.; Gehlhaar, R.; Poortmans, J.; Heremans, P., An Interdiffusion Method for Highly Performing Cesium/Formamidinium Double Cation Perovskites. Adv. Funct. Mater. 2017, 27 (28), 1700920.
135.Chung, C.-C.; Narra, S.; Jokar, E.; Wu, H.-P.; Wei-Guang Diau, E., Inverted planar solar cells based on perovskite/graphene oxide hybrid composites. J. Mater. Chem. A 2017, 5 (27), 13957-13965.
136.Sun, Y.; Wu, Y.; Fang, X.; Xu, L.; Ma, Z.; Lu, Y.; Zhang, W.-H.; Yu, Q.; Yuan, N.; Ding, J., Long-term stability of organic–inorganic hybrid perovskite solar cells with high efficiency under high humidity conditions. J. Mater. Chem. A 2017, 5 (4), 1374-1379.
137.Chiang, C. H.; Wu, C. G., Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells. ChemSusChem 2016, 9 (18), 2666-2672.
138.Agresti, A.; Pescetelli, S.; Taheri, B.; Del Rio Castillo, A. E.; Cina, L.; Bonaccorso, F.; Di Carlo, A., Graphene-Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study. ChemSusChem 2016, 9 (18), 2609-2619.
139.Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J. M.; Alsari, M.; Booker, E. P.; Hutter, E. M.; Pearson, A. J.; Lilliu, S.; Savenije, T. J.; Rensmo, H.; Divitini, G.; Ducati, C.; Friend, R. H.; Stranks, S. D., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 2018, 555 (7697), 497-501.
140.Shin, S. S.; Yeom, E. J.; Yang, W. S.; Hur, S.; Kim, M. G.; Im, J.; Seo, J.; Noh, J. H.; Seok, S. I., Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 2017, 356 (6334), 167-171.
141.Liu, Q.; Qin, M.-C.; Ke, W.-J.; Zheng, X.-L.; Chen, Z.; Qin, P.-L.; Xiong, L.-B.; Lei, H.-W.; Wan, J.-W.; Wen, J.; Yang, G.; Ma, J.-J.; Zhang, Z.-Y.; Fang, G.-J., Enhanced Stability of Perovskite Solar Cells with Low-Temperature Hydrothermally Grown SnO2 Electron Transport Layers. Adv. Funct. Mater. 2016, 26 (33), 6069-6075.
142.Christians, J. A.; Schulz, P.; Tinkham, J. S.; Schloemer, T. H.; Harvey, S. P.; de Villers, B. J. T.; Sellinger, A.; Berry, J. J.; Luther, J. M., Tailored interfaces of unencapsulated perovskite solar cells for > 1,000 hour operational stability. Nat. Energy 2018, 3 (1), 68-74.
143.Bella, F.; Griffini, G.; Correa-Baena, J. P.; Saracco, G.; Gratzel, M.; Hagfeldt, A.; Turri, S.; Gerbaldi, C., Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 2016, 354 (6309), 203-206.
144.Hwang, I.; Jeong, I.; Lee, J.; Ko, M. J.; Yong, K., Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation. ACS Appl. Mater. Interfaces 2015, 7 (31), 17330-6.
145.Sinha Ray, S.; Okamoto, M., Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 2003, 28 (11), 1539-1641.
146.Usuki, A.; Hasegawa, N.; Kadoura, H.; Okamoto, T., Three-Dimensional Observation of Structure and Morphology in Nylon-6/Clay Nanocomposite. Nano Lett. 2001, 1 (5), 271-272.
147.Lin, K.-J.; Lee, C.-H.; Lin, K.-F., Extraordinary mechanical behavior of exfoliated montmorillonite/polymer nanocomposite films cast from soap-free emulsion polymerized latices. J. Polym. Sci., Part B: Polym. Phys. 2010, 48 (10), 1064-1069.
148.Chien, A.-T.; Lin, K.-F., Morphology and permeability of exfoliated PVAc-MMT nanocomposite films cast from soap-free emulsion-polymerized latices. J. Polym. Sci., Part A: Polym. Chem. 2007, 45 (23), 5583-5589.
149.Chien, A.-T.; Lee, Y.-H.; Lin, K.-F., Crosslinkable poly(vinyl acetate)/clay nanocomposite films cast from soap-free emulsion-polymerized latices. J. Appl. Polym. Sci. 2008, 109 (1), 355-362.
150.Lee, C. H.; Liu, K. Y.; Chang, S. H.; Lin, K. J.; Lin, J. J.; Ho, K. C.; Lin, K. F., Gelation of ionic liquid with exfoliated montmorillonite nanoplatelets and its application for quasi-solid-state dye-sensitized solar cells. J. Colloid Interface Sci. 2011, 363 (2), 635-9.
151.Lin, K.-J.; Weng, T. H.; Lee, C.-H.; Lin, K.-F., Grafting of polymer matrix to exfoliated montmorillonite nanoplatelets in nanocomposite film cast from soap-free emulsion polymerized latex and its fortified mechanical properties. J. Polym. Sci., Part A: Polym. Chem. 2009, 47 (21), 5891-5897.
152.Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J., Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 2013, 1 (18), 5628.
153.Yang, B.; Dyck, O.; Poplawsky, J.; Keum, J.; Puretzky, A.; Das, S.; Ivanov, I.; Rouleau, C.; Duscher, G.; Geohegan, D.; Xiao, K., Perovskite Solar Cells with Near 100% Internal Quantum Efficiency Based on Large Single Crystalline Grains and Vertical Bulk Heterojunctions. J. Am. Chem. Soc. 2015, 137 (29), 9210-3.
154.Pisoni, A.; Jacimovic, J.; Barisic, O. S.; Spina, M.; Gaal, R.; Forro, L.; Horvath, E., Ultra-Low Thermal Conductivity in Organic-Inorganic Hybrid Perovskite CH3NH3PbI3. J Phys Chem Lett 2014, 5 (14), 2488-92.
155.Liao, C.-Y.; Chiou, J.-Y.; Lin, J.-J., Phase change materials of fatty amine-modified silicate clays of nano layered structures. RSC Adv. 2017, 7 (38), 23530-23534.
156.Lin, K.-J.; Jeng, U. S.; Lin, K.-F., Adsorption and intercalation processes of ionic surfactants on montmorillonite associated with their ionic charge. Mater. Chem. Phys. 2011, 131 (1-2), 120-126.
157.Schuller, S.; Schilinsky, P.; Hauch, J.; Brabec, C. J., Determination of the degradation constant of bulk heterojunction solar cells by accelerated lifetime measurements. Appl. Phys. A 2004, 79 (1), 37-40.
158.Wang, P.; Li, G.; Wang, M.; Li, H.; Zheng, J.; Yang, L.; Chen, Y.; Li, D.; Lu, L., Numerical study of mono-crystalline silicon solar cells with passivated emitter and rear contact configuration for the efficiency beyond 24% based on mass production technology. J. Semicond. 2020, 41 (6), 062701.
159.Balzani, V.; Pacchioni, G.; Prato, M.; Zecchina, A., Solar-driven chemistry: towards new catalytic solutions for a sustainable world. Rend. Lincei Sci. Fis. Nat. 2019, 30 (3), 443-452.
160.Huang, Y.; Liu, J.; Deng, Y.; Qian, Y.; Jia, X.; Ma, M.; Yang, C.; Liu, K.; Wang, Z.; Qu, S.; Wang, Z., The application of perovskite materials in solar water splitting. J. Semicond. 2020, 41 (1), 011701.
161.Zhang, H.; Lu, Y.; Han, W.; Zhu, J.; Zhang, Y.; Huang, W., Solar energy conversion and utilization: Towards the emerging photo-electrochemical devices based on perovskite photovoltaics. Chem. Eng. J. 2020, 393, 124766.
162.Singh, S.; Chen, H. J.; Shahrokhi, S.; Wang, L. P.; Lin, C. H.; Hu, L.; Guan, X. W.; Tricoli, A.; Xu, Z. J.; Wu, O., Hybrid Organic-Inorganic Materials and Composites for Photoelectrochemical Water Splitting. ACS Energy Lett. 2020, 5 (5), 1487-1497.
163.Khenkin, M. V.; Katz, E. A.; Abate, A.; Bardizza, G.; Berry, J. J.; Brabec, C.; Brunetti, F.; Bulović, V.; Burlingame, Q.; Di Carlo, A.; Cheacharoen, R.; Cheng, Y.-B.; Colsmann, A.; Cros, S.; Domanski, K.; Dusza, M.; Fell, C. J.; Forrest, S. R.; Galagan, Y.; Di Girolamo, D.; Grätzel, M.; Hagfeldt, A.; von Hauff, E.; Hoppe, H.; Kettle, J.; Köbler, H.; Leite, M. S.; Liu, S.; Loo, Y.-L.; Luther, J. M.; Ma, C.-Q.; Madsen, M.; Manceau, M.; Matheron, M.; McGehee, M.; Meitzner, R.; Nazeeruddin, M. K.; Nogueira, A. F.; Odabaşı, Ç.; Osherov, A.; Park, N.-G.; Reese, M. O.; De Rossi, F.; Saliba, M.; Schubert, U. S.; Snaith, H. J.; Stranks, S. D.; Tress, W.; Troshin, P. A.; Turkovic, V.; Veenstra, S.; Visoly-Fisher, I.; Walsh, A.; Watson, T.; Xie, H.; Yıldırım, R.; Zakeeruddin, S. M.; Zhu, K.; Lira-Cantu, M., Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 2020, 5 (1), 35-49.
164.Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T. Y.; Noh, J. H.; Seo, J., Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 2019, 567 (7749), 511-515.
165.Song, T.; Feng, X.; Ju, H.; Fang, T.; Zhu, F.; Liu, W.; Huang, W., Enhancing acid, base and UV light resistance of halide perovskite CH3NH3PbBr3 quantum dots by encapsulation with ZrO2 sol. J. Alloys Compd. 2020, 816, 152558.
166.Chen, P.; Wang, Z.; Wang, S.; Lyu, M.; Hao, M.; Ghasemi, M.; Xiao, M.; Yun, J.-H.; Bai, Y.; Wang, L., Luminescent europium-doped titania for efficiency and UV-stability enhancement of planar perovskite solar cells. Nano Energy 2020, 69, 104392.
167.Zhang, Q.; Wang, B.; Zheng, W.; Kong, L.; Wan, Q.; Zhang, C.; Li, Z.; Cao, X.; Liu, M.; Li, L., Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates. Nat. Commun. 2020, 11 (1), 31.
168.Wang, H.; Zhao, Y.; Wang, Z.; Liu, Y.; Zhao, Z.; Xu, G.; Han, T.-H.; Lee, J.-W.; Chen, C.; Bao, D.; Huang, Y.; Duan, Y.; Yang, Y., Hermetic seal for perovskite solar cells: An improved plasma enhanced atomic layer deposition encapsulation. Nano Energy 2020, 69, 104375.
169.Shi, L.; Bucknall, M. P.; Young, T. L.; Zhang, M.; Hu, L.; Bing, J.; Lee, D. S.; Kim, J.; Wu, T.; Takamure, N.; McKenzie, D. R.; Huang, S.; Green, M. A.; Ho-Baillie, A. W. Y., Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells. Science 2020, 368 (6497), eaba2412.
170.Wang, R.; Xue, J. J.; Meng, L.; Lee, J. W.; Zhao, Z. P.; Sun, P. Y.; Cai, L.; Huang, T. Y.; Wang, Z. X.; Wang, Z. K.; Duan, Y.; Yang, J. L.; Tan, S.; Yuan, Y.; Huang, Y.; Yang, Y., Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells. Joule 2019, 3 (6), 1464-1477.
171.Prasanna, R.; Leijtens, T.; Dunfield, S. P.; Raiford, J. A.; Wolf, E. J.; Swifter, S. A.; Werner, J.; Eperon, G. E.; de Paula, C.; Palmstrom, A. F.; Boyd, C. C.; van Hest, M. F. A. M.; Bent, S. F.; Teeter, G.; Berry, J. J.; McGehee, M. D., Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nat. Energy 2019, 4 (11), 939-947.
172.Wang, Y.; Dar, M. I.; Ono, L. K.; Zhang, T.; Kan, M.; Li, Y.; Zhang, L.; Wang, X.; Yang, Y.; Gao, X.; Qi, Y.; Gratzel, M.; Zhao, Y., Thermodynamically stabilized beta-CsPbI3-based perovskite solar cells with efficiencies >18. Science 2019, 365 (6453), 591-595.
173.Liu, Z.; Qiu, L.; Ono, L. K.; He, S.; Hu, Z.; Jiang, M.; Tong, G.; Wu, Z.; Jiang, Y.; Son, D.-Y.; Dang, Y.; Kazaoui, S.; Qi, Y., A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 2020, 5 (8), 596-604.
174.Jodlowski, A. D.; Roldán-Carmona, C.; Grancini, G.; Salado, M.; Ralaiarisoa, M.; Ahmad, S.; Koch, N.; Camacho, L.; de Miguel, G.; Nazeeruddin, M. K., Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nat. Energy 2017, 2 (12), 972-979.
175.Luo, D.; Yang, W.; Wang, Z.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G. F.; Watts, J. F.; Xu, Z.; Liu, T.; Chen, K.; Ye, F.; Wu, P.; Zhao, L.; Wu, J.; Tu, Y.; Zhang, Y.; Yang, X.; Zhang, W.; Friend, R. H.; Gong, Q.; Snaith, H. J.; Zhu, R., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 2018, 360 (6396), 1442-1446.
176.Wu, S.; Li, Z.; Li, M. Q.; Diao, Y.; Lin, F.; Liu, T.; Zhang, J.; Tieu, P.; Gao, W.; Qi, F.; Pan, X.; Xu, Z.; Zhu, Z.; Jen, A. K., 2D metal-organic framework for stable perovskite solar cells with minimized lead leakage. Nat. Nanotechnol. 2020, 15 (11), 934-940.
177.Zheng, X.; Chen, B.; Dai, J.; Fang, Y.; Bai, Y.; Lin, Y.; Wei, H.; Zeng, Xiao C.; Huang, J., Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2017, 2 (7), 17102.
178.Wang, Z.; McMeekin, D. P.; Sakai, N.; van Reenen, S.; Wojciechowski, K.; Patel, J. B.; Johnston, M. B.; Snaith, H. J., Efficient and Air-Stable Mixed-Cation Lead Mixed-Halide Perovskite Solar Cells with n-Doped Organic Electron Extraction Layers. Adv. Mater. 2017, 29 (5), 1604186.
179.Brinkmann, K. O.; Zhao, J.; Pourdavoud, N.; Becker, T.; Hu, T.; Olthof, S.; Meerholz, K.; Hoffmann, L.; Gahlmann, T.; Heiderhoff, R.; Oszajca, M. F.; Luechinger, N. A.; Rogalla, D.; Chen, Y.; Cheng, B.; Riedl, T., Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells. Nat. Commun. 2017, 8, 13938.
180.Zhu, Z. L.; Zhao, D. B.; Chueh, C. C.; Shi, X. L.; Li, Z. A.; Jen, A. K. Y., Highly Efficient and Stable Perovskite Solar Cells Enabled by All-Crosslinked Charge-Transporting Layers. Joule 2018, 2 (1), 168-183.
181.Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Gratzel, M.; Han, L., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350 (6263), 944-8.
182.Bai, Y.; Dong, Q.; Shao, Y.; Deng, Y.; Wang, Q.; Shen, L.; Wang, D.; Wei, W.; Huang, J., Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat. Commun. 2016, 7, 12806.
183.Yang, J.; Liu, C.; Cai, C.; Hu, X.; Huang, Z.; Duan, X.; Meng, X.; Yuan, Z.; Tan, L.; Chen, Y., High‐Performance Perovskite Solar Cells with Excellent Humidity and Thermo‐Stability via Fluorinated Perylenediimide. Adv. Energy Mater. 2019, 9 (18), 1900198.
184.Zhou, J.; Man, X.; Jiang, Y.; Doi, M., Structure Formation in Soft-Matter Solutions Induced by Solvent Evaporation. Adv. Mater. 2017, 29 (45), 1703769.
185.Iyengar, D. R.; Perutz, S. M.; Dai, C.-A.; Ober, C. K.; Kramer, E. J., Surface Segregation Studies of Fluorine-Containing Diblock Copolymers†. Macromolecules 1996, 29 (4), 1229-1234.
186.Wei, Q.; Nishizawa, T.; Tajima, K.; Hashimoto, K., Self-Organized Buffer Layers in Organic Solar Cells. Adv. Mater. 2008, 20 (11), 2211-2216.
187.Wei, Q.; Tajima, K.; Tong, Y.; Ye, S.; Hashimoto, K., Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors. J. Am. Chem. Soc. 2009, 131 (48), 17597-604.
188.Hsin-Hsiang Huang, H. T., Shu-Ling Lin, Rathinam Raja, Dibyajyoti Ghosh, Cheng-Hung Hou, Jing-Jong Shyue, Sergei Tretiak, Wei Chen, Wanyi Nie, King-Fu Lin and Leeyih Wang, Robust un-encapsulated perovskite solar cells protected by fluorinated fullerene electron transporting layer. under review.
189.von Hauff, E.; Dyakonov, V.; Parisi, J., Study of field effect mobility in PCBM films and P3HT:PCBM blends. Sol. Energ. Mat. Sol. Cells 2005, 87 (1-4), 149-156.
190.Nie, W.; Blancon, J. C.; Neukirch, A. J.; Appavoo, K.; Tsai, H.; Chhowalla, M.; Alam, M. A.; Sfeir, M. Y.; Katan, C.; Even, J.; Tretiak, S.; Crochet, J. J.; Gupta, G.; Mohite, A. D., Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 2016, 7, 11574.
191.Piersimoni, F.; Degutis, G.; Bertho, S.; Vandewal, K.; Spoltore, D.; Vangerven, T.; Drijkoningen, J.; Van Bael, M. K.; Hardy, A.; D'Haen, J.; Maes, W.; Vanderzande, D.; Nesladek, M.; Manca, J., Influence of fullerene photodimerization on the PCBM crystallization in polymer: Fullerene bulk heterojunctions under thermal stress. J. Polym. Sci., Part B: Polym. Phys. 2013, 51 (16), 1209-1214.
192.Liu, H.-W.; Chang, D.-Y.; Chiu, W.-Y.; Rwei, S.-P.; Wang, L., Fullerene bisadduct as an effective phase-separation inhibitor in preparing poly(3-hexylthiophene)-[6,6]-phenyl-C61-butyric acid methyl ester blends with highly stable morphology. J. Mater. Chem. 2012, 22 (31), 15586.
193.Li, J. W.; Dong, Q. S.; Li, N.; Wang, L. D., Direct Evidence of Ion Diffusion for the Silver-Electrode-Induced Thermal Degradation of Inverted Perovskite Solar Cells. Adv. Energy Mater. 2017, 7 (14), 1602922.
194.Bryant, D.; Greenwood, P.; Troughton, J.; Wijdekop, M.; Carnie, M.; Davies, M.; Wojciechowski, K.; Snaith, H. J.; Watson, T.; Worsley, D., A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells. Adv. Mater. 2014, 26 (44), 7499-504.
195.Huang, H. H.; Shih, Y. C.; Wang, L.; Lin, K. F., Boosting the ultra-stable unencapsulated perovskite solar cells by using montmorillonite/CH3NH3PbI3 nanocomposite as photoactive layer. Energy Environ. Sci. 2019, 12 (4), 1265-1273.
196.Mosconi, E.; Azpiroz, J. M.; De Angelis, F., Ab Initio Molecular Dynamics Simulations of Methylammonium Lead Iodide Perovskite Degradation by Water. Chem. Mater. 2015, 27 (13), 4885-4892.
197.Zheng, C.; Rubel, O., Unraveling the Water Degradation Mechanism of CH3NH3PbI3. J. Phys. Chem. C 2019, 123 (32), 19385-19394.
198.Kakekhani, A.; Katti, R. N.; Rappe, A. M., Water in hybrid perovskites: Bulk MAPbI3 degradation via super-hydrous state. APL Mater. 2019, 7 (4), 041112.
199.Distler, A.; Sauermann, T.; Egelhaaf, H.-J.; Rodman, S.; Waller, D.; Cheon, K.-S.; Lee, M.; Guldi, D. M., The Effect of PCBM Dimerization on the Performance of Bulk Heterojunction Solar Cells. Adv. Energy Mater. 2014, 4 (1), 1300693.
200.Kim, T.; Younts, R.; Lee, W.; Lee, S.; Gundogdu, K.; Kim, B. J., Impact of the photo-induced degradation of electron acceptors on the photophysics, charge transport and device performance of all-polymer and fullerene-polymer solar cells. J. Mater. Chem. A 2017, 5 (42), 22170-22179.
201.Ball, J. M.; Petrozza, A., Defects in perovskite-halides and their effects in solar cells. Nat. Energy 2016, 1 (11), 1-13.
202.Sherkar, T. S.; Momblona, C.; Gil-Escrig, L.; Avila, J.; Sessolo, M.; Bolink, H. J.; Koster, L. J. A., Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions. ACS Energy Lett 2017, 2 (5), 1214-1222.
203.Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J. M.; Bach, U.; Spiccia, L.; Cheng, Y. B., Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 2015, 3 (15), 8139-8147.
204.Boyd, C. C.; Cheacharoen, R.; Leijtens, T.; McGehee, M. D., Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chem. Rev. 2019, 119 (5), 3418-3451.
205.Montcada, N. F.; Mendez, M.; Cho, K. T.; Nazeeruddin, M. K.; Palomares, E., Photo-induced dynamic processes in perovskite solar cells: the influence of perovskite composition in the charge extraction and the carrier recombination. Nanoscale 2018, 10 (13), 6155-6158.
206.Zhang, H.; Fu, X.; Tang, Y.; Wang, H.; Zhang, C.; Yu, W. W.; Wang, X.; Zhang, Y.; Xiao, M., Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nat. Commun. 2019, 10 (1), 1088.
207.Fang, H. H.; Yang, J.; Tao, S. X.; Adjokatse, S.; Kamminga, M. E.; Ye, J. T.; Blake, G. R.; Even, J.; Loi, M. A., Unravelling Light-Induced Degradation of Layered Perovskite Crystals and Design of Efficient Encapsulation for Improved Photostability. Adv. Funct. Mater. 2018, 28 (21), 1800305.
208.Park, S.; Chang, W. J.; Lee, C. W.; Park, S.; Ahn, H.-Y.; Nam, K. T., Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat. Energy 2016, 2 (1), 16185.
209.Luo, J.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Gratzel, M., Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 2014, 345 (6204), 1593-6.
210.Roy, S.; Botte, G. G., Perovskite solar cell for photocatalytic water splitting with a TiO2/Co-doped hematite electron transport bilayer. RSC Adv. 2018, 8 (10), 5388-5394.
211.Idigoras, J.; Aparicio, F. J.; Contreras-Bernal, L.; Ramos-Terron, S.; Alcaire, M.; Sanchez-Valencia, J. R.; Borras, A.; Barranco, A.; Anta, J. A., Enhancing Moisture and Water Resistance in Perovskite Solar Cells by Encapsulation with Ultrathin Plasma Polymers. ACS Appl. Mater. Interfaces 2018, 10 (14), 11587-11594.
212.Sulas-Kern, D. B.; Miller, E. M.; Blackburn, J. L., Photoinduced charge transfer in transition metal dichalcogenide heterojunctions - towards next generation energy technologies. Energy Environ. Sci. 2020, 13 (9), 2684-2740.
213.Chen, W.; Li, X.; Li, Y.; Li, Y., A review: crystal growth for high-performance all-inorganic perovskite solar cells. Energy Environ. Sci. 2020, 13 (7), 1971-1996.
214.Cui, X.; Chen, Y.; Zhang, M.; Harn, Y. W.; Qi, J.; Gao, L.; Wang, Z. L.; Huang, J.; Yang, Y.; Lin, Z., Tailoring carrier dynamics in perovskite solar cells via precise dimension and architecture control and interfacial positioning of plasmonic nanoparticles. Energy Environ. Sci. 2020, 13 (6), 1743-1752.
215.Hadadian, M.; Smått, J.-H.; Correa-Baena, J.-P., The role of carbon-based materials in enhancing the stability of perovskite solar cells. Energy Environ. Sci. 2020, 13 (5), 1377-1407.
216.Yang, Y.; Liu, C.; Mahata, A.; Li, M.; Roldán Carmona, C.; Ding, Y.; Arain, Z.; Xu, W.; Yang, Y.; Schouwink, P.; Züttel, A.; De Angelis, F.; Dai, S.; Nazeeruddin, M. K., Universal Approach toward High-efficiency Two-dimensional Perovskite Solar Cells via Vertical-Rotation Process. Energy Environ. Sci. 2020.
217.Pathak, S.; Sepe, A.; Sadhanala, A.; Deschler, F.; Haghighirad, A.; Sakai, N.; Goedel, K. C.; Stranks, S. D.; Noel, N.; Price, M.; Huttner, S.; Hawkins, N. A.; Friend, R. H.; Steiner, U.; Snaith, H. J., Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells. ACS Nano 2015, 9 (3), 2311-20.
218.Li, Z.; Liu, X.; Xu, J.; Liao, Y.; Zhao, H.; Zhang, B.; Liu, S. F.; Yao, J., Moisture-Induced Crystallinity Improvement for Efficient CsPbI3-xBrx Perovskite Solar Cells with Excess Cesium Bromide. J. Phys. Chem. Lett. 2019, 10 (16), 4587-4595.
219.Eperon, G. E.; Habisreutinger, S. N.; Leijtens, T.; Bruijnaers, B. J.; van Franeker, J. J.; deQuilettes, D. W.; Pathak, S.; Sutton, R. J.; Grancini, G.; Ginger, D. S.; Janssen, R. A.; Petrozza, A.; Snaith, H. J., The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication. ACS Nano 2015, 9 (9), 9380-93.
220.Ko, H. S.; Lee, J. W.; Park, N. G., 15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3. J. Mater. Chem. A 2015, 3 (16), 8808-8815.
221.Raga, S. R.; Jung, M. C.; Lee, M. V.; Leyden, M. R.; Kato, Y.; Qi, Y. B., Influence of Air Annealing on High Efficiency Planar Structure Perovskite Solar Cells. Chem. Mater. 2015, 27 (5), 1597-1603.
222.Hu, Q.; Zhao, L.; Wu, J.; Gao, K.; Luo, D.; Jiang, Y.; Zhang, Z.; Zhu, C.; Schaible, E.; Hexemer, A.; Wang, C.; Liu, Y.; Zhang, W.; Gratzel, M.; Liu, F.; Russell, T. P.; Zhu, R.; Gong, Q., In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4- cage nanoparticles. Nat. Commun. 2017, 8 (1), 15688.
223.Yin, X. T.; Guo, Y. X.; Liu, J.; Chen, P.; Chen, W.; Que, M. D.; Que, W. X.; Niu, C. M.; Bian, J. H.; Yang, Y. D., Moisture annealing effect on CH3NH3PbI3 films deposited by solvent engineering method. Thin Solid Films 2017, 636, 664-670.
224.Zhang, B.; Zhang, M. J.; Pang, S. P.; Huang, C. S.; Zhou, Z. M.; Wang, D.; Wang, N.; Cui, G. L., Carrier Transport in CH3NH3PbI3 Films with Different Thickness for Perovskite Solar Cells. Adv. Mater. Interfaces 2016, 3 (17), 1600327.
225.Saidaminov, M. I.; Kim, J.; Jain, A.; Quintero-Bermudez, R.; Tan, H. R.; Long, G. K.; Tan, F. R.; Johnston, A.; Zhao, Y. C.; Voznyy, O.; Sargent, E. H., Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 2018, 3 (8), 648-654.
226.Hao, M.; Bai, Y.; Zeiske, S.; Ren, L.; Liu, J.; Yuan, Y.; Zarrabi, N.; Cheng, N.; Ghasemi, M.; Chen, P.; Lyu, M.; He, D.; Yun, J.-H.; Du, Y.; Wang, Y.; Ding, S.; Armin, A.; Meredith, P.; Liu, G.; Cheng, H.-M.; Wang, L., Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1-xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 2020, 5 (1), 79-88.
227.Back, H.; Kim, G.; Kim, H.; Nam, C.-Y.; Kim, J.; Kim, Y. R.; Kim, T.; Park, B.; Durrant, J. R.; Lee, K., Highly stable inverted methylammonium lead tri-iodide perovskite solar cells achieved by surface re-crystallization. Energy Environ. Sci. 2020, 13 (3), 840-847.
228.Yang, S.; Chen, S.; Mosconi, E.; Fang, Y.; Xiao, X.; Wang, C.; Zhou, Y.; Yu, Z.; Zhao, J.; Gao, Y.; De Angelis, F.; Huang, J., Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 2019, 365 (6452), 473-478.
229.Choi, K.; Lee, J.; Kim, H. I.; Park, C. W.; Kim, G. W.; Choi, H.; Park, S.; Park, S. A.; Park, T., Thermally stable, planar hybrid perovskite solar cells with high efficiency. Energy Environ. Sci. 2018, 11 (11), 3238-3247.
230.Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13 (7), 460-466.
231.Arora, N.; Dar, M. I.; Hinderhofer, A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S. M.; Gratzel, M., Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20. Science 2017, 358 (6364), 768-771.
232.Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; Garcia de Arquer, F. P.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y.; Fan, F.; Li, P.; Quan, L. N.; Zhao, Y.; Lu, Z. H.; Yang, Z.; Hoogland, S.; Sargent, E. H., Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355 (6326), 722-726.
233.Tan, K. W.; Moore, D. T.; Saliba, M.; Sai, H.; Estroff, L. A.; Hanrath, T.; Snaith, H. J.; Wiesner, U., Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS Nano 2014, 8 (5), 4730-9.
234.Yu, H.; Wang, F.; Xie, F.; Li, W.; Chen, J.; Zhao, N., The Role of Chlorine in the Formation Process of “CH3NH3PbI3-xClx” Perovskite. Adv. Funct. Mater. 2014, 24 (45), 7102-7108.
235.Chang, C. Y.; Huang, Y. C.; Tsao, C. S.; Su, W. F., Formation Mechanism and Control of Perovskite Films from Solution to Crystalline Phase Studied by in Situ Synchrotron Scattering. ACS Appl. Mater. Interfaces 2016, 8 (40), 26712-26721.
236.Li, W. Z.; Fan, J. D.; Mai, Y. H.; Wang, L. D., Aquointermediate Assisted Highly Orientated Perovskite Thin Films toward Thermally Stable and Efficient Solar Cells. Adv. Energy Mater. 2017, 7 (2), 1601433.
237.Chen, B.-A.; Lin, J.-T.; Suen, N.-T.; Tsao, C.-W.; Chu, T.-C.; Hsu, Y.-Y.; Chan, T.-S.; Chan, Y.-T.; Yang, J.-S.; Chiu, C.-W.; Chen, H. M., In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells. ACS Energy Lett. 2017, 2 (2), 342-348.
238.Bass, K. K.; McAnally, R. E.; Zhou, S.; Djurovich, P. I.; Thompson, M. E.; Melot, B. C., Influence of moisture on the preparation, crystal structure, and photophysical properties of organohalide perovskites. Chem. Commun. 2014, 50 (99), 15819-22.
239.Zhu, Z.; Hadjiev, V. G.; Rong, Y.; Guo, R.; Cao, B.; Tang, Z.; Qin, F.; Li, Y.; Wang, Y.; Hao, F.; Venkatesan, S.; Li, W.; Baldelli, S.; Guloy, A. M.; Fang, H.; Hu, Y.; Yao, Y.; Wang, Z.; Bao, J., Interaction of Organic Cation with Water Molecule in Perovskite MAPbI3: From Dynamic Orientational Disorder to Hydrogen Bonding. Chem. Mater. 2016, 28 (20), 7385-7393.
240.Varadwaj, P. R.; Varadwaj, A.; Marques, H. M.; Yamashita, K., Significance of hydrogen bonding and other noncovalent interactions in determining octahedral tilting in the CH3NH3PbI3 hybrid organic-inorganic halide perovskite solar cell semiconductor. Sci Rep 2019, 9 (1), 50.
241.Hao, F.; Stoumpos, C. C.; Liu, Z.; Chang, R. P.; Kanatzidis, M. G., Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J. Am. Chem. Soc. 2014, 136 (46), 16411-9.
242.Leguy, A. M. A.; Hu, Y.; Campoy-Quiles, M.; Alonso, M. I.; Weber, O. J.; Azarhoosh, P.; van Schilfgaarde, M.; Weller, M. T.; Bein, T.; Nelson, J.; Docampo, P.; Barnes, P. R. F., Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells. Chem. Mater. 2015, 27 (9), 3397-3407.
243.Nie, W.; Tsai, H.; Blancon, J. C.; Liu, F.; Stoumpos, C. C.; Traore, B.; Kepenekian, M.; Durand, O.; Katan, C.; Tretiak, S.; Crochet, J.; Ajayan, P. M.; Kanatzidis, M.; Even, J.; Mohite, A. D., Critical Role of Interface and Crystallinity on the Performance and Photostability of Perovskite Solar Cell on Nickel Oxide. Adv. Mater. 2018, 30 (5), 1703879.
244.Halder, N.; Wagner, C., Separation of particle size and lattice strain in integral breadth measurements. Acta Cryst. A 1966, 20 (2), 312-313.
245.De Keijser, T. H.; Langford, J.; Mittemeijer, E. J.; Vogels, A., Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening. J. Appl. Crystallogr. 1982, 15 (3), 308-314.
246.Young, R.; Wiles, D., Profile shape functions in Rietveld refinements. J. Appl. Crystallogr. 1982, 15 (4), 430-438.
247.Patterson, A. L., The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56 (10), 978-982.
248.Stokes, A. R.; Wilson, A. J. C., The diffraction of X rays by distorted crystal aggregates - I. Proc. Phys. Soc. 1944, 56 (3), 174-181.
249.Yuan, D. X.; Gorka, A.; Xu, M. F.; Wang, Z. K.; Liao, L. S., Inverted planar NH2CH=NH2PbI3 perovskite solar cells with 13.56% efficiency via low temperature processing. Phys. Chem. Chem. Phys. 2015, 17 (30), 19745-50.
250.Sun, Y.; Peng, J.; Chen, Y.; Yao, Y.; Liang, Z., Triple-cation mixed-halide perovskites: towards efficient, annealing-free and air-stable solar cells enabled by Pb(SCN)2 additive. Sci Rep 2017, 7 (1), 46193.
251.Alagona, G.; Ghio, C.; Kollman, P. A., Monte-Carlo Simulation Studies of the Solvation of Ions .2. Glycine Zwitterion. J. Mol. Struct. 1988, 43, 385-392.
252.Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J. C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A.; Wang, H. L.; Mohite, A. D., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347 (6221), 522-5.
253.Zhou, W.; Zhao, Y.; Shi, C.; Huang, H.; Wei, J.; Fu, R.; Liu, K.; Yu, D.; Zhao, Q., Reversible Healing Effect of Water Molecules on Fully Crystallized Metal-Halide Perovskite Film. J. Phys. Chem. C 2016, 120 (9), 4759-4765.
254.Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K.; Losovyj, Y.; Zhang, X.; Dowben, P. A.; Mohammed, O. F.; Sargent, E. H.; Bakr, O. M., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347 (6221), 519-22.
255.Liu, Z.; Hu, J.; Jiao, H.; Li, L.; Zheng, G.; Chen, Y.; Huang, Y.; Zhang, Q.; Shen, C.; Chen, Q.; Zhou, H., Chemical Reduction of Intrinsic Defects in Thicker Heterojunction Planar Perovskite Solar Cells. Adv. Mater. 2017, 29 (23), 1606774.
256.Liu, Y.; Bag, M.; Renna, L. A.; Page, Z. A.; Kim, P.; Emrick, T.; Venkataraman, D.; Russell, T. P., Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar Heterojunction Solar Cells. Adv. Energy Mater. 2016, 6 (2), 1501606.
257.Liu, Y.; Renna, L. A.; Page, Z. A.; Thompson, H. B.; Kim, P. Y.; Barnes, M. D.; Emrick, T.; Venkataraman, D.; Russell, T. P., A Polymer Hole Extraction Layer for Inverted Perovskite Solar Cells from Aqueous Solutions. Adv. Energy Mater. 2016, 6 (20), 1600664.
258.Yang, D.; Zhou, X.; Yang, R.; Yang, Z.; Yu, W.; Wang, X.; Li, C.; Liu, S.; Chang, R. P. H., Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci. 2016, 9 (10), 3071-3078.
259.Cowan, S. R.; Roy, A.; Heeger, A. J., Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 2010, 82 (24), 245207.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top