|
[1]Baibich, M. N. et al. Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Physical review letters 61, 2472 (1988). [2]Liu, Y., Zhou, B., Dai, Z., Zhang, E. & Zhu, J.-G. Iridium Enabled Field-free Spin-orbit Torque Switching of Perpendicular Magnetic Tunnel Junction Device. arXiv preprint arXiv:1911.05007 (2019). [3]Julliere, M. Tunneling between ferromagnetic films. Physics letters A 54, 225-226 (1975). [4]Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Physical review letters 74, 3273 (1995). [5]Djayaprawira, D. D. et al. 230% room-temperature magnetoresistance in CoFeB∕ MgO∕ CoFeB magnetic tunnel junctions. Applied physics letters 86, 092502 (2005). [6]Zhu, J.-G. J. & Park, C. Magnetic tunnel junctions. Materials today 9, 36-45 (2006). [7]Dieny, B., Goldfarb, R. B. & Lee, K.-J. Introduction to magnetic random-access memory. (John Wiley & Sons, 2016). [8]Slonczewski, J. C. Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials 159, L1-L7 (1996). [9]Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Applied Physics Letters 101, 122404 (2012). [10]Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555-558 (2012). [11]Niimi, Y. & Otani, Y. Reciprocal spin Hall effects in conductors with strong spin–orbit coupling: a review. Reports on progress in physics 78, 124501 (2015). [12]Pai, C.-F. Switching by topological insulators. Nature materials 17, 755-757 (2018). [13]Carboni, R. et al. in 2016 IEEE International Electron Devices Meeting (IEDM). 21.26. 21-21.26. 24 (IEEE). [14]Hahn, C. et al. Time-resolved studies of the spin-transfer reversal mechanism in perpendicularly magnetized magnetic tunnel junctions. Physical Review B 94, 214432 (2016). [15]Hirsch, J. Spin hall effect. Physical review letters 83, 1834 (1999). [16]Garello, K. et al. in 2018 IEEE Symposium on VLSI Circuits. 81-82 (IEEE). [17]Yu, G. Two-terminal MRAM with a spin. Nature Electronics 1, 496-497 (2018). [18]Jiang, J. et al. Exchange-bias effect in Fe/Cr (211) double superlattice structures. Physical Review B 61, 9653 (2000). [19]Wang, M. et al. Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance. Nature communications 9, 1-7 (2018). [20]Zeng, Z. et al. Effect of resistance-area product on spin-transfer switching in MgO-based magnetic tunnel junction memory cells. Applied Physics Letters 98, 072512 (2011). [21]Yuasa, S. Giant tunneling magnetoresistance in MgO-based magnetic tunnel junctions. Journal of the Physical Society of Japan 77, 031001 (2008). [22]Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature materials 3, 868-871 (2004). [23]Rahaman, S. Z. et al. Pulse-width and temperature effect on the switching behavior of an etch-stop-on-MgO-barrier spin-orbit torque MRAM cell. IEEE Electron Device Letters 39, 1306-1309 (2018). [24]Wang, Y.-H. et al. Interfacial and annealing effects on magnetic properties of CoFeB thin films. Journal of applied physics 99, 08M307 (2006). [25]Leitao, D. C. et al. Nanoscale magnetic tunnel junction sensing devices with soft pinned sensing layer and low aspect ratio. IEEE Transactions on Magnetics 50, 1-8 (2014). [26]Ji, M. et al. Study on the effect of re-deposition induced by ion beam etching on MTJ performances. AIP Advances 9, 085317 (2019). [27]Gajek, M. et al. Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy. Applied Physics Letters 100, 132408 (2012). [28]Lee, R. E. Microfabrication by ion‐beam etching. Journal of Vacuum Science and Technology 16, 164-170 (1979). [29]Tang, D. D. & Pai, C.-F. MAGNETIC MEMORY TECHNOLOGY: Spin-transfer-torque Mram and Beyond. (John Wiley & Sons, 2020). [30]Luttge, R. Microfabrication for industrial applications. (William Andrew, 2011). [31]Awan, T., Bashir, A., Tehseen, A. & Orders, T. E. Chemistry of Nanomaterials. (2004). [32]Vawter, G. Ion beam etching of compound semiconductors. Handbook of Advanced Plasma Processing Techniques, 507-547 (2000). [33]Ohno, H., Suda, Y., Sugiyama, Y. & Takaura, N. (The Electrochemical Society). [34]Analytical, H. An overview of the Hiden Analytical SIMS end point detector system for ion beam etch applications <https://www.hidenanalytical.com/products/thin-films-plasma-and-surface-engineering/imp-epd/> (1990). [35]Lv, H. et al. Barrier breakdown mechanism in nano-scale perpendicular magnetic tunnel junctions with ultrathin MgO barrier. AIP Advances 8, 055908 (2018). [36]Parui, S. et al. Frequency driven inversion of tunnel magnetoimpedance in magnetic tunnel junctions. arXiv preprint arXiv:1603.00933 (2016). [37]Liao, W.-B., Chen, T.-Y., Ferrante, Y., Parkin, S. S. & Pai, C.-F. Current‐Induced Magnetization Switching by the High Spin Hall Conductivity α‐W. physica status solidi (RRL)–Rapid Research Letters 13, 1900408 (2019). [38]Yuasa, S. et al. Magnetic tunnel junctions with single-crystal electrodes: A crystal anisotropy of tunnel magneto-resistance. EPL (Europhysics Letters) 52, 344 (2000). [39]Miao, G. et al. Disturbance of tunneling coherence by oxygen vacancy in epitaxial Fe/MgO/Fe magnetic tunnel junctions. Physical review letters 100, 246803 (2008). [40]Liu, T., Zhang, Y., Cai, J. & Pan, H. Thermally robust Mo/CoFeB/MgO trilayers with strong perpendicular magnetic anisotropy. Scientific reports 4, 1-6 (2014).
|