跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 15:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建平
研究生(外文):Chien-Ping Chen
論文名稱:磁性穿隧元件之製程優化與研究
論文名稱(外文):Optimization of a fast-track fabrication process for magnetic tunnel junctions
指導教授:白奇峰
指導教授(外文):Chi-Feng Pai
口試委員:吳仲卿薛文証
口試委員(外文):Jong-Ching WuWen-Jeng Hsueh
口試日期:2021-07-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:69
中文關鍵詞:自旋軌道矩式記憶體磁性穿隧元件再沉積效應穿隧式磁阻電阻面積乘積
外文關鍵詞:spin-orbit-torque MRAMmagnetic tunnel junctionredeposition effecttunneling magnetoresistanceresistance-area product
DOI:10.6342/NTU202102018
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
自旋軌道轉矩式記憶體 (SOT-MRAM) 具有非揮發性、讀寫速度快、低耗能、可微縮等等的特性,也優於另一個具有潛力的自旋轉移力矩式記憶體 (STT-MRAM) 的架構,避免寫入時的大電流破壞絕緣層的嚴重問題,已然成為次世代記憶體的候選人之一。因此,磁性穿隧元件 (MTJ) 之結構與製程就顯得至為關鍵。在本論文中,透過二次蝕刻時間的掌握、精準向下蝕刻至氧化鎂層、小角度蝕刻的技術,克服了再沉積所造成的邊際短路效應,達到優化微米尺寸磁性穿隧元件的目標。除此之外,我們使用鉑 (Pt) 作為覆蓋層,避免以鉭 (Ta) 作為覆蓋層時,因其在空氣中自然氧化,進而造成串聯高穿隧電阻的重大缺點,促使我們得以研究電阻-面積乘積 (resistance-area product) 對上氧化鎂膜層厚度的重要資訊,本研究中所成長之磁性穿隧膜層之元件的電阻-面積乘積的範圍為104 到106 (Ω μm2),分別對應於氧化鎂為0 奈米至1.5 奈米的厚度,過程中氧化鎂膜層的實際厚度也經由高解析度穿隧電子顯微鏡的證實。最後我們使用工業技術研究院所提供的高品質磁性穿隧膜層,成功製作微米級的元件,驗證了本研究所發展的磁性穿隧元件製程的可靠性。總體而言,製程優化的達成是透過精準蝕刻至氧化鎂層、小角度蝕刻、以及合適的覆蓋層。
Spin-orbit-torque (SOT) magnetic random-access memory (MRAM) is a prime
candidate for the next-generation memory due to its non-volatility, fast operation speed, low power consumption, and high storage density. Besides, the reliability issue of spin-transfer-torque (STT) MRAM can also be overcome by SOT-MRAM. Therefore, the fabrication of three-terminal magnetic tunnel junction (MTJ) is very important because it is the basic component of SOT-MRAM. In this thesis, the 2nd etching time of fabrication process is optimized with the micron-scale MTJs and we provide a stop-on-MgO solution to prevent the redeposition effect. Also, the influence of the capping layer on tunneling resistance has been investigated. Ta would be oxidized when it serves as the capping layer,
which would lead to high tunneling resistance. However, for Pt-capped MTJ, the
tunneling resistance would not be affected by capping layer. Thus, the dependence of the RA product on MgO thickness can be observed, in which the RA product ranges from 104 to nearly 106 (Ω μm2), and the MgO thickness ranges from 0.9 to 1.5 nm, verified from HRTEM images. The fabrication process is also verified by the thin film provided by Industrial Technology Research Institute (ITRI). In summary, the optimization of the fabrication process for MTJ has been achieved by the stop-on-MgO etching technique, small-angle-etching and the choice of a proper capping layer.
口試委員會審定書 iii
誌謝 iv
摘要 v
ABSTRACT vi
CONTENTS vii
LIST OF FIGURES x
LIST OF TABLES xv
Chapter 1 Introduction 1
1.1 Magnetoresistance (MR) 1
1.1.1 Giant magnetoresistance (GMR) 1
1.1.2 Tunneling magnetoresistance (TMR) 2
1.2 Magnetic tunnel junction (MTJ) 4
1.2.1 Introduction of MTJ 4
1.2.2 Spin-transfer-torque 5
1.2.3 Spin-orbit-torque 6
1.2.4 Types of MTJ 8
1.2.5 Typical MTJ layer structure 9
1.3 Resistance-area product 11
1.4 Capping layers of MTJ 12
1.5 Redeposition effect 13
1.6 Motivation of this work 14
Chapter 2 Fabrication 16
2.1 Thin film deposition 16
2.1.1 Magnetron sputtering 16
2.1.2 Electron beam (E-beam) evaporator 17
2.2 Etching system 18
2.2.1 Ion beam etching (IBE) 18
2.2.2 Endpoint detector 21
2.3 MTJ fabrication 23
Chapter 3 Measurement 30
3.1 Resistance measurement 30
3.2 TMR measurement 30
3.2.1 Two-probe lock-in measurement 30
3.2.2 TMR characterization on a standard MTJ device 32
3.3 Lock-in voltage – current 35
Chapter 4 Results 37
4.1 Influence of 2nd etching time on yield rate 37
4.1.1 Fabrication 37
4.1.2 B-B and T-B resistance 38
4.1.3 Yield rate 40
4.1.4 Lock-in voltage – current measurement 41
4.2 Ta capped MTJ result 42
4.2.1 Fabrication 42
4.2.2 B-B and T-B resistance 43
4.2.3 Yield rate 45
4.2.4 TEM image 46
4.3 Pt capped MTJ result 49
4.3.1 Fabrication 49
4.3.2 B-B resistance 52
4.3.3 T-B resistance 54
4.3.4 Yield rate 57
4.3.5 Lock-in voltage – current measurement 58
4.3.6 Annealing process 59
4.4 ITRI MTJ 61
4.4.1 Fabrication 61
4.4.2 B-B and T-B resistance 61
4.4.3 TMR measurement 62
4.4.4 TEM images 63
Chapter 5 Conclusion 65
REFERENCE 66
[1]Baibich, M. N. et al. Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Physical review letters 61, 2472 (1988).
[2]Liu, Y., Zhou, B., Dai, Z., Zhang, E. & Zhu, J.-G. Iridium Enabled Field-free Spin-orbit Torque Switching of Perpendicular Magnetic Tunnel Junction Device. arXiv preprint arXiv:1911.05007 (2019).
[3]Julliere, M. Tunneling between ferromagnetic films. Physics letters A 54, 225-226 (1975).
[4]Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Physical review letters 74, 3273 (1995).
[5]Djayaprawira, D. D. et al. 230% room-temperature magnetoresistance in CoFeB∕ MgO∕ CoFeB magnetic tunnel junctions. Applied physics letters 86, 092502 (2005).
[6]Zhu, J.-G. J. & Park, C. Magnetic tunnel junctions. Materials today 9, 36-45 (2006).
[7]Dieny, B., Goldfarb, R. B. & Lee, K.-J. Introduction to magnetic random-access memory. (John Wiley & Sons, 2016).
[8]Slonczewski, J. C. Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials 159, L1-L7 (1996).
[9]Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Applied Physics Letters 101, 122404 (2012).
[10]Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555-558 (2012).
[11]Niimi, Y. & Otani, Y. Reciprocal spin Hall effects in conductors with strong spin–orbit coupling: a review. Reports on progress in physics 78, 124501 (2015).
[12]Pai, C.-F. Switching by topological insulators. Nature materials 17, 755-757 (2018).
[13]Carboni, R. et al. in 2016 IEEE International Electron Devices Meeting (IEDM). 21.26. 21-21.26. 24 (IEEE).
[14]Hahn, C. et al. Time-resolved studies of the spin-transfer reversal mechanism in perpendicularly magnetized magnetic tunnel junctions. Physical Review B 94, 214432 (2016).
[15]Hirsch, J. Spin hall effect. Physical review letters 83, 1834 (1999).
[16]Garello, K. et al. in 2018 IEEE Symposium on VLSI Circuits. 81-82 (IEEE).
[17]Yu, G. Two-terminal MRAM with a spin. Nature Electronics 1, 496-497 (2018).
[18]Jiang, J. et al. Exchange-bias effect in Fe/Cr (211) double superlattice structures. Physical Review B 61, 9653 (2000).
[19]Wang, M. et al. Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance. Nature communications 9, 1-7 (2018).
[20]Zeng, Z. et al. Effect of resistance-area product on spin-transfer switching in MgO-based magnetic tunnel junction memory cells. Applied Physics Letters 98, 072512 (2011).
[21]Yuasa, S. Giant tunneling magnetoresistance in MgO-based magnetic tunnel junctions. Journal of the Physical Society of Japan 77, 031001 (2008).
[22]Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature materials 3, 868-871 (2004).
[23]Rahaman, S. Z. et al. Pulse-width and temperature effect on the switching behavior of an etch-stop-on-MgO-barrier spin-orbit torque MRAM cell. IEEE Electron Device Letters 39, 1306-1309 (2018).
[24]Wang, Y.-H. et al. Interfacial and annealing effects on magnetic properties of CoFeB thin films. Journal of applied physics 99, 08M307 (2006).
[25]Leitao, D. C. et al. Nanoscale magnetic tunnel junction sensing devices with soft pinned sensing layer and low aspect ratio. IEEE Transactions on Magnetics 50, 1-8 (2014).
[26]Ji, M. et al. Study on the effect of re-deposition induced by ion beam etching on MTJ performances. AIP Advances 9, 085317 (2019).
[27]Gajek, M. et al. Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy. Applied Physics Letters 100, 132408 (2012).
[28]Lee, R. E. Microfabrication by ion‐beam etching. Journal of Vacuum Science and Technology 16, 164-170 (1979).
[29]Tang, D. D. & Pai, C.-F. MAGNETIC MEMORY TECHNOLOGY: Spin-transfer-torque Mram and Beyond. (John Wiley & Sons, 2020).
[30]Luttge, R. Microfabrication for industrial applications. (William Andrew, 2011).
[31]Awan, T., Bashir, A., Tehseen, A. & Orders, T. E. Chemistry of Nanomaterials. (2004).
[32]Vawter, G. Ion beam etching of compound semiconductors. Handbook of Advanced Plasma Processing Techniques, 507-547 (2000).
[33]Ohno, H., Suda, Y., Sugiyama, Y. & Takaura, N. (The Electrochemical Society).
[34]Analytical, H. An overview of the Hiden Analytical SIMS end point detector system for ion beam etch applications <https://www.hidenanalytical.com/products/thin-films-plasma-and-surface-engineering/imp-epd/> (1990).
[35]Lv, H. et al. Barrier breakdown mechanism in nano-scale perpendicular magnetic tunnel junctions with ultrathin MgO barrier. AIP Advances 8, 055908 (2018).
[36]Parui, S. et al. Frequency driven inversion of tunnel magnetoimpedance in magnetic tunnel junctions. arXiv preprint arXiv:1603.00933 (2016).
[37]Liao, W.-B., Chen, T.-Y., Ferrante, Y., Parkin, S. S. & Pai, C.-F. Current‐Induced Magnetization Switching by the High Spin Hall Conductivity α‐W. physica status solidi (RRL)–Rapid Research Letters 13, 1900408 (2019).
[38]Yuasa, S. et al. Magnetic tunnel junctions with single-crystal electrodes: A crystal anisotropy of tunnel magneto-resistance. EPL (Europhysics Letters) 52, 344 (2000).
[39]Miao, G. et al. Disturbance of tunneling coherence by oxygen vacancy in epitaxial Fe/MgO/Fe magnetic tunnel junctions. Physical review letters 100, 246803 (2008).
[40]Liu, T., Zhang, Y., Cai, J. & Pan, H. Thermally robust Mo/CoFeB/MgO trilayers with strong perpendicular magnetic anisotropy. Scientific reports 4, 1-6 (2014).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top