|
(1) Kitagawa, S.; Matsuda, R. Chemistry of coordination space of porous coordination polymers. Coordination Chemistry Reviews 2007, 251 (21), 2490-2509, DOI: https://doi.org/10.1016/j.ccr.2007.07.009. (2) Alhumaimess, M. S. Metal–organic frameworks and their catalytic applications. Journal of Saudi Chemical Society 2020, 24 (6), 461-473, DOI: https://doi.org/10.1016/j.jscs.2020.04.002. (3) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 782-835, DOI: 10.1021/cr200274s. (4) Getman, R. B.; Bae, Y.-S.; Wilmer, C. E.; Snurr, R. Q. Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 703-723, DOI: 10.1021/cr200217c. (5) Della Rocca, J.; Liu, D.; Lin, W. Nanoscale Metal–Organic Frameworks for Biomedical Imaging and Drug Delivery. Accounts of Chemical Research 2011, 44 (10), 957-968, DOI: 10.1021/ar200028a. (6) Sun, Y.; Zheng, L.; Yang, Y.; Qian, X.; Fu, T.; Li, X.; Yang, Z.; Yan, H.; Cui, C.; Tan, W. Metal–Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Letters 2020, 12 (1), 103, DOI: 10.1007/s40820-020-00423-3. (7) Amombo Noa, F. M.; Svensson Grape, E.; Brülls, S. M.; Cheung, O.; Malmberg, P.; Inge, A. K.; McKenzie, C. J.; Mårtensson, J.; Öhrström, L. Metal–Organic Frameworks with Hexakis(4-carboxyphenyl)benzene: Extensions to Reticular Chemistry and Introducing Foldable Nets. Journal of the American Chemical Society 2020, 142 (20), 9471-9481, DOI: 10.1021/jacs.0c02984. (8) Harvey, S. P.; Zhang, F.; Palmstrom, A.; Luther, J. M.; Zhu, K.; Berry, J. J. Mitigating Measurement Artifacts in TOF-SIMS Analysis of Perovskite Solar Cells. ACS Applied Materials & Interfaces 2019, 11 (34), 30911-30918, DOI: 10.1021/acsami.9b09445. (9) Hou, C. H.; Hung, S. H.; Jhang, L. J.; Chou, K. J.; Hu, Y. K.; Chou, P. T.; Su, W. F.; Tsai, F. Y.; Shieh, J.; Shyue, J. J. Validated Analysis of Component Distribution Inside Perovskite Solar Cells and Its Utility in Unveiling Factors of Device Performance and Degradation. ACS Appl Mater Interfaces 2020, 12 (20), 22730-22740, DOI: 10.1021/acsami.9b22492. (10) Wang, S.-K.; Chang, H.-Y.; Chu, Y.-H.; Kao, W.-L.; Wu, C.-Y.; Lee, Y.-W.; You, Y.-W.; Chu, K.-J.; Hung, S.-H.; Shyue, J.-J. Effect of energy per atom (E/n) on the Ar gas cluster ion beam (Ar-GCIB) and O2+ cosputter process. Analyst 2019, 144 (10), 3323-3333, DOI: 10.1039/C8AN02452A. (11) Yaghi, O. M.; Li, H. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. Journal of the American Chemical Society 1995, 117 (41), 10401-10402, DOI: 10.1021/ja00146a033. (12) Yaghi, O. M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378 (6558), 703-706, DOI: 10.1038/378703a0. (13) Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A.; Maloney, A. G. P.; Wood, P. A.; Ward, S. C.; Fairen-Jimenez, D. Development of a Cambridge Structural Database Subset: A Collection of Metal–Organic Frameworks for Past, Present, and Future. Chemistry of Materials 2017, 29 (7), 2618-2625, DOI: 10.1021/acs.chemmater.7b00441. (14) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; Keeffe, M.; Yaghi, O. M. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science 2002, 295 (5554), 469, DOI: 10.1126/science.1067208. (15) Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S.; Kazumori, H.; O’Keeffe, M.; Terasaki, O.; Stoddart, J. F.; Yaghi, O. M. Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science 2012, 336 (6084), 1018, DOI: 10.1126/science.1220131. (16) Mandal, S.; Natarajan, S.; Mani, P.; Pankajakshan, A. Post-Synthetic Modification of Metal–Organic Frameworks Toward Applications. Advanced Functional Materials 2021, 31 (4), 2006291, DOI: https://doi.org/10.1002/adfm.202006291. (17) An, Y.; Liu, Y.; An, P.; Dong, J.; Xu, B.; Dai, Y.; Qin, X.; Zhang, X.; Whangbo, M. H.; Huang, B. J. A. C. NiII Coordination to an Al‐Based Metal–Organic Framework Made from 2‐Aminoterephthalate for Photocatalytic Overall Water Splitting. 2017, 129 (11), 3082-3086. (18) Dissegna, S.; Epp, K.; Heinz, W. R.; Kieslich, G.; Fischer, R. A. Defective Metal-Organic Frameworks. Advanced Materials 2018, 30 (37), 1704501, DOI: https://doi.org/10.1002/adma.201704501. (19) Zeng, M.-H.; Yin, Z.; Tan, Y.-X.; Zhang, W.-X.; He, Y.-P.; Kurmoo, M. Nanoporous Cobalt(II) MOF Exhibiting Four Magnetic Ground States and Changes in Gas Sorption upon Post-Synthetic Modification. Journal of the American Chemical Society 2014, 136 (12), 4680-4688, DOI: 10.1021/ja500191r. (20) Yin, Z.; Wan, S.; Yang, J.; Kurmoo, M.; Zeng, M.-H. Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions. Coordination Chemistry Reviews 2019, 378, 500-512, DOI: https://doi.org/10.1016/j.ccr.2017.11.015. (21) Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks. Chemistry of Materials 2017, 29 (1), 26-39, DOI: 10.1021/acs.chemmater.6b02626. (22) Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.; Yaghi, O. M. Ultrahigh Porosity in Metal-Organic Frameworks. Science 2010, 329 (5990), 424, DOI: 10.1126/science.1192160. (23) Zhao, Q.; Yuan, W.; Liang, J.; Li, J. Synthesis and hydrogen storage studies of metal−organic framework UiO-66. International Journal of Hydrogen Energy 2013, 38 (29), 13104-13109, DOI: https://doi.org/10.1016/j.ijhydene.2013.01.163. (24) Ma, S.; Zhou, H.-C. Gas storage in porous metal–organic frameworks for clean energy applications. Chemical Communications 2010, 46 (1), 44-53, DOI: 10.1039/B916295J. (25) Achmann, S.; Hagen, G.; Kita, J.; Malkowsky, I. M.; Kiener, C.; Moos, R. Metal-Organic Frameworks for Sensing Applications in the Gas Phase. Sensors 2009, 9 (3), DOI: 10.3390/s90301574. (26) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2012, 112 (2), 1105-1125, DOI: 10.1021/cr200324t. (27) Yanai, N.; Kitayama, K.; Hijikata, Y.; Sato, H.; Matsuda, R.; Kubota, Y.; Takata, M.; Mizuno, M.; Uemura, T.; Kitagawa, S. Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. Nature Materials 2011, 10 (10), 787-793, DOI: 10.1038/nmat3104. (28) Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nature Energy 2016, 1 (1), 15006, DOI: 10.1038/nenergy.2015.6. (29) Wang, H.-F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chemical Society Reviews 2020, 49 (5), 1414-1448, DOI: 10.1039/C9CS00906J. (30) Morozan, A.; Jaouen, F. Metal organic frameworks for electrochemical applications. Energy & Environmental Science 2012, 5 (11), 9269-9290, DOI: 10.1039/C2EE22989G. (31) Zhang, X.; Wang, J.; Dong, X.-X.; Lv, Y.-K. Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere 2020, 242, 125144, DOI: https://doi.org/10.1016/j.chemosphere.2019.125144. (32) Huang, Z.; Lee, H. K. Micro-solid-phase extraction of organochlorine pesticides using porous metal-organic framework MIL-101 as sorbent. Journal of Chromatography A 2015, 1401, 9-16, DOI: https://doi.org/10.1016/j.chroma.2015.04.052. (33) Hemmati, M.; Rajabi, M.; Asghari, A. Magnetic nanoparticle based solid-phase extraction of heavy metal ions: A review on recent advances. Microchimica Acta 2018, 185 (3), 160, DOI: 10.1007/s00604-018-2670-4. (34) Rocío-Bautista, P.; González-Hernández, P.; Pino, V.; Pasán, J.; Afonso, A. M. Metal-organic frameworks as novel sorbents in dispersive-based microextraction approaches. TrAC Trends in Analytical Chemistry 2017, 90, 114-134, DOI: https://doi.org/10.1016/j.trac.2017.03.002. (35) Wang, L.; Zheng, M.; Xie, Z. Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise. Journal of Materials Chemistry B 2018, 6 (5), 707-717, DOI: 10.1039/C7TB02970E. (36) Latifi, L.; Sohrabnezhad, S. Drug delivery by micro and meso metal-organic frameworks. Polyhedron 2020, 180, 114321, DOI: https://doi.org/10.1016/j.poly.2019.114321. (37) Rojas, S.; Colinet, I.; Cunha, D.; Hidalgo, T.; Salles, F.; Serre, C.; Guillou, N.; Horcajada, P. Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal–Organic Frameworks in View of Cutaneous Administration. ACS Omega 2018, 3 (3), 2994-3003, DOI: 10.1021/acsomega.8b00185. (38) Gross, J. H. Mass spectrometry: a textbook. Springer Science 2017. (39) Benninghoven, A. Surface investigation of solids by the statical method of secondary ion mass spectroscopy (SIMS). Surface Science 1973, 35, 427-457, DOI: https://doi.org/10.1016/0039-6028(73)90232-X. (40) John C. Vickerman, I. S. G. Surface Analysis – The Principal Techniques. John Wiley & Sons 2009. (41) Horita, T.; Yamaji, K.; Ishikawa, M.; Sakai, N.; Yokokawa, H.; Kawada, T.; Kato, T. Active Sites Imaging for Oxygen Reduction at the La0.9Sr0.1MnO3 − x /Yttria‐Stabilized Zirconia Interface by Secondary‐Ion Mass Spectrometry. Journal of The Electrochemical Society 1998, 145 (9), 3196-3202, DOI: 10.1149/1.1838786. (42) Creighton, J. R.; White, J. M. SIMS and TDS study of the reaction of water and oxygen on Pt(111). Surface Science 1982, 122 (3), L648-L652, DOI: https://doi.org/10.1016/0039-6028(82)90089-9. (43) Brunelle, A.; Touboul, D.; Laprévote, O. Biological tissue imaging with time-of-flight secondary ion mass spectrometry and cluster ion sources. Journal of Mass Spectrometry 2005, 40 (8), 985-999, DOI: https://doi.org/10.1002/jms.902. (44) Mahoney, C. M. Cluster secondary ion mass spectrometry of polymers and related materials. Mass Spectrometry Reviews 2010, 29 (2), 247-293, DOI: https://doi.org/10.1002/mas.20233. (45) Gillen, G.; Simons, D. S.; Williams, P. Molecular ion imaging and dynamic secondary-ion mass spectrometry of organic compounds. Analytical Chemistry 1990, 62 (19), 2122-2130, DOI: 10.1021/ac00218a014. (46) Cheng, J.; Wucher, A.; Winograd, N. Molecular Depth Profiling with Cluster Ion Beams. The Journal of Physical Chemistry B 2006, 110 (16), 8329-8336, DOI: 10.1021/jp0573341. (47) Briggs, J. C. V. D. ToF-SIMS: Materials Analysis by Mass Spectrometry. IMpublications 2013. (48) Rol, P. K.; Fluit, J. M.; Kistemaker, J. Theoretical aspects of cathode sputtering in the energy range of 5–25 keV. Physica 1960, 26 (11), 1009-1011, DOI: https://doi.org/10.1016/0031-8914(60)90051-3. (49) Andersen, H. H.; Bay, H. L. Sputtering yield measurements. In Sputtering by Particle Bombardment I: Physical Sputtering of Single-Element Solids; Behrisch, R., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1981; pp 145-218. (50) Mayer, T. L. A. L. C. F. J. W. Fundamentals of Nanoscale Film Analysis. 2007. (51) Baker, M. A.; Gilmore, R.; Lenardi, C.; Gissler, W. XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions. Applied Surface Science 1999, 150 (1), 255-262, DOI: https://doi.org/10.1016/S0169-4332(99)00253-6. (52) Liau, Z. L.; Tsaur, B. Y.; Mauer, J. W. Influence of atomic mixing and preferential sputtering on depth profiles and interfaces. Journal of Vacuum Science and Technology 1979, 16 (2), 121-127, DOI: 10.1116/1.569883. (53) Grønlund, F.; Moore, W. J. Sputtering of Silver by Light Ions with Energies from 2 to 12 kev. The Journal of Chemical Physics 1960, 32 (5), 1540-1545, DOI: 10.1063/1.1730956. (54) Andersen, H. H.; Bay, H. L. Nonlinear effects in heavy‐ion sputtering. Journal of Applied Physics 1974, 45 (2), 953-954, DOI: 10.1063/1.1663348. (55) Andersen, H. H.; Bay, H. L. Heavy‐ion sputtering yields of gold: Further evidence of nonlinear effects. Journal of Applied Physics 1975, 46 (6), 2416-2422, DOI: 10.1063/1.321910. (56) Thompson, D. A.; Johar, S. S. Nonlinear sputtering effects in thin metal films. Applied Physics Letters 1979, 34 (5), 342-345, DOI: 10.1063/1.90781. (57) Wong, S. S.; Stoll, R.; Röllgen, F. W. Ionization of Organic Molecules by Fast Molecular Ion Bombardment. Zeitschrift für Naturforschung A 1982, 37 (7), 718-719, DOI: doi:10.1515/zna-1982-0717. (58) Davies, N.; Weibel, D. E.; Blenkinsopp, P.; Lockyer, N.; Hill, R.; Vickerman, J. C. Development and experimental application of a gold liquid metal ion source. Applied Surface Science 2003, 203-204, 223-227, DOI: https://doi.org/10.1016/S0169-4332(02)00631-1. (59) Kollmer, F. Cluster primary ion bombardment of organic materials. Applied Surface Science 2004, 231-232, 153-158, DOI: https://doi.org/10.1016/j.apsusc.2004.03.101. (60) Gillen, G.; Roberson, S. Preliminary evaluation of an SF5+ polyatomic primary ion beam for analysis of organic thin films by secondary ion mass spectrometry. Rapid Communications in Mass Spectrometry 1998, 12 (19), 1303-1312, DOI: https://doi.org/10.1002/(SICI)1097-0231(19981015)12:19<1303::AID-RCM330>3.0.CO;2-7. (61) Postawa, Z.; Czerwinski, B.; Szewczyk, M.; Smiley, E. J.; Winograd, N.; Garrison, B. J. Microscopic Insights into the Sputtering of Ag{111} Induced by C60 and Ga Bombardment. The Journal of Physical Chemistry B 2004, 108 (23), 7831-7838, DOI: 10.1021/jp049936a. (62) Matsuo, J.; Okubo, C.; Seki, T.; Aoki, T.; Toyoda, N.; Yamada, I. A new secondary ion mass spectrometry (SIMS) system with high-intensity cluster ion source. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2004, 219-220, 463-467, DOI: https://doi.org/10.1016/j.nimb.2004.01.103. (63) Gillen, G.; Batteas, J.; Michaels, C. A.; Chi, P.; Small, J.; Windsor, E.; Fahey, A.; Verkouteren, J.; Kim, K. J. Depth profiling using C60+ SIMS—Deposition and topography development during bombardment of silicon. Applied Surface Science 2006, 252 (19), 6521-6525, DOI: https://doi.org/10.1016/j.apsusc.2006.02.234. (64) Chen, Y.-Y.; Yu, B.-Y.; Wang, W.-B.; Hsu, M.-F.; Lin, W.-C.; Lin, Y.-C.; Jou, J.-H.; Shyue, J.-J. X-ray Photoelectron Spectrometry Depth Profiling of Organic Thin Films Using C60 Sputtering. Analytical Chemistry 2008, 80 (2), 501-505, DOI: 10.1021/ac701899a. (65) Yamada, I. A short review of ionized cluster beam technology. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1995, 99 (1), 240-243, DOI: https://doi.org/10.1016/0168-583X(94)00562-1. (66) Yamada, I.; Matsuo, J.; Toyoda, N.; Kirkpatrick, A. Materials processing by gas cluster ion beams. Materials Science and Engineering: R: Reports 2001, 34 (6), 231-295, DOI: https://doi.org/10.1016/S0927-796X(01)00034-1. (67) Yamada, I.; Matsuo, J.; Toyoda, N.; Aoki, T.; Jones, E.; Insepov, Z. Non-linear processes in the gas cluster ion beam modification of solid surfaces. Materials Science and Engineering: A 1998, 253 (1), 249-257, DOI: https://doi.org/10.1016/S0921-5093(98)00733-3. (68) Allen, L. P.; Fenner, D. B.; Difilippo, V.; Santeufemio, C.; Degenkolb, E.; Brooks, W.; Mack, M.; Hautala, J. Substrate smoothing using gas cluster ion beam processing. Journal of Electronic Materials 2001, 30 (7), 829-833, DOI: 10.1007/s11664-001-0066-3. (69) Yamada, I.; Matsuo, J.; Insepov, Z.; Takeuchi, D.; Akizuki, M.; Toyoda, N. Surface processing by gas cluster ion beams at the atomic (molecular) level. Journal of Vacuum Science & Technology A 1996, 14 (3), 781-785, DOI: 10.1116/1.580389. (70) Rading, D.; Moellers, R.; Cramer, H. G.; Niehuis, E. Dual beam depth profiling of polymer materials: comparison of C60 and Ar cluster ion beams for sputtering. Surface and Interface Analysis 2013, 45 (1), 171-174, DOI: https://doi.org/10.1002/sia.5122. (71) Bailey, J.; Havelund, R.; Shard, A. G.; Gilmore, I. S.; Alexander, M. R.; Sharp, J. S.; Scurr, D. J. 3D ToF-SIMS Imaging of Polymer Multilayer Films Using Argon Cluster Sputter Depth Profiling. ACS Applied Materials & Interfaces 2015, 7 (4), 2654-2659, DOI: 10.1021/am507663v. (72) Seah, M. P. Universal Equation for Argon Gas Cluster Sputtering Yields. The Journal of Physical Chemistry C 2013, 117 (24), 12622-12632, DOI: 10.1021/jp402684c. (73) Shen, K.; Wucher, A.; Winograd, N. Molecular Depth Profiling with Argon Gas Cluster Ion Beams. The Journal of Physical Chemistry C 2015, 119 (27), 15316-15324, DOI: 10.1021/acs.jpcc.5b03482. (74) Wagner, A.; Pullen, S.; Ott, S.; Primetzhofer, D. The potential of ion beams for characterization of metal–organic frameworks. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2016, 371, 327-331, DOI: https://doi.org/10.1016/j.nimb.2015.10.059. (75) Ladnorg, T.; Welle, A.; Heißler, S.; Wöll, C.; Gliemann, H. Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting. Beilstein J Nanotechnol 2013, 4, 638-648, DOI: 10.3762/bjnano.4.71. (76) Schmitt, S.; Hümmer, J.; Kraus, S.; Welle, A.; Grosjean, S.; Hanke-Roos, M.; Rosenhahn, A.; Bräse, S.; Wöll, C.; Lee-Thedieck, C.; Tsotsalas, M. Tuning the Cell Adhesion on Biofunctionalized Nanoporous Organic Frameworks. Advanced Functional Materials 2016, 26 (46), 8455-8462, DOI: https://doi.org/10.1002/adfm.201603054. (77) So, M. C.; Beyzavi, M. H.; Sawhney, R.; Shekhah, O.; Eddaoudi, M.; Al-Juaid, S. S.; Hupp, J. T.; Farha, O. K. Post-assembly transformations of porphyrin-containing metal–organic framework (MOF) films fabricated via automated layer-by-layer coordination. Chemical Communications 2015, 51 (1), 85-88, DOI: 10.1039/C4CC05727A. (78) Terban, M. W.; Banerjee, D.; Ghose, S.; Medasani, B.; Shukla, A.; Legg, B. A.; Zhou, Y.; Zhu, Z.; Sushko, M. L.; De Yoreo, J. J.; Liu, J.; Thallapally, P. K.; Billinge, S. J. L. Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution. Nanoscale 2018, 10 (9), 4291-4300, DOI: 10.1039/C7NR07949D. (79) Liu, J.; Redel, E.; Walheim, S.; Wang, Z.; Oberst, V.; Liu, J.; Heissler, S.; Welle, A.; Moosmann, M.; Scherer, T.; Bruns, M.; Gliemann, H.; Wöll, C. Monolithic High Performance Surface Anchored Metal−Organic Framework Bragg Reflector for Optical Sensing. Chemistry of Materials 2015, 27 (6), 1991-1996, DOI: 10.1021/cm503908g. (80) Oldenburg, M.; Turshatov, A.; Busko, D.; Wollgarten, S.; Adams, M.; Baroni, N.; Welle, A.; Redel, E.; Wöll, C.; Richards, B. S.; Howard, I. A. Photon Upconversion at Crystalline Organic–Organic Heterojunctions. Advanced Materials 2016, 28 (38), 8477-8482, DOI: https://doi.org/10.1002/adma.201601718. (81) Stassen, I.; Styles, M.; Grenci, G.; Gorp, Hans V.; Vanderlinden, W.; Feyter, Steven D.; Falcaro, P.; Vos, D. D.; Vereecken, P.; Ameloot, R. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nature Materials 2016, 15 (3), 304-310, DOI: 10.1038/nmat4509. (82) Baroni, N.; Turshatov, A.; Oldenburg, M.; Busko, D.; Adams, M.; Haldar, R.; Welle, A.; Redel, E.; Wöll, C.; Richards, B. S.; Howard, I. A. Facile loading of thin-film surface-anchored metal-organic frameworks with Lewis-base guest molecules. Materials Chemistry Frontiers 2017, 1 (9), 1888-1894, DOI: 10.1039/C7QM00142H. (83) Haldar, R.; Sen, B.; Hurrle, S.; Kitao, T.; Sankhla, R.; Kühl, B.; Welle, A.; Heissler, S.; Brenner-Weiß, G.; Thissen, P.; Uemura, T.; Gliemann, H.; Barner-Kowollik, C.; Wöll, C. Oxidative polymerization of terthiophene and a substituted thiophene monomer in metal-organic framework thin films. European Polymer Journal 2018, 109, 162-168, DOI: https://doi.org/10.1016/j.eurpolymj.2018.09.040. (84) Harvey, S. P.; Li, Z.; Christians, J. A.; Zhu, K.; Luther, J. M.; Berry, J. J. Probing Perovskite Inhomogeneity beyond the Surface: TOF-SIMS Analysis of Halide Perovskite Photovoltaic Devices. ACS Applied Materials & Interfaces 2018, 10 (34), 28541-28552, DOI: 10.1021/acsami.8b07937. (85) Wang, C.; Liu, X.; Chen, J. P.; Li, K. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66. Scientific Reports 2015, 5 (1), 16613, DOI: 10.1038/srep16613. (86) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society 2008, 130 (42), 13850-13851, DOI: 10.1021/ja8057953. (87) Dhakshinamoorthy, A.; Santiago-Portillo, A.; Asiri, A. M.; Garcia, H. Engineering UiO-66 Metal Organic Framework for Heterogeneous Catalysis. ChemCatChem 2019, 11 (3), 899-923, DOI: https://doi.org/10.1002/cctc.201801452. (88) Abánades Lázaro, I.; Forgan, R. S. Application of zirconium MOFs in drug delivery and biomedicine. Coordination Chemistry Reviews 2019, 380, 230-259, DOI: https://doi.org/10.1016/j.ccr.2018.09.009. (89) JPK handbook. (90) Franklin, J. L. Positive-Ion—Molecule Reaction Studies in a Single Electron-Impact Source. In Ion-Molecule Reactions: Volume 1; Franklin, J. L., Ed.; Springer US: Boston, MA, 1972; pp 9-32. (91) Vickerman, J. C.; Gilmore, I. S. Surface analysis: the principal techniques, John Wiley & Sons: 2011. (92) Schmidt, B.; Wetzig, K. Ion Beam Technology. In Ion Beams in Materials Processing and Analysis; Schmidt, B.; Wetzig, K., Eds.; Springer Vienna: Vienna, 2013; pp 33-116. (93) Bateman, R. Sector Mass Spectrometers*. In Encyclopedia of Spectroscopy and Spectrometry (Second Edition); Lindon, J. C., Ed.; Academic Press: Oxford, 1999; pp 2511-2517. (94) Niessen, W. M. A.; Falck, D. Introduction to Mass Spectrometry, a Tutorial. In Analyzing Biomolecular Interactions by Mass Spectrometry; 2015; pp 1-54. (95) Advantages of the TRIFT Analyzer for Imaging and Spectroscopy in the PHI nanoTOF. (96) Fisher, G. L.; Bruinen, A. L.; Ogrinc Potočnik, N.; Hammond, J. S.; Bryan, S. R.; Larson, P. E.; Heeren, R. M. A. A New Method and Mass Spectrometer Design for TOF-SIMS Parallel Imaging MS/MS. Analytical Chemistry 2016, 88 (12), 6433-6440, DOI: 10.1021/acs.analchem.6b01022. (97) de Hoffmann, E.; Stroobant, V. Mass Spectrometry: Principles and Applications, Wiley: 2007. (98) Mellon, F. A. MASS SPECTROMETRY | Principles and Instrumentation. In Encyclopedia of Food Sciences and Nutrition (Second Edition); Caballero, B., Ed.; Academic Press: Oxford, 2003; pp 3739-3749. (99) Huang, Y.; Tao, C.-a.; Chen, R.; Sheng, L.; Wang, J. Comparison of Fabrication Methods of Metal-Organic Framework Optical Thin Films. Nanomaterials 2018, 8 (9), DOI: 10.3390/nano8090676. (100) Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y.-B.; Kang, J. K.; Yaghi, O. M. Supercapacitors of Nanocrystalline Metal–Organic Frameworks. ACS Nano 2014, 8 (7), 7451-7457, DOI: 10.1021/nn5027092. (101) Øien, S.; Wragg, D.; Reinsch, H.; Svelle, S.; Bordiga, S.; Lamberti, C.; Lillerud, K. P. Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal–Organic Frameworks. Crystal Growth & Design 2014, 14 (11), 5370-5372, DOI: 10.1021/cg501386j. (102) Cumpson, P. J.; Portoles, J. F.; Barlow, A. J.; Sano, N.; Birch, M. Depth profiling organic/inorganic interfaces by argon gas cluster ion beams: sputter yield data for biomaterials, in-vitro diagnostic and implant applications. Surface and Interface Analysis 2013, 45 (13), 1859-1868, DOI: https://doi.org/10.1002/sia.5333. (103) Noël, C.; Pescetelli, S.; Agresti, A.; Franquet, A.; Spampinato, V.; Felten, A.; di Carlo, A.; Houssiau, L.; Busby, Y. Hybrid Perovskites Depth Profiling with Variable-Size Argon Clusters and Monatomic Ions Beams. Materials 2019, 12 (5), DOI: 10.3390/ma12050726. (104) Sarker, M.; Jhung, S. H. Zr-MOF with free carboxylic acid for storage and controlled release of caffeine. Journal of Molecular Liquids 2019, 296, 112060, DOI: https://doi.org/10.1016/j.molliq.2019.112060.
|