跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/11 23:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江芃萱
研究生(外文):Peng-Hsuan Chiang
論文名稱:氬簇離子團 (Ar1000,2500+) 能量密度與 Ar+ 共濺射對有機金屬框架薄膜二次離子質譜縱深分析之影響
論文名稱(外文):Effect of Energy per Atom (E/n) in Ar Gas Cluster Ion Beam (Ar1000,2500+) with Ar+ Cosputter on Depth Profile of Metal-Organic Framework Thin Film by Secondary Ion Mass Spectroscopy
指導教授:薛景中
指導教授(外文):Jing-Jong Shyue
口試委員:王榮輝林煒淳
口試委員(外文):Jung-Hui WangWei-Chun Lin
口試日期:2021-07-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:111
中文關鍵詞:金屬有機框架UiO-66飛行時間式二次離子質譜儀Ar10002500+ —Ar+共濺射縱深分析
外文關鍵詞:metal-organic framework (MOF)UiO-66time of flight secondary ion mass spectrometry (ToF-SIMS)Ar10002500+ —Ar+ cosputteringdepth profile
DOI:10.6342/NTU202102598
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有機金屬框架 (Metal-Organic-Framework, MOF) 基於其高比表面積、結構中可調控的孔洞大小與官能基團,使其成為功能性極強的孔洞材料、被廣泛應用。而倘若能對客體分子於MOF結構間的擴散、空間分佈等相互關係有更進一步地認識,將有助於其於各領域中的應用與發展。不過,如今能夠直接分析客體—MOF複合結構內成份分佈的分析方法卻極為缺少。
二次離子質譜儀 (Secondary Ion Mass Spectroscopy, SIMS) 具有足夠的空間解析度與極高的偵測靈敏度(至少達ppm等級),是全面性地提供樣品成份與分佈之相關資訊的絕佳工具。然而,以其進行縱深分析時,高劑量離子入射將導致分析物結構損傷進而使分子訊號強度下降,且對於有機—無機成份混雜的MOFs來說,入射離子造成的影響將更為複雜。因此,本研究旨在透過不同離子束、加速電壓、電流等參數的調整,設計出一系列實驗參數對MOF縱深分析結果進行探討,企圖找出能完整保留MOF結構中有機與無機成份訊號的實驗參數,以為MOFs建立一個直接、完整且有效的縱深分析方式,作為往後這類材料的分析方針。
本研究以化性穩定且發展成熟之UiO-66作為建構MOF薄膜縱深分析的平台,利用飛行時間式二次離子質譜儀 (ToF- SIMS) 以脈衝C60+ 作為分析離子源、不同能量密度 (energy per atom, E/n = 2~20) 的氬簇離子團 (Ar-GCIB) 搭配相異加速電壓或電流密度之Ar+ 做為共濺射離子源進行縱深分析的探討。研究結果顯示,單純使用 Ar-GCIB時,隨著E/n降低,入射離子對樣品造成的損傷累積較少,UiO-66結構中有機成份的保留程度較為理想,不過因Ar-GCIB對無機成份的濺射率遠低於移除有機成份的速率,故出現明顯差異侵蝕的現象,最終樣品表面剩下大量無法移除的無機成份,導致縱深分析無法向下建構。而當配合Ar+ 進行共濺射時,能量較強的單原子離子確實有助於提高金屬節點的濺射率;其中,以使用高電壓高電流 (500 V, 5 ×10-6 A/cm2) 的 Ar +共濺射之結果最為理想,不但大幅提升整體材料移除速率,亦有效清除表面破壞之化學結構,維持MOF成份的均勻,最小化偽影現象。
總的來說,良好的MOF縱深分析需利用共濺射的方式,以低能量Ar-GCIB (E/n=4) 保留有機成份訊號,並由高電壓—高電流的 Ar + 提高無機成份的濺射率,兩者各司其職,以於有限時間內替MOF樣品建構出真實而完整的成份分佈。
Metal-Organic framework (MOFs) is widely used as a highly functional porous material based on its high specific surface area, adjustable pore size and functional groups in the structure. Understanding the relationship to diffusion and spatial distribution between guest molecules and MOFs may help further advancing the development of MOFs and gaining more insights in its application in various fields. However, analytical techniques that can directly applied to obtain the component distribution in guest-MOF composite materials are extremely scarce.
With its sufficient spatial resolution (<100 nm lateral and ~nm depth) and extremely high detection sensitivity (~ppm), secondary ion mass spectroscopy (SIMS) is an excellent tool to provide comprehensive information about the composition and distribution of samples. However, the high-energy ion bombardment used during depth profiling analysis will break chemical bonds easily, cause a lot of damage on the surface, and thus reduce secondary ion signals, especially for organic components. Besides, for organic-inorganic hybrid materials like MOFs, the impact of incident ions will be more complicated because each component may have different response. Therefore, this research focus on tuning the cluster size of Ar-GCIB, acceleration voltage, current density of incident beams and different combinations of the co-sputtering method in an attempt to find optimal parameters of sputter beams to ensure the depth profile can completely retain the organic and inorganic component signals in MOFs and reflect the true distribution of the components. The optimized parameters we found will subsequently become a guideline for future analysis of this type of material.
In this study, the chemically stable UiO-66 was used as a model material to construct the depth profile of MOF films, and time-of-flight secondary ion mass spectrometer (ToF-SIMS) was utilized. For analysis, a pulsed C60+ was used as the acquisition ion beam. In sputter phase, sets of Ar-GCIB with different energy densities (energy per atom, E/n = 2~20) and Ar+ with different accelerating voltage or current density were used to cosputter the specimens. The results show that when using Ar-GCIB alone, the incident ions cause less damage to the sample as the E/n decreases, and thus, the retention of organic components in UiO-66 structure will be relatively ideal. However, preferential sputtering occurs due to the much lower removal rate of the inorganic components comparing to the organics in MOFs. In the end, a huge amount of inorganic components that cannot be removed are left on the surface of the sample, which makes it impossible to construct the depth profile downward. On the other hand, when cosputtering with Ar+, the more powerful atomic ions help to increase the sputtering rate of the metallic node. Among all of the Ar-GCIB+—Ar+ cosputtering parameters tested, the one with higher voltage and higher current density (500 V, 5 × 10-6 A/cm2) of Ar+ can obtain the most ideal result. The overall sputtering rate is not only greatly increased, but also effectively cleans up the damage accumulation on the surface. Therefore, the MOF composition are maintained uniformly, which minimizes the artifacts.
In conclusion, in order to obtain optimistic depth profile of MOFs, the use of Ar-GCIB+—Ar+ co-sputtering is required. Low energy (E/n=4) Ar-GCIB are used to retain the organic component signal, while high-voltage and high-current Ar+ contributes to improve the sputtering rate of inorganic components. By combining these two ion sources with the optimal parameters, the distribution of elemental and molecular component in the depth profile is righteously and thoroughly identified.
誌謝 i
中文摘要 ii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 緒論 1
第二章 文獻回顧 4
2.1 有機金屬框架 (Metal-Organic Framework) 4
2.1.1 有機金屬框架簡介 4
2.1.2 現階段有機金屬框架與其客體之相關研究 9
2.2 二次離子質譜儀之原理與技術介紹 11
2.2.1 質譜法之簡介 11
2.2.2 二次離子質譜法 (Secondary Ion Mass Spectrometry, SIMS) 12
2.2.3 動態和靜態二次離子質譜儀 14
2.2.4 二次離子質譜儀之基本應用 15
2.2.5 縱深分布分析 (Depth Profile) 17
2.2.5.1 基本運作原理 17
2.2.5.2 損傷截面積 (Damage Cross Section) 19
2.2.5.3 濺射率 (Sputter Yield) 21
2.2.5.4 縱深分析常見之問題 23
2.2.6 單原子以及團簇離子源 25
2.2.6.1 單原子與簇原子離子源於二次離子質譜中之應用與演進 25
2.2.6.2 簇離子源之濺射機制 28
2.2.7 氣體簇離子源介紹 (Gas Cluster Ion Beam, GCIB) 31
2.2.7.1 氣體簇離子之產生 31
2.2.7.2 氣體簇離子源的特性與優勢 32
2.2.7.3 氣體簇離子源之能量密度 (Energy per Atom, E/n) 36
2.3 二次離子質譜儀應用於有機—無機複合材料 39
2.3.1.1 離子分析應用於有機—無機複合材料 39
2.3.1.2 UiO-66 簡介 44
第三章 實驗及儀器介紹 45
3.1 藥品與基材 45
3.2 實驗儀器與原理 45
3.2.1 X光繞射分析儀 (X-ray Diffractometer, XRD) 45
3.2.2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 46
3.2.3 原子力顯微鏡 (Atomic Force Microscope, AFM) 46
3.2.4 飛行式二次離子質譜儀 (Time of Flight Secondary Ion Mass Spectrometry, ToF-SIMS) 48
3.3 實驗流程 60
3.3.1 UiO-66之合成 60
3.3.2 試片製備 61
3.3.2.1 金基板的清洗 61
3.3.2.2 薄膜的製備 61
3.3.2.3 藥物的摻入 62
3.3.3 XRD分析 62
3.3.4 SEM觀測 62
3.3.5 AFM量測 63
3.3.6 ToF-SIMS分析 63
第四章 實驗結果與討論 65
4.1 UiO-66之XRD鑑定 65
4.2 UiO-66薄膜覆蓋率與截面觀測 66
4.3 UiO-66薄膜的表面起伏 68
4.4 ToF-SIMS量測 69
4.4.1 正負離子模式的選定與特徵破片的選擇 69
4.4.2 Ar1000,2500+ 能量密度對縱深分析之影響 73
4.4.3 以C60+ 單獨濺射之縱深分析 77
4.4.4 簇離子源 (C60+ 和 Ar1000,2500+) 與Ar+共濺射之結果 79
4.4.4.1 C60+—Ar+共濺射之縱深分析 80
4.4.4.2 Ar1000,2500+ 能量密度與Ar+共濺射對縱深分析之影響 83
4.4.5 Ar1000,2500+ 能量密度與Ar+共濺射對縱深分析影響之綜合比較 91
4.4.6 摻入藥物之 UiO-66 96
4.4.6.1 咖啡因特徵破片的選用 96
4.4.6.2 摻入咖啡因之UiO-66的縱深分析 99
第五章 結論 101
第六章 未來展望 102
第七章 參考資料 103
(1) Kitagawa, S.; Matsuda, R. Chemistry of coordination space of porous coordination polymers. Coordination Chemistry Reviews 2007, 251 (21), 2490-2509, DOI: https://doi.org/10.1016/j.ccr.2007.07.009.
(2) Alhumaimess, M. S. Metal–organic frameworks and their catalytic applications. Journal of Saudi Chemical Society 2020, 24 (6), 461-473, DOI: https://doi.org/10.1016/j.jscs.2020.04.002.
(3) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 782-835, DOI: 10.1021/cr200274s.
(4) Getman, R. B.; Bae, Y.-S.; Wilmer, C. E.; Snurr, R. Q. Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 703-723, DOI: 10.1021/cr200217c.
(5) Della Rocca, J.; Liu, D.; Lin, W. Nanoscale Metal–Organic Frameworks for Biomedical Imaging and Drug Delivery. Accounts of Chemical Research 2011, 44 (10), 957-968, DOI: 10.1021/ar200028a.
(6) Sun, Y.; Zheng, L.; Yang, Y.; Qian, X.; Fu, T.; Li, X.; Yang, Z.; Yan, H.; Cui, C.; Tan, W. Metal–Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Letters 2020, 12 (1), 103, DOI: 10.1007/s40820-020-00423-3.
(7) Amombo Noa, F. M.; Svensson Grape, E.; Brülls, S. M.; Cheung, O.; Malmberg, P.; Inge, A. K.; McKenzie, C. J.; Mårtensson, J.; Öhrström, L. Metal–Organic Frameworks with Hexakis(4-carboxyphenyl)benzene: Extensions to Reticular Chemistry and Introducing Foldable Nets. Journal of the American Chemical Society 2020, 142 (20), 9471-9481, DOI: 10.1021/jacs.0c02984.
(8) Harvey, S. P.; Zhang, F.; Palmstrom, A.; Luther, J. M.; Zhu, K.; Berry, J. J. Mitigating Measurement Artifacts in TOF-SIMS Analysis of Perovskite Solar Cells. ACS Applied Materials & Interfaces 2019, 11 (34), 30911-30918, DOI: 10.1021/acsami.9b09445.
(9) Hou, C. H.; Hung, S. H.; Jhang, L. J.; Chou, K. J.; Hu, Y. K.; Chou, P. T.; Su, W. F.; Tsai, F. Y.; Shieh, J.; Shyue, J. J. Validated Analysis of Component Distribution Inside Perovskite Solar Cells and Its Utility in Unveiling Factors of Device Performance and Degradation. ACS Appl Mater Interfaces 2020, 12 (20), 22730-22740, DOI: 10.1021/acsami.9b22492.
(10) Wang, S.-K.; Chang, H.-Y.; Chu, Y.-H.; Kao, W.-L.; Wu, C.-Y.; Lee, Y.-W.; You, Y.-W.; Chu, K.-J.; Hung, S.-H.; Shyue, J.-J. Effect of energy per atom (E/n) on the Ar gas cluster ion beam (Ar-GCIB) and O2+ cosputter process. Analyst 2019, 144 (10), 3323-3333, DOI: 10.1039/C8AN02452A.
(11) Yaghi, O. M.; Li, H. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. Journal of the American Chemical Society 1995, 117 (41), 10401-10402, DOI: 10.1021/ja00146a033.
(12) Yaghi, O. M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378 (6558), 703-706, DOI: 10.1038/378703a0.
(13) Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A.; Maloney, A. G. P.; Wood, P. A.; Ward, S. C.; Fairen-Jimenez, D. Development of a Cambridge Structural Database Subset: A Collection of Metal–Organic Frameworks for Past, Present, and Future. Chemistry of Materials 2017, 29 (7), 2618-2625, DOI: 10.1021/acs.chemmater.7b00441.
(14) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; Keeffe, M.; Yaghi, O. M. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science 2002, 295 (5554), 469, DOI: 10.1126/science.1067208.
(15) Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S.; Kazumori, H.; O’Keeffe, M.; Terasaki, O.; Stoddart, J. F.; Yaghi, O. M. Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science 2012, 336 (6084), 1018, DOI: 10.1126/science.1220131.
(16) Mandal, S.; Natarajan, S.; Mani, P.; Pankajakshan, A. Post-Synthetic Modification of Metal–Organic Frameworks Toward Applications. Advanced Functional Materials 2021, 31 (4), 2006291, DOI: https://doi.org/10.1002/adfm.202006291.
(17) An, Y.; Liu, Y.; An, P.; Dong, J.; Xu, B.; Dai, Y.; Qin, X.; Zhang, X.; Whangbo, M. H.; Huang, B. J. A. C. NiII Coordination to an Al‐Based Metal–Organic Framework Made from 2‐Aminoterephthalate for Photocatalytic Overall Water Splitting. 2017, 129 (11), 3082-3086.
(18) Dissegna, S.; Epp, K.; Heinz, W. R.; Kieslich, G.; Fischer, R. A. Defective Metal-Organic Frameworks. Advanced Materials 2018, 30 (37), 1704501, DOI: https://doi.org/10.1002/adma.201704501.
(19) Zeng, M.-H.; Yin, Z.; Tan, Y.-X.; Zhang, W.-X.; He, Y.-P.; Kurmoo, M. Nanoporous Cobalt(II) MOF Exhibiting Four Magnetic Ground States and Changes in Gas Sorption upon Post-Synthetic Modification. Journal of the American Chemical Society 2014, 136 (12), 4680-4688, DOI: 10.1021/ja500191r.
(20) Yin, Z.; Wan, S.; Yang, J.; Kurmoo, M.; Zeng, M.-H. Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions. Coordination Chemistry Reviews 2019, 378, 500-512, DOI: https://doi.org/10.1016/j.ccr.2017.11.015.
(21) Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks. Chemistry of Materials 2017, 29 (1), 26-39, DOI: 10.1021/acs.chemmater.6b02626.
(22) Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.; Yaghi, O. M. Ultrahigh Porosity in Metal-Organic Frameworks. Science 2010, 329 (5990), 424, DOI: 10.1126/science.1192160.
(23) Zhao, Q.; Yuan, W.; Liang, J.; Li, J. Synthesis and hydrogen storage studies of metal−organic framework UiO-66. International Journal of Hydrogen Energy 2013, 38 (29), 13104-13109, DOI: https://doi.org/10.1016/j.ijhydene.2013.01.163.
(24) Ma, S.; Zhou, H.-C. Gas storage in porous metal–organic frameworks for clean energy applications. Chemical Communications 2010, 46 (1), 44-53, DOI: 10.1039/B916295J.
(25) Achmann, S.; Hagen, G.; Kita, J.; Malkowsky, I. M.; Kiener, C.; Moos, R. Metal-Organic Frameworks for Sensing Applications in the Gas Phase. Sensors 2009, 9 (3), DOI: 10.3390/s90301574.
(26) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2012, 112 (2), 1105-1125, DOI: 10.1021/cr200324t.
(27) Yanai, N.; Kitayama, K.; Hijikata, Y.; Sato, H.; Matsuda, R.; Kubota, Y.; Takata, M.; Mizuno, M.; Uemura, T.; Kitagawa, S. Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. Nature Materials 2011, 10 (10), 787-793, DOI: 10.1038/nmat3104.
(28) Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nature Energy 2016, 1 (1), 15006, DOI: 10.1038/nenergy.2015.6.
(29) Wang, H.-F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chemical Society Reviews 2020, 49 (5), 1414-1448, DOI: 10.1039/C9CS00906J.
(30) Morozan, A.; Jaouen, F. Metal organic frameworks for electrochemical applications. Energy & Environmental Science 2012, 5 (11), 9269-9290, DOI: 10.1039/C2EE22989G.
(31) Zhang, X.; Wang, J.; Dong, X.-X.; Lv, Y.-K. Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere 2020, 242, 125144, DOI: https://doi.org/10.1016/j.chemosphere.2019.125144.
(32) Huang, Z.; Lee, H. K. Micro-solid-phase extraction of organochlorine pesticides using porous metal-organic framework MIL-101 as sorbent. Journal of Chromatography A 2015, 1401, 9-16, DOI: https://doi.org/10.1016/j.chroma.2015.04.052.
(33) Hemmati, M.; Rajabi, M.; Asghari, A. Magnetic nanoparticle based solid-phase extraction of heavy metal ions: A review on recent advances. Microchimica Acta 2018, 185 (3), 160, DOI: 10.1007/s00604-018-2670-4.
(34) Rocío-Bautista, P.; González-Hernández, P.; Pino, V.; Pasán, J.; Afonso, A. M. Metal-organic frameworks as novel sorbents in dispersive-based microextraction approaches. TrAC Trends in Analytical Chemistry 2017, 90, 114-134, DOI: https://doi.org/10.1016/j.trac.2017.03.002.
(35) Wang, L.; Zheng, M.; Xie, Z. Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise. Journal of Materials Chemistry B 2018, 6 (5), 707-717, DOI: 10.1039/C7TB02970E.
(36) Latifi, L.; Sohrabnezhad, S. Drug delivery by micro and meso metal-organic frameworks. Polyhedron 2020, 180, 114321, DOI: https://doi.org/10.1016/j.poly.2019.114321.
(37) Rojas, S.; Colinet, I.; Cunha, D.; Hidalgo, T.; Salles, F.; Serre, C.; Guillou, N.; Horcajada, P. Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal–Organic Frameworks in View of Cutaneous Administration. ACS Omega 2018, 3 (3), 2994-3003, DOI: 10.1021/acsomega.8b00185.
(38) Gross, J. H. Mass spectrometry: a textbook. Springer Science 2017.
(39) Benninghoven, A. Surface investigation of solids by the statical method of secondary ion mass spectroscopy (SIMS). Surface Science 1973, 35, 427-457, DOI: https://doi.org/10.1016/0039-6028(73)90232-X.
(40) John C. Vickerman, I. S. G. Surface Analysis – The Principal Techniques. John Wiley & Sons 2009.
(41) Horita, T.; Yamaji, K.; Ishikawa, M.; Sakai, N.; Yokokawa, H.; Kawada, T.; Kato, T. Active Sites Imaging for Oxygen Reduction at the La0.9Sr0.1MnO3 − x /Yttria‐Stabilized Zirconia Interface by Secondary‐Ion Mass Spectrometry. Journal of The Electrochemical Society 1998, 145 (9), 3196-3202, DOI: 10.1149/1.1838786.
(42) Creighton, J. R.; White, J. M. SIMS and TDS study of the reaction of water and oxygen on Pt(111). Surface Science 1982, 122 (3), L648-L652, DOI: https://doi.org/10.1016/0039-6028(82)90089-9.
(43) Brunelle, A.; Touboul, D.; Laprévote, O. Biological tissue imaging with time-of-flight secondary ion mass spectrometry and cluster ion sources. Journal of Mass Spectrometry 2005, 40 (8), 985-999, DOI: https://doi.org/10.1002/jms.902.
(44) Mahoney, C. M. Cluster secondary ion mass spectrometry of polymers and related materials. Mass Spectrometry Reviews 2010, 29 (2), 247-293, DOI: https://doi.org/10.1002/mas.20233.
(45) Gillen, G.; Simons, D. S.; Williams, P. Molecular ion imaging and dynamic secondary-ion mass spectrometry of organic compounds. Analytical Chemistry 1990, 62 (19), 2122-2130, DOI: 10.1021/ac00218a014.
(46) Cheng, J.; Wucher, A.; Winograd, N. Molecular Depth Profiling with Cluster Ion Beams. The Journal of Physical Chemistry B 2006, 110 (16), 8329-8336, DOI: 10.1021/jp0573341.
(47) Briggs, J. C. V. D. ToF-SIMS: Materials Analysis by Mass Spectrometry. IMpublications 2013.
(48) Rol, P. K.; Fluit, J. M.; Kistemaker, J. Theoretical aspects of cathode sputtering in the energy range of 5–25 keV. Physica 1960, 26 (11), 1009-1011, DOI: https://doi.org/10.1016/0031-8914(60)90051-3.
(49) Andersen, H. H.; Bay, H. L. Sputtering yield measurements. In Sputtering by Particle Bombardment I: Physical Sputtering of Single-Element Solids; Behrisch, R., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1981; pp 145-218.
(50) Mayer, T. L. A. L. C. F. J. W. Fundamentals of Nanoscale Film Analysis. 2007.
(51) Baker, M. A.; Gilmore, R.; Lenardi, C.; Gissler, W. XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions. Applied Surface Science 1999, 150 (1), 255-262, DOI: https://doi.org/10.1016/S0169-4332(99)00253-6.
(52) Liau, Z. L.; Tsaur, B. Y.; Mauer, J. W. Influence of atomic mixing and preferential sputtering on depth profiles and interfaces. Journal of Vacuum Science and Technology 1979, 16 (2), 121-127, DOI: 10.1116/1.569883.
(53) Grønlund, F.; Moore, W. J. Sputtering of Silver by Light Ions with Energies from 2 to 12 kev. The Journal of Chemical Physics 1960, 32 (5), 1540-1545, DOI: 10.1063/1.1730956.
(54) Andersen, H. H.; Bay, H. L. Nonlinear effects in heavy‐ion sputtering. Journal of Applied Physics 1974, 45 (2), 953-954, DOI: 10.1063/1.1663348.
(55) Andersen, H. H.; Bay, H. L. Heavy‐ion sputtering yields of gold: Further evidence of nonlinear effects. Journal of Applied Physics 1975, 46 (6), 2416-2422, DOI: 10.1063/1.321910.
(56) Thompson, D. A.; Johar, S. S. Nonlinear sputtering effects in thin metal films. Applied Physics Letters 1979, 34 (5), 342-345, DOI: 10.1063/1.90781.
(57) Wong, S. S.; Stoll, R.; Röllgen, F. W. Ionization of Organic Molecules by Fast Molecular Ion Bombardment. Zeitschrift für Naturforschung A 1982, 37 (7), 718-719, DOI: doi:10.1515/zna-1982-0717.
(58) Davies, N.; Weibel, D. E.; Blenkinsopp, P.; Lockyer, N.; Hill, R.; Vickerman, J. C. Development and experimental application of a gold liquid metal ion source. Applied Surface Science 2003, 203-204, 223-227, DOI: https://doi.org/10.1016/S0169-4332(02)00631-1.
(59) Kollmer, F. Cluster primary ion bombardment of organic materials. Applied Surface Science 2004, 231-232, 153-158, DOI: https://doi.org/10.1016/j.apsusc.2004.03.101.
(60) Gillen, G.; Roberson, S. Preliminary evaluation of an SF5+ polyatomic primary ion beam for analysis of organic thin films by secondary ion mass spectrometry. Rapid Communications in Mass Spectrometry 1998, 12 (19), 1303-1312, DOI: https://doi.org/10.1002/(SICI)1097-0231(19981015)12:19<1303::AID-RCM330>3.0.CO;2-7.
(61) Postawa, Z.; Czerwinski, B.; Szewczyk, M.; Smiley, E. J.; Winograd, N.; Garrison, B. J. Microscopic Insights into the Sputtering of Ag{111} Induced by C60 and Ga Bombardment. The Journal of Physical Chemistry B 2004, 108 (23), 7831-7838, DOI: 10.1021/jp049936a.
(62) Matsuo, J.; Okubo, C.; Seki, T.; Aoki, T.; Toyoda, N.; Yamada, I. A new secondary ion mass spectrometry (SIMS) system with high-intensity cluster ion source. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2004, 219-220, 463-467, DOI: https://doi.org/10.1016/j.nimb.2004.01.103.
(63) Gillen, G.; Batteas, J.; Michaels, C. A.; Chi, P.; Small, J.; Windsor, E.; Fahey, A.; Verkouteren, J.; Kim, K. J. Depth profiling using C60+ SIMS—Deposition and topography development during bombardment of silicon. Applied Surface Science 2006, 252 (19), 6521-6525, DOI: https://doi.org/10.1016/j.apsusc.2006.02.234.
(64) Chen, Y.-Y.; Yu, B.-Y.; Wang, W.-B.; Hsu, M.-F.; Lin, W.-C.; Lin, Y.-C.; Jou, J.-H.; Shyue, J.-J. X-ray Photoelectron Spectrometry Depth Profiling of Organic Thin Films Using C60 Sputtering. Analytical Chemistry 2008, 80 (2), 501-505, DOI: 10.1021/ac701899a.
(65) Yamada, I. A short review of ionized cluster beam technology. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1995, 99 (1), 240-243, DOI: https://doi.org/10.1016/0168-583X(94)00562-1.
(66) Yamada, I.; Matsuo, J.; Toyoda, N.; Kirkpatrick, A. Materials processing by gas cluster ion beams. Materials Science and Engineering: R: Reports 2001, 34 (6), 231-295, DOI: https://doi.org/10.1016/S0927-796X(01)00034-1.
(67) Yamada, I.; Matsuo, J.; Toyoda, N.; Aoki, T.; Jones, E.; Insepov, Z. Non-linear processes in the gas cluster ion beam modification of solid surfaces. Materials Science and Engineering: A 1998, 253 (1), 249-257, DOI: https://doi.org/10.1016/S0921-5093(98)00733-3.
(68) Allen, L. P.; Fenner, D. B.; Difilippo, V.; Santeufemio, C.; Degenkolb, E.; Brooks, W.; Mack, M.; Hautala, J. Substrate smoothing using gas cluster ion beam processing. Journal of Electronic Materials 2001, 30 (7), 829-833, DOI: 10.1007/s11664-001-0066-3.
(69) Yamada, I.; Matsuo, J.; Insepov, Z.; Takeuchi, D.; Akizuki, M.; Toyoda, N. Surface processing by gas cluster ion beams at the atomic (molecular) level. Journal of Vacuum Science & Technology A 1996, 14 (3), 781-785, DOI: 10.1116/1.580389.
(70) Rading, D.; Moellers, R.; Cramer, H. G.; Niehuis, E. Dual beam depth profiling of polymer materials: comparison of C60 and Ar cluster ion beams for sputtering. Surface and Interface Analysis 2013, 45 (1), 171-174, DOI: https://doi.org/10.1002/sia.5122.
(71) Bailey, J.; Havelund, R.; Shard, A. G.; Gilmore, I. S.; Alexander, M. R.; Sharp, J. S.; Scurr, D. J. 3D ToF-SIMS Imaging of Polymer Multilayer Films Using Argon Cluster Sputter Depth Profiling. ACS Applied Materials & Interfaces 2015, 7 (4), 2654-2659, DOI: 10.1021/am507663v.
(72) Seah, M. P. Universal Equation for Argon Gas Cluster Sputtering Yields. The Journal of Physical Chemistry C 2013, 117 (24), 12622-12632, DOI: 10.1021/jp402684c.
(73) Shen, K.; Wucher, A.; Winograd, N. Molecular Depth Profiling with Argon Gas Cluster Ion Beams. The Journal of Physical Chemistry C 2015, 119 (27), 15316-15324, DOI: 10.1021/acs.jpcc.5b03482.
(74) Wagner, A.; Pullen, S.; Ott, S.; Primetzhofer, D. The potential of ion beams for characterization of metal–organic frameworks. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2016, 371, 327-331, DOI: https://doi.org/10.1016/j.nimb.2015.10.059.
(75) Ladnorg, T.; Welle, A.; Heißler, S.; Wöll, C.; Gliemann, H. Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting. Beilstein J Nanotechnol 2013, 4, 638-648, DOI: 10.3762/bjnano.4.71.
(76) Schmitt, S.; Hümmer, J.; Kraus, S.; Welle, A.; Grosjean, S.; Hanke-Roos, M.; Rosenhahn, A.; Bräse, S.; Wöll, C.; Lee-Thedieck, C.; Tsotsalas, M. Tuning the Cell Adhesion on Biofunctionalized Nanoporous Organic Frameworks. Advanced Functional Materials 2016, 26 (46), 8455-8462, DOI: https://doi.org/10.1002/adfm.201603054.
(77) So, M. C.; Beyzavi, M. H.; Sawhney, R.; Shekhah, O.; Eddaoudi, M.; Al-Juaid, S. S.; Hupp, J. T.; Farha, O. K. Post-assembly transformations of porphyrin-containing metal–organic framework (MOF) films fabricated via automated layer-by-layer coordination. Chemical Communications 2015, 51 (1), 85-88, DOI: 10.1039/C4CC05727A.
(78) Terban, M. W.; Banerjee, D.; Ghose, S.; Medasani, B.; Shukla, A.; Legg, B. A.; Zhou, Y.; Zhu, Z.; Sushko, M. L.; De Yoreo, J. J.; Liu, J.; Thallapally, P. K.; Billinge, S. J. L. Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution. Nanoscale 2018, 10 (9), 4291-4300, DOI: 10.1039/C7NR07949D.
(79) Liu, J.; Redel, E.; Walheim, S.; Wang, Z.; Oberst, V.; Liu, J.; Heissler, S.; Welle, A.; Moosmann, M.; Scherer, T.; Bruns, M.; Gliemann, H.; Wöll, C. Monolithic High Performance Surface Anchored Metal−Organic Framework Bragg Reflector for Optical Sensing. Chemistry of Materials 2015, 27 (6), 1991-1996, DOI: 10.1021/cm503908g.
(80) Oldenburg, M.; Turshatov, A.; Busko, D.; Wollgarten, S.; Adams, M.; Baroni, N.; Welle, A.; Redel, E.; Wöll, C.; Richards, B. S.; Howard, I. A. Photon Upconversion at Crystalline Organic–Organic Heterojunctions. Advanced Materials 2016, 28 (38), 8477-8482, DOI: https://doi.org/10.1002/adma.201601718.
(81) Stassen, I.; Styles, M.; Grenci, G.; Gorp, Hans V.; Vanderlinden, W.; Feyter, Steven D.; Falcaro, P.; Vos, D. D.; Vereecken, P.; Ameloot, R. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nature Materials 2016, 15 (3), 304-310, DOI: 10.1038/nmat4509.
(82) Baroni, N.; Turshatov, A.; Oldenburg, M.; Busko, D.; Adams, M.; Haldar, R.; Welle, A.; Redel, E.; Wöll, C.; Richards, B. S.; Howard, I. A. Facile loading of thin-film surface-anchored metal-organic frameworks with Lewis-base guest molecules. Materials Chemistry Frontiers 2017, 1 (9), 1888-1894, DOI: 10.1039/C7QM00142H.
(83) Haldar, R.; Sen, B.; Hurrle, S.; Kitao, T.; Sankhla, R.; Kühl, B.; Welle, A.; Heissler, S.; Brenner-Weiß, G.; Thissen, P.; Uemura, T.; Gliemann, H.; Barner-Kowollik, C.; Wöll, C. Oxidative polymerization of terthiophene and a substituted thiophene monomer in metal-organic framework thin films. European Polymer Journal 2018, 109, 162-168, DOI: https://doi.org/10.1016/j.eurpolymj.2018.09.040.
(84) Harvey, S. P.; Li, Z.; Christians, J. A.; Zhu, K.; Luther, J. M.; Berry, J. J. Probing Perovskite Inhomogeneity beyond the Surface: TOF-SIMS Analysis of Halide Perovskite Photovoltaic Devices. ACS Applied Materials & Interfaces 2018, 10 (34), 28541-28552, DOI: 10.1021/acsami.8b07937.
(85) Wang, C.; Liu, X.; Chen, J. P.; Li, K. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66. Scientific Reports 2015, 5 (1), 16613, DOI: 10.1038/srep16613.
(86) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society 2008, 130 (42), 13850-13851, DOI: 10.1021/ja8057953.
(87) Dhakshinamoorthy, A.; Santiago-Portillo, A.; Asiri, A. M.; Garcia, H. Engineering UiO-66 Metal Organic Framework for Heterogeneous Catalysis. ChemCatChem 2019, 11 (3), 899-923, DOI: https://doi.org/10.1002/cctc.201801452.
(88) Abánades Lázaro, I.; Forgan, R. S. Application of zirconium MOFs in drug delivery and biomedicine. Coordination Chemistry Reviews 2019, 380, 230-259, DOI: https://doi.org/10.1016/j.ccr.2018.09.009.
(89) JPK handbook.
(90) Franklin, J. L. Positive-Ion—Molecule Reaction Studies in a Single Electron-Impact Source. In Ion-Molecule Reactions: Volume 1; Franklin, J. L., Ed.; Springer US: Boston, MA, 1972; pp 9-32.
(91) Vickerman, J. C.; Gilmore, I. S. Surface analysis: the principal techniques, John Wiley & Sons: 2011.
(92) Schmidt, B.; Wetzig, K. Ion Beam Technology. In Ion Beams in Materials Processing and Analysis; Schmidt, B.; Wetzig, K., Eds.; Springer Vienna: Vienna, 2013; pp 33-116.
(93) Bateman, R. Sector Mass Spectrometers*. In Encyclopedia of Spectroscopy and Spectrometry (Second Edition); Lindon, J. C., Ed.; Academic Press: Oxford, 1999; pp 2511-2517.
(94) Niessen, W. M. A.; Falck, D. Introduction to Mass Spectrometry, a Tutorial. In Analyzing Biomolecular Interactions by Mass Spectrometry; 2015; pp 1-54.
(95) Advantages of the TRIFT Analyzer for Imaging and Spectroscopy in the PHI nanoTOF.
(96) Fisher, G. L.; Bruinen, A. L.; Ogrinc Potočnik, N.; Hammond, J. S.; Bryan, S. R.; Larson, P. E.; Heeren, R. M. A. A New Method and Mass Spectrometer Design for TOF-SIMS Parallel Imaging MS/MS. Analytical Chemistry 2016, 88 (12), 6433-6440, DOI: 10.1021/acs.analchem.6b01022.
(97) de Hoffmann, E.; Stroobant, V. Mass Spectrometry: Principles and Applications, Wiley: 2007.
(98) Mellon, F. A. MASS SPECTROMETRY | Principles and Instrumentation. In Encyclopedia of Food Sciences and Nutrition (Second Edition); Caballero, B., Ed.; Academic Press: Oxford, 2003; pp 3739-3749.
(99) Huang, Y.; Tao, C.-a.; Chen, R.; Sheng, L.; Wang, J. Comparison of Fabrication Methods of Metal-Organic Framework Optical Thin Films. Nanomaterials 2018, 8 (9), DOI: 10.3390/nano8090676.
(100) Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y.-B.; Kang, J. K.; Yaghi, O. M. Supercapacitors of Nanocrystalline Metal–Organic Frameworks. ACS Nano 2014, 8 (7), 7451-7457, DOI: 10.1021/nn5027092.
(101) Øien, S.; Wragg, D.; Reinsch, H.; Svelle, S.; Bordiga, S.; Lamberti, C.; Lillerud, K. P. Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal–Organic Frameworks. Crystal Growth & Design 2014, 14 (11), 5370-5372, DOI: 10.1021/cg501386j.
(102) Cumpson, P. J.; Portoles, J. F.; Barlow, A. J.; Sano, N.; Birch, M. Depth profiling organic/inorganic interfaces by argon gas cluster ion beams: sputter yield data for biomaterials, in-vitro diagnostic and implant applications. Surface and Interface Analysis 2013, 45 (13), 1859-1868, DOI: https://doi.org/10.1002/sia.5333.
(103) Noël, C.; Pescetelli, S.; Agresti, A.; Franquet, A.; Spampinato, V.; Felten, A.; di Carlo, A.; Houssiau, L.; Busby, Y. Hybrid Perovskites Depth Profiling with Variable-Size Argon Clusters and Monatomic Ions Beams. Materials 2019, 12 (5), DOI: 10.3390/ma12050726.
(104) Sarker, M.; Jhung, S. H. Zr-MOF with free carboxylic acid for storage and controlled release of caffeine. Journal of Molecular Liquids 2019, 296, 112060, DOI: https://doi.org/10.1016/j.molliq.2019.112060.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top