跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2024/12/06 14:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張文豪
研究生(外文):Wen-Hao Chang
論文名稱:二維材料電學特性及超穎透鏡的光偏振態之研究
論文名稱(外文):Two-dimensional Materials Based Electronics and Optical Polarization States on Metalens
指導教授:黃斯衍藍彥文
指導教授(外文):Ssu-Yen HuangYann-Wen Lan
口試委員:陸亭樺邱雅萍謝雅萍吳憲昌李愷信
口試委員(外文):Ting-Hua LuYa-Ping ChiuYa-Ping HsiehCen-Shawn WuKai-Shin Li
口試日期:2021-07-23
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:123
中文關鍵詞:負微分電阻缺陷二硫化鉬場效應電晶體石墨烯熱電子電晶體X射線光光電子能譜拉曼光致發光超透鏡偏振
外文關鍵詞:negative differential resistance (NDR)defectMoS2field effect transistor (FET)graphenehot electron transistor (HET)X-ray photoelectron spectroscopy (XPS)Ramanphotoluminescence (PL)metalenspolarization
DOI:10.6342/NTU202101929
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,二維材料例如石墨烯(graphene)及過渡金屬硫化物(transition metal dichalcogenides, TMDs)已經被廣泛的研究,加上先進奈米科技也被發展用來製作新穎且微小化結構的電子或光學元件,因此二維材料與現今製程技術的整合將變得越來越重要。在此論文中,我們主要探討了缺陷的單層二硫化鉬(Molybdenum disulfide, MoS2)場效應電晶體(field effect transistors, FETs)及石墨烯基極熱電子電晶體(hot electron transistors, HETs)之電特性研究,此外,也特別針對介電質超透鏡(metalens)的光特性進行了實驗與討論。
負微分電阻(negative differential resistance, NDR)效應因其特殊的電子傳輸性質而被廣泛研究於許多應用。然而,有別於完美晶格結構的單層過渡金屬硫化物,此效應受晶格變形或硫原子缺陷所影響的效果更為明顯。因此在此研究中,我們提出了三種方式來製作具有缺陷的單層二硫化鉬場效應電晶體,包含氫氧化鉀(KOH)化學處理,電子束轟擊,與調整合成比例等方法。此外,我們也探討了硫缺陷與電子傳輸或光譜特性(包含X射線光光電子能譜,拉曼,光致發光)之間的關聯性。根據上述的結果,負微分電阻效應確實可以於缺陷的單層二硫化鉬場效應電晶體中被有效地觀測到,而經由原子的硫鉬比(S/Mo ratio)計算後可發現此效應將發生於硫缺陷的比例約為4.5 ~ 6.5%的組成當中。
另一方面,考量石墨烯與現有矽半導體技術的整合,我們也呈現了可操作於微波頻段的垂直式石墨烯基極熱電子電晶體。其垂直結構是由位於射極-基極(emitter-base)介面的雙層穿隧位能障,以及位於基極-集極(base-collector)介面的自然生成之二氧化矽(SiO2)所組成,其中此研究中所使用的雙層穿隧位能障可由二氧化鈦/二氧化鉿(TiO2/HfO2)或二硫化鉬/六方氮化硼(MoS2/h-BN)構成。我們的元件也呈現了室溫量測下幾個重要的特性,包含了約為65 GHz的本質電流增益截止頻率,相對高的電流密度(∼ 200 A/cm2),高的共基極電流增益(α* ∼ 99.2%)以及適當的共射極電流增益(β* ∼ 2.7)。
除了以上關於二維材料與電子元件整合的探討外,我們也研究了奈米結構超表面(metasurface)的光學特性,由於此結構具有尺度縮小化的優勢,因此對於超薄光學元件的應用也已經吸引了非常多的注意。此研究利用了超透鏡上的奈米結構作為微小相位板來產生徑向上具有不同偏振方向的同心圓偏振光束,並且使用了斯托克斯參數(Stokes parameters)來解析光在行進方向上鑲嵌於光強度中的偏振態。
我們相信在微小化的結構中呈現空間偏振態的多樣性將能夠提供更多關於光學應用的一個嶄新的自由度。此外,缺陷工程技術應用於過渡金屬硫化物及其他二維材料為基底的電子元件中也將展露出更多價值,並在未來的電性應用上開創出一條重要的道路。
Two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs) are widely investigated in the recent decade. Owing to the advanced nanotechnologies which are developed to design novel and much smaller dimensional structures for either electrical or optical applications, integrating 2D-materials with nowadays device fabrications becomes more and more important. In this dissertation, we not only primarily demonstrate the electrical characterizations in both defective monolayer MoS2 field effect transistors (FETs) and graphene base hot electron transistors (HETs), but also specifically reveal the optical characterizations in dielectric metalens.
The negative differential resistance (NDR) effect is one of the special properties which has been extensively studied to design various applications. However, instead of defect free monolayer TMDs, the NDR effect is more profoundly affected by either deformations or sulfur (S) vacancies. Here, the defective monolayer MoS2 FETs are fabricated by means of three approaches such as chemical treatment with KOH, electron beam irradiation and intentional growth of MoS2. Besides, a correlation between the S-vacancies and either electron transport properties or spectroscopic characterizations, including X-ray photoelectron spectroscopy (XPS), Raman, and Photoluminescence (PL), is also presented. With the above knowledges, the NDR behavior can be effectively observed in the defective monolayer MoS2 FET with S-vacancies V_S~ 4.5 % to 6.5 %, which can be calculated from the atomic S/Mo ratio.
Furthermore, considering the integration of graphene with existing silicon semiconductor technologies, we also demonstrate a vertical graphene base hot electron transistor that performs in the radio frequency regime. The vertical structure is consisted of a double layered tunneling barrier (either TiO2/HfO2 or MoS2/h-BN) at emitter-base junction, and a native SiO2 at base-collector junction. Our device exhibits a relatively high current density (∼ 200 A/cm2), high common base current gain (α* ∼ 99.2%), and moderate common emitter current gain (β* ∼ 2.7) at room temperature with an intrinsic current gain cutoff frequency of ∼ 65 GHz.
In addition to the integration of 2D materials and electronics, we also present optical characterizations in nanostructured metasurfaces which have received extensive attention due to their reduced dimensionality for use with ultrathin optical components. We use nanostructures acting as tiny phase plates on a dielectric metalens to generate a concentric polarization beam with different orientations along the radial direction. Stokes parameters are utilized to investigate the comprehensive polarization states embedded in the optical intensity along the propagation direction.
We believe that the variety of spatial polarizations within a miniaturized configuration could provide a new degree of freedom for diverse optical applications. Furthermore, the defect engineered technologies in TMDs and 2D materials-based electronics may also pave the way for revealing more electrical applications in the future.
口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
Table of Contents viii
List of Figure xii
List of Table xxiii
Chapter 1 Introduction and Motivation 1
1.1 Dissertation Overview 7
1.2 Two-Dimensional Materials and Dielectric Nanostructures 9
1.2.1 Transition Metal Dichalcogenides 9
1.2.2 Graphene 11
1.2.3 Metalens 13
1.3 Spectroscopic Characterizations of MoS2 16
1.3.1 Raman and Photoluminescence Spectroscopy 16
1.3.2 X-Ray Photoelectron Spectroscopy 21
1.4 Electrical and Optical Characteristics 24
1.4.1 Negative Differential Resistance 24
1.4.2 Charge Transport Mechanisms 27
1.4.3 Polarization and Poincaré Sphere 29
1.5 Device Fabrication 34
1.5.1 Sample Preparation of 2D Materials 34
1.5.2 Transfer Method of MoS2 and graphene 37
Chapter 2 Defect-Engineered in MoS2 Transistors 38
2.1 Introduction 38
2.2 Results and Discussion 39
2.2.1 Spectroscopic Characterizations of The Defective MoS2 39
2.2.2 Electrical Characteristics 46
2.2.3 Simulation and Mechanisms 50
2.3 Summary 52
Chapter 3 High-Frequency Hot Electron Transistor 53
3.1 Introduction 53
3.2 Results and Discussion 54
3.2.1 Schematics of The Graphene Base HET 54
3.2.2 Energy Band Diagrams 56
3.2.3 DC Measurements 60
3.2.4 RF Measurements 64
3.3 Summary 68
Chapter 4 Space-Variant Linear Polarized Light on Metalens 69
4.1 Introduction 69
4.2 Results and Discussion 70
4.2.1 Nanostructures of Dielectric Metalens 70
4.2.2 Spatially Resolved Polarization States on Metalens 73
4.2.3 Analyzation of The Polarization Embedded in The Spatial Profile 75
4.2.4 Numerical Stokes Parameters Distribution 82
4.2.5 Polarized States Mapped on The Poincaré sphere 84
4.3 Summary 86
Chapter 5 Conclusion and Outlook 87
Appendix 88
Appendix A Single ZnO Nanoparticle Phototransistor 88
A.1 Introduction 88
A.2 Results and Discussion 90
A.2.1 Material Characterizations 90
A.2.2 Device Fabrication and Schematics of Structure 93
A.2.3 Electrical Characteristics 96
A.2.4 Temperature Dependence I-V Characteristics 100
A.2.5 Photoresponse Characteristics 102
A.3 Summary 107
Reference 108
1.L. Esaki, New phenomenon in narrow germanium p-n junctions [3]. Physical Review 109, 603-604 (1958).
2.L. Esaki, R. Tsu, Superlattice and Negative Differential Conductivity in Semiconductors. IBM Journal of Research and Development 14, 61-65 (1970).
3.A. Sengupta, S. Mahapatra, Negative differential resistance and effect of defects and deformations in MoS2 armchair nanoribbon metal-oxide-semiconductor field effect transistor. Journal of Applied Physics 114, 194513 (2013).
4.K. Cho et al., Electrical and Optical Characterization of MoS2 with Sulfur Vacancy Passivation by Treatment with Alkanethiol Molecules. ACS Nano 9, 8044-8053 (2015).
5.M. R. Islam et al., Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. Nanoscale 6, 10033-10039 (2014).
6.Q. Ma et al., Controlled argon beam-induced desulfurization of monolayer molybdenum disulfide. Journal of Physics: Condensed Matter 25, 252201 (2013).
7.S. Mignuzzi et al., Effect of disorder on Raman scattering of single-layer MoS2. Physical Review B 91, 195411 (2015).
8.S. Bertolazzi et al., Engineering Chemically Active Defects in Monolayer MoS2 Transistors via Ion-Beam Irradiation and Their Healing via Vapor Deposition of Alkanethiols. Advanced Materials 29, 1606760 (2017).
9.H.-P. Komsa et al., Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Production and Doping. Physical Review Letters 109, 035503 (2012).
10.W. M. Parkin et al., Raman Shifts in Electron-Irradiated Monolayer MoS2. ACS Nano 10, 4134-4142 (2016).
11.C. Mead, The tunnel-emission amplifier. Proceedings of the IRE 48, 359-361 (1960).
12.S. B. Desai et al., MoS2 transistors with 1-nanometer gate lengths. Science 354, 99-102 (2016).
13.T. Ueda, M. Ishida, T. Tanaka, D. Ueda, GaN transistors on Si for switching and high-frequency applications. Japanese Journal of Applied Physics 53, 100214 (2014).
14.F. Giannazzo et al., Fabrication and characterization of graphene heterostructures with nitride semiconductors for high frequency vertical transistors. physica status solidi (a) 215, 1700653 (2018).
15.W. Dumke, J. Woodall, V. Rideout, GaAs-GaAlAs heterojunction transistor for high frequency operation. Solid-State Electronics 15, 1339-1343 (1972).
16.T. Hanna et al., 2.5 GHz integrated graphene RF power amplifier on SiC substrate. Solid-State Electronics 127, 26-31 (2017).
17.I. Lee et al., Schottky Barrier Variable Graphene/Multilayer-MoS2 Heterojunction Transistor Used to Overcome Short Channel Effects. ACS Applied Materials & Interfaces 12, 2854-2861 (2019).
18.D. Somvanshi, E. Ber, C. S. Bailey, E. Pop, E. Yalon, Improved Current Density and Contact Resistance in Bilayer MoSe2 Field Effect Transistors by AlO x Capping. ACS Applied Materials & Interfaces 12, 36355-36361 (2020).
19.A. S. Mayorov et al., Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano letters 11, 2396-2399 (2011).
20.S. Sonde et al., Role of graphene/substrate interface on the local transport properties of the two-dimensional electron gas. Applied Physics Letters 97, 132101 (2010).
21.T. Echtermeyer et al., Graphene field-effect devices. The European Physical Journal Special Topics 148, 19-26 (2007).
22.N. Lu, L. Wang, L. Li, M. Liu, A review for compact model of graphene field-effect transistors. Chinese Physics B 26, 036804 (2017).
23.R. Cheng et al., High-frequency self-aligned graphene transistors with transferred gate stacks. Proceedings of the National Academy of Sciences 109, 11588-11592 (2012).
24.Q. He, S. Wu, Z. Yin, H. Zhang, Graphene-based electronic sensors. Chemical Science 3, 1764-1772 (2012).
25.S. Mao, J. Chen, Graphene-based electronic biosensors. Journal of Materials Research 32, 2954-2965 (2017).
26.Y.-M. Lin et al., Operation of graphene transistors at gigahertz frequencies. Nano letters 9, 422-426 (2008).
27.P. Avouris, Graphene: electronic and photonic properties and devices. Nano letters 10, 4285-4294 (2010).
28.Q. Wilmart et al., High-Frequency Limits of Graphene Field-Effect Transistors with Velocity Saturation. Applied Sciences 10, 446 (2020).
29.Y. W. Lan et al., Atomic‐Monolayer MoS2 Band‐to‐Band Tunneling Field‐Effect Transistor. Small 12, 5676-5683 (2016).
30.T. Georgiou et al., Vertical field-effect transistor based on graphene–WS 2 heterostructures for flexible and transparent electronics. Nature nanotechnology 8, 100 (2013).
31.H. Yang et al., Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336, 1140-1143 (2012).
32.S. Vaziri et al., Going ballistic: Graphene hot electron transistors. Solid State Communications 224, 64-75 (2015).
33.F. Giannazzo, G. Greco, F. Roccaforte, S. Sonde, Vertical transistors based on 2D materials: Status and prospects. Crystals 8, 70 (2018).
34.F. Giannazzo et al., High-Performance Graphene/AlGaN/GaN Schottky Junctions for Hot Electron Transistors. ACS Applied Electronic Materials 1, 2342-2354 (2019).
35.S. Vaziri et al., A graphene-based hot electron transistor. Nano letters 13, 1435-1439 (2013).
36.C. Zeng et al., Vertical graphene-base hot-electron transistor. Nano letters 13, 2370-2375 (2013).
37.C. M. Torres Jr et al., High-current gain two-dimensional MoS2-base hot-electron transistors. Nano letters 15, 7905-7912 (2015).
38.H. Guo et al., All-two-dimensional-material hot electron transistor. IEEE Electron Device Letters 39, 634-637 (2018).
39.W. Liu et al., Approaching the Collection Limit in Hot Electron Transistor with Ambipolar Hot Carrier Transport. ACS nano, (2019).
40.A. Zubair et al., Hot electron transistor with van der Waals base-collector heterojunction and high-performance GaN emitter. Nano letters 17, 3089-3096 (2017).
41.B. D. Kong, Z. Jin, K. W. Kim, Hot-electron transistors for terahertz operation based on two-dimensional crystal heterostructures. Physical Review Applied 2, 054006 (2014).
42.V. Di Lecce et al., Graphene-base heterojunction transistor: An attractive device for terahertz operation. IEEE transactions on electron devices 60, 4263-4268 (2013).
43.F. Driussi, P. Palestri, L. Selmi, Modeling, simulation and design of the vertical Graphene Base Transistor. Microelectronic Engineering 109, 338-341 (2013).
44.S. Venica et al., Simulation of DC and RF performance of the graphene base transistor. IEEE Transactions on Electron Devices 61, 2570-2576 (2014).
45.C. Liu, W. Ma, M. Chen, W. Ren, D. Sun, A vertical silicon-graphene-germanium transistor. Nature communications 10, 1-7 (2019).
46.A. V. Kildishev, A. Boltasseva, V. M. Shalaev, Planar Photonics with Metasurfaces. Science 339, (2013).
47.V.-C. Su, C. H. Chu, G. Sun, D. P. Tsai, Advances in optical metasurfaces: fabrication and applications invited. Opt. Express 26, 13148-13182 (2018).
48.H. W. Liang et al., Ultrahigh Numerical Aperture Metalens at Visible Wavelengths. Nano Lett. 18, 4460-4466 (2018).
49.A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, A. Faraon, Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, (2015).
50.X. Z. Chen et al., Longitudinal Multifoci Metalens for Circularly Polarized Light. Advanced Optical Materials 3, 1201-1206 (2015).
51.P. Li et al., Creation of independently controllable multiple focal spots from segmented Pancharatnam-Berry phases. Sci. Rep. 8, (2018).
52.A. She, S. Y. Zhang, S. Shian, D. R. Clarke, F. Capasso, Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Science Advances 4, (2018).
53.N. Yu et al., A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces. Nano Letters 12, 6328-6333 (2012).
54.M. Q. Mehmood et al., Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices. Advanced Materials 28, 2533-+ (2016).
55.W. T. Chen et al., A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220-+ (2018).
56.S. M. Wang et al., A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227-232 (2018).
57.S. M. Wang et al., Broadband achromatic optical metasurface devices. Nat. Commun. 8, (2017).
58.S. Shrestha, A. C. Overvig, M. Lu, A. Stein, N. Yu, Broadband achromatic dielectric metalenses. Light: Science & Applications 7, 85 (2018).
59.F. Aieta, M. A. Kats, P. Genevet, F. Capasso, Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342-1345 (2015).
60.L. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, R. Alfano, Deep optical imaging of tissue using the second and third near-infrared spectral windows. Journal of Biomedical Optics 19, 056004 (2014).
61.G. Gibson et al., Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448-5456 (2004).
62.Y. W. Huang et al., Versatile total angular momentum generation using cascaded J-plates. Opt. Express 27, 7469-7484 (2019).
63.H. Wang et al., Spatial multiplexing plasmonic metalenses based on nanometer cross holes. New Journal of Physics 20, (2018).
64.R. Fickler, R. Lapkiewicz, S. Ramelow, A. Zeilinger, Quantum entanglement of complex photon polarization patterns in vector beams. Phys. Rev. A 89, (2014).
65.M. McLaren, T. Konrad, A. Forbes, Measuring the nonseparability of vector vortex beams. Phys. Rev. A 92, (2015).
66.E. Karimi et al., Spin-orbit hybrid entanglement of photons and quantum contextuality. Phys. Rev. A 82, (2010).
67.R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, F. Capasso, Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896-900 (2017).
68.W. Xiong et al., Complete polarization control in multimode fibers with polarization and mode coupling. Light-Science & Applications 7, (2018).
69.Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology 7, 699-712 (2012).
70.W. Choi et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today 20, 116-130 (2017).
71.J.-F. Paul, E. Payen, Vacancy formation on MoS2 hydrodesulfurization catalyst: DFT study of the mechanism. The Journal of Physical Chemistry B 107, 4057-4064 (2003).
72.S. Wi et al., Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping. ACS nano 8, 5270-5281 (2014).
73.K. Chang et al., MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS nano 8, 7078-7087 (2014).
74.K. Weinert, I. Inasaki, J. Sutherland, T. Wakabayashi, Dry machining and minimum quantity lubrication. CIRP annals 53, 511-537 (2004).
75.A. K. Geim, K. S. Novoselov, The rise of graphene. Nature Materials 6, 183-191 (2007).
76.A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, The electronic properties of graphene. Reviews of Modern Physics 81, 109-162 (2009).
77.L. Brey, H. A. Fertig, Electronic states of graphene nanoribbons studied with the Dirac equation. Physical Review B 73, 235411 (2006).
78.Z.-B. Fan et al., A broadband achromatic metalens array for integral imaging in the visible. Light: Science & Applications 8, 67 (2019).
79.A. Pors, M. G. Nielsen, R. L. Eriksen, S. I. Bozhevolnyi, Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett 13, 829-834 (2013).
80.D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil, Flat dielectric grating reflectors with focusing abilities. Nature Photonics 4, 466-470 (2010).
81.F. Falcone et al., Babinet Principle Applied to the Design of Metasurfaces and Metamaterials. Physical Review Letters 93, 197401 (2004).
82.A. Arbabi, Y. Horie, M. Bagheri, A. Faraon, Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology 10, 937-943 (2015).
83.M. I. Shalaev et al., High-Efficiency All-Dielectric Metasurfaces for Ultracompact Beam Manipulation in Transmission Mode. Nano Letters 15, 6261-6266 (2015).
84.A. C. Ferrari et al., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters 97, 187401 (2006).
85.A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, Eklund, Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films. Nano Letters 6, 2667-2673 (2006).
86.D. Graf et al., Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene. Nano Letters 7, 238-242 (2007).
87.J. L. Verble, T. J. Wieting, Lattice Mode Degeneracy in MoS2 and Other Layer Compounds. Physical Review Letters 25, 362-365 (1970).
88.J. L. Verble, T. J. Wietling, P. R. Reed, Rigid-layer lattice vibrations and van der waals bonding in hexagonal MoS2. Solid State Communications 11, 941-944 (1972).
89.C. Lee et al., Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 4, 2695-2700 (2010).
90.A. Molina-Sánchez, L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2. Physical Review B 84, 155413 (2011).
91.K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters 105, 136805 (2010).
92.A. Ramasubramaniam, Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Physical Review B 86, 115409 (2012).
93.T. Cheiwchanchamnangij, W. R. L. Lambrecht, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Physical Review B 85, 205302 (2012).
94.A. Splendiani et al., Emerging Photoluminescence in Monolayer MoS2. Nano Letters 10, 1271-1275 (2010).
95.J. C. V. a. I. S. Gilmore, Surface Analysis: The Principal Techniques, 2nd Edition. (Manchester Interdisciplinary Biocentre, University of Manchester, UK, National Physical Laboratory, Teddington, UK, 2011).
96.D. Ganta, S. Sinha, R. T. Haasch, 2-D Material Molybdenum Disulfide Analyzed by XPS. Surface Science Spectra 21, 19-27 (2014).
97.M. Herzig et al., Multiple slopes in the negative differential resistance region of NbO x -based threshold switches. Journal of Physics D: Applied Physics 52, 325104 (2019).
98.S. Chen, P. B. Griffin, J. D. Plummer, Negative Differential Resistance Circuit Design and Memory Applications. IEEE Transactions on Electron Devices 56, 634-640 (2009).
99.S. Wang et al., Leveraging nMOS Negative Differential Resistance for Low Power, High Reliability Magnetic Memory. IEEE Transactions on Electron Devices 64, 4084-4090 (2017).
100.K.-H. Kim et al., A multiple negative differential resistance heterojunction device and its circuit application to ternary static random access memory. Nanoscale Horizons 5, 654-662 (2020).
101.R. J. Hwu, A. Djuandi, S. C. Lee, Negative differential resistance (NDR) frequency conversion with gain. IEEE Transactions on Microwave Theory and Techniques 41, 890-893 (1993).
102.V. Ulansky, A. Raza, H. Oun, Electronic Circuit with Controllable Negative Differential Resistance and its Applications. Electronics 8, 409 (2019).
103.F. Léonard, J. Tersoff, Negative Differential Resistance in Nanotube Devices. Physical Review Letters 85, 4767-4770 (2000).
104.M. Rinkiö, A. Johansson, V. Kotimäki, P. Törmä, Negative Differential Resistance in Carbon Nanotube Field-Effect Transistors with Patterned Gate Oxide. ACS Nano 4, 3356-3362 (2010).
105.Y. Wu et al., Three-Terminal Graphene Negative Differential Resistance Devices. ACS Nano 6, 2610-2616 (2012).
106.P. Sharma, L. S. Bernard, A. Bazigos, A. Magrez, A. M. Ionescu, Room-Temperature Negative Differential Resistance in Graphene Field Effect Transistors: Experiments and Theory. ACS Nano 9, 620-625 (2015).
107.S. Rathi et al., Observation of negative differential resistance in mesoscopic graphene oxide devices. Scientific Reports 8, 7144 (2018).
108.S.-T. Yang et al., Room temperature negative differential resistance in clay-graphite paper transistors. Carbon 176, 440-445 (2021).
109.T. Li et al., Negative transconductance and negative differential resistance in asymmetric narrow bandgap 2D–3D heterostructures. Nanoscale 11, 4701-4706 (2019).
110.N. T. Duong et al., Parameter control for enhanced peak-to-valley current ratio in a MoS2/MoTe2 van der Waals heterostructure. Nanoscale 10, 12322-12329 (2018).
111.T. Roy et al., Dual-Gated MoS2/WSe2 van der Waals Tunnel Diodes and Transistors. ACS Nano 9, 2071-2079 (2015).
112.C.-Y. Lin et al., Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon. ACS Nano 11, 11015-11023 (2017).
113.Y.-C. Lin et al., Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nature Communications 6, 7311 (2015).
114.S.M. Sze et al., Physics of Semiconductor Devices, 197-240 (2006)
115.K. L. Jensen, Electron emission theory and its application: Fowler–Nordheim equation and beyond. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 21, 1528-1544 (2003).
116.E. Gentzsch, Polarization Handedness Convention. THORLABS, (2017).
117.J. A. Jones, A. J. D’Addario, B. L. Rojec, G. Milione, E. J. Galvez, The Poincaré-sphere approach to polarization: Formalism and new labs with Poincaré beams. American Journal of Physics 84, 822-835 (2016).
118.H. Li et al., From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Advanced Functional Materials 22, 1385-1390 (2012).
119.S. Tongay et al., Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged and free excitons. Scientific Reports 3, 2657 (2013).
120.C. Rice et al., Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Physical Review B 87, 081307 (2013).
121.H. Li et al., Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature Materials 15, 48-53 (2016).
122.E. Scalise, M. Houssa, G. Pourtois, V. V. Afanas′ev, A. Stesmans, First-principles study of strained 2D MoS2. Physica E: Low-dimensional Systems and Nanostructures 56, 416-421 (2014).
123.B. Chakraborty et al., Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Physical Review B 85, 161403 (2012).
124.I. S. Kim et al., Influence of Stoichiometry on the Optical and Electrical Properties of Chemical Vapor Deposition Derived MoS2. ACS Nano 8, 10551-10558 (2014).
125.K. C. Kwon et al., Synthesis of Atomically Thin Transition Metal Disulfides for Charge Transport Layers in Optoelectronic Devices. ACS Nano 9, 4146-4155 (2015).
126.D. M. Sim et al., Controlled Doping of Vacancy-Containing Few-Layer MoS2 via Highly Stable Thiol-Based Molecular Chemisorption. ACS Nano 9, 12115-12123 (2015).
127.S. W. Han et al., Electron beam-formed ferromagnetic defects on MoS2 surface along 1 T phase transition. Scientific Reports 6, 38730 (2016).
128.S. McDonnell, R. Addou, C. Buie, R. M. Wallace, C. L. Hinkle, Defect-Dominated Doping and Contact Resistance in MoS2. ACS Nano 8, 2880-2888 (2014).
129.C.-P. Lin et al., Local Modulation of Electrical Transport in 2D Layered Materials Induced by Electron Beam Irradiation. ACS Applied Electronic Materials 1, 684-691 (2019).
130.G. P. Lansbergen et al., Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET. Nature Physics 4, 656-661 (2008).
131.J. Hafner, Ab-initio simulations of materials using VASP: Density-functional theory and beyond. Journal of Computational Chemistry 29, 2044-2078 (2008).
132.Y. Tsai, Y. Li, Impact of Doping Concentration on Electronic Properties of Transition Metal-Doped Monolayer Molybdenum Disulfide. IEEE Transactions on Electron Devices 65, 733-738 (2018).
133.P. X. Tran, Modulation of Negative Differential Resistance in Graphene Field-Effect Transistors by Tuning the Contact Resistances. Journal of Electronic Materials 47, 5905-5912 (2018).
134.S. Vaziri et al., Bilayer insulator tunnel barriers for graphene-based vertical hot-electron transistors. Nanoscale 7, 13096-13104 (2015).
135.Y. Zhang, L. Zhang, C. Zhou, Review of Chemical Vapor Deposition of Graphene and Related Applications. Accounts of Chemical Research 46, 2329-2339 (2013).
136.T.-o. Terasawa, K. Saiki, Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon 50, 869-874 (2012).
137.A. Reina et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters 9, 30-35 (2008).
138.K. B. C. Simbulan, P.-C. Chen, Y.-Y. Lin, Y.-W. Lan, A Standard and Reliable Method to Fabricate Two-Dimensional Nanoelectronics. JoVE (Journal of Visualized Experiments), e57885 (2018).
139.R. Bistritzer, A. H. MacDonald, Electronic cooling in graphene. Physical Review Letters 102, 206410 (2009).
140.J. C. Song, L. S. Levitov, Energy flows in graphene: hot carrier dynamics and cooling. Journal of Physics: Condensed Matter 27, 164201 (2015).
141.D. M. Pozar, Microwave engineering. (John Wiley & Sons, 2009).
142.C.-H. Yeh et al., Gigahertz flexible graphene transistors for microwave integrated circuits. ACS nano 8, 7663-7670 (2014).
143.D. Krasnozhon, D. Lembke, C. Nyffeler, Y. Leblebici, A. Kis, MoS2 transistors operating at gigahertz frequencies. Nano letters 14, 5905-5911 (2014).
144.Y. Le et al., Small-signal model parameter extraction for AlGaN/GaN HEMT. Journal of Semiconductors 37, 034003 (2016).
145.W. Mehr et al., Vertical graphene base transistor. IEEE Electron Device Letters 33, 691-693 (2012).
146.Z. Yang et al., in High-Frequency GaN Electronic Devices. (Springer, 2020), pp. 109-157.
147.Z. Yang et al., Current gain above 10 in sub-10 nm base III-Nitride tunneling hot electron transistors with GaN/AlN emitter. 108, 192101 (2016).
148.M. Khorasaninejad et al., Polarization-Insensitive Metalenses at Visible Wavelengths. Nano Lett 16, 7229-7234 (2016).
149.M. Khorasaninejad, F. Capasso, Metalenses: Versatile multifunctional photonic components. Science 358, 8 (2017).
150.R. Z. Zuo, W. W. Liu, H. Cheng, S. Q. Chen, J. G. Tian, Breaking the Diffraction Limit with Radially Polarized Light Based on Dielectric Metalenses. Advanced Optical Materials 6, (2018).
151.A. M. Beckley, T. G. Brown, M. A. Alonso, Full Poincaré beams. Optics Express 18, 10777-10785 (2010).
152.T. D. Huang, T. H. Lu, Partial Poincaré beams generated from wavelength-mismatched vortex plates. Optics Express 25, 33184-33192 (2017).
153.G. Zhu, R. Yang, S. Wang, Z. L. Wang, Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array. Nano Lett. 10, 3151-3155 (2010).
154.M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang, Nanowire dye-sensitized solar cells. Nat. Mater 4, 455-459 (2005).
155.S. Chu et al., Electrically pumped waveguide lasing from ZnO nanowires. Nat. Nanotechnol. 6, 506-510 (2011).
156.H. Kind, H. Q. Yan, B. Messer, M. Law, P. D. Yang, Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14, 158-160 (2002).
157.H. Frenzel et al., Recent Progress on ZnO-Based Metal-Semiconductor Field-Effect Transistors and Their Application in Transparent Integrated Circuits. Adv. Mater. 22, 5332-5349 (2010).
158.H. Bong et al., High-mobility low-temperature ZnO transistors with low-voltage operation. Appl. Phys. Lett. 96, (2010).
159.R. L. Hoffman, ZnO-channel thin-film transistors: Channel mobility. J. Appl. Phys. 95, 5813-5819 (2004).
160.E. M. C. Fortunato et al., Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Appl. Phys. Lett. 85, 2541-2543 (2004).
161.W. I. Park, J. S. Kim, G. C. Yi, M. H. Bae, H. J. Lee, Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors. Appl. Phys. Lett. 85, 5052-5054 (2004).
162.P.-C. Chang et al., High-performance ZnO nanowire field effect transistors. Appl. Phys. Lett. 89, (2006).
163.G. D. Yuan et al., p-type ZnO nanowire arrays. Nano Lett. 8, 2591-2597 (2008).
164.J. Goldberger, D. J. Sirbuly, M. Law, P. Yang, ZnO nanowire transistors. J. Phys. Chem. B 109, 9-14 (2005).
165.H. Li et al., The Modulation of Optical Property and its Correlation with Microstructures of ZnO Nanowires. Nanoscale Res. Lett. 4, 1183-1190 (2009).
166.Z. L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter 16, R829-R858 (2004).
167.J. Liu et al., Selective growth and properties of zinc oxide nanostructures. Scripta Mater. 55, 795-798 (2006).
168.D. Segets, J. Gradl, R. K. Taylor, V. Vassilev, W. Peukert, Analysis of Optical Absorbance Spectra for the Determination of ZnO Nanoparticle Size Distribution, Solubility, and Surface Energy. Acs Nano 3, 1703-1710 (2009).
169.H. M. Yang, In-vitro cytotoxicity of biosynthesized Zinc oxide nanoparticles towards cardiac cell lines of Catla catla. Biomedical Research-India 28, 2262-2266 (2017).
170.N. Linh-Nam et al., Photo-response of a nanopore device with a single embedded ZnO nanoparticle. Nanotechnology 23, (2012).
171.S. H. Brewer, S. Franzen, Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces: correlation of reflectivity, skin depth, and plasmon frequency with conductivity. J. Alloys Compd. 338, 73-79 (2002).
172.S. N. Cha et al., High performance ZnO nanowire field effect transistor using self-aligned nanogap gate electrodes. Appl. Phys. Lett. 89, (2006).
173.J. Xiang et al., Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489-493 (2006).
174.S. A. Dayeh et al., High electron mobility InAs nanowire field-effect transistors. Small 3, 326-332 (2007).
175.Q. Cao, S.-J. Han, G. S. Tulevski, A. D. Franklin, W. Haensch, Evaluation of Field-Effect Mobility and Contact Resistance of Transistors That Use Solution-Processed Single-Walled Carbon Nanotubes. Acs Nano 6, 6471-6477 (2012).
176.Y. Xu, T. Minari, K. Tsukagoshi, J. A. Chroboczek, G. Ghibaudo, Direct evaluation of low-field mobility and access resistance in pentacene field-effect transistors. J. Appl. Phys. 107, (2010).
177.G. Horowitz, R. Hajlaoui, D. Fichou, A. El Kassmi, Gate voltage dependent mobility of oligothiophene field-effect transistors. J. Appl. Phys. 85, 3202-3206 (1999).
178.C. Soci et al., ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 1003-1009 (2007).
179.M. Y. Lu, M. P. Lu, S. J. You, C. W. Chen, Y. J. Wang, Quantifying the barrier lowering of ZnO Schottky nanodevices under UV light. Sci. Rep. 5, 8 (2015).
180.Y. Wang et al., High performance charge-transfer induced homojunction photodetector based on ultrathin ZnO nanosheet. Appl. Phys. Lett. 114, 5 (2019).
181.T. Ando, A. B. Fowler, F. Stern, ELECTRONIC-PROPERTIES OF TWO-DIMENSIONAL SYSTEMS. Rev. Mod. Phys. 54, 437-672 (1982).
182.R. Graham, D. Yu, High Carrier Mobility in Single Ultrathin Colloidal Lead Selenide Nanowire Field Effect Transistors. Nano Lett. 12, 4360-4365 (2012).
183.M. H. Somerville, D. R. Greenberg, J. A. Delalamo, TEMPERATURE AND CARRIER DENSITY-DEPENDENCE OF MOBILITY IN A HEAVILY-DOPED QUANTUM-WELL. Appl. Phys. Lett. 64, 3276-3278 (1994).
184.I. G. Lezama et al., Single-crystal organic charge-transfer interfaces probed using Schottky-gated heterostructures. Nat. Mater 11, 788-794 (2012).
185.T. Zhai et al., A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors. Sensors 9, 6504-6529 (2009).
186.X. Liu et al., All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 5, 9 (2014).
187.W. Tian et al., Ultrahigh quantum efficiency of CuO nanoparticle decorated In2Ge2O7 nanobelt deep-ultraviolet photodetectors. Nanoscale 4, 6318-6324 (2012).
188.L. Hu, J. Yan, M. Liao, L. Wu, X. Fang, Ultrahigh External Quantum Efficiency from Thin SnO2 Nanowire Ultraviolet Photodetectors. Small 7, 1012-1017 (2011).
189.L. H. Zeng et al., High-responsivity UV-Vis Photodetector Based on Transferable WS2 Film Deposited by Magnetron Sputtering. Sci. Rep. 6, (2016).
190.O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497-501 (2013).
191.Y. W. Lan et al., Self-aligned graphene oxide nanoribbon stack with gradient bandgap for visible-light photodetection. Nano Energy 27, 114-120 (2016).
192.X. Gong et al., High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm. Science 325, 1665-1667 (2009).
193.J. B. K. Law, J. T. L. Thong, Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time. Appl. Phys. Lett. 88, (2006).
194.L. J. Mandalapu, F. Xiu, Z. Yang, J. L. Liu, Ultraviolet photoconductive detectors based on Ga-doped ZnO films grown by molecular-beam epitaxy. Solid·State Electron. 51, 1014-1017 (2007).
195.P. Sharma, K. Sreenivas, K. V. Rao, Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering. J. Appl. Phys. 93, 3963-3970 (2003).
196.E. Nurfani, M. A. K. Purbayanto, T. Aono, K. Takase, Y. Darma, Origin of fast-response photocurrent in ZnO thin film. Opt. Mater. 84, 453-458 (2018).
197.R. Khokhra, B. Bharti, H. N. Lee, R. Kumar, Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method. Sci. Rep. 7, (2017).
198.H. K. Yadav, K. Sreenivas, V. Gupta, Study of metal/ZnO based thin film ultraviolet photodetectors: The effect of induced charges on the dynamics of photoconductivity relaxation. J. Appl. Phys. 107, (2010).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊