跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/08 20:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳冠宇
研究生(外文):Kuan-Yu Chen
論文名稱:自第一原理架構泛用么正黑洞蒸發模型之分析
論文名稱(外文):Analysis of generic unitary black-hole evaporation models from first principles
指導教授:陳丕燊陳丕燊引用關係
指導教授(外文):Pisin Chen
口試委員:黃宇廷陳哲佑
口試委員(外文):Yu-Tin HuangChe-Yu Chen
口試日期:2021-06-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:23
中文關鍵詞:黑洞蒸發資訊遺失悖論量子位元模型黑洞熵軟髮
外文關鍵詞:Black hole evaporationInformation loss paradoxQubit modelBlack hole entropySoft hair
DOI:10.6342/NTU202102861
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
我們介紹了一個可以描述自洽的黑洞蒸發圖像所需的必要特徵的泛用模型。然而儘管新模型的解釋能力十分強大,我們還是展示出了在本模型下黑洞必然是會漏出資訊的。一個么正的黑洞蒸發過程必須包含一個"隱藏區域"-一種在事件視界上隱密的零能量衰減蒸發過程,來暫時儲存資訊。除此之外,黑洞的微觀態密度與宏觀的熱力學性質在確立最終爆發與零能量極點可相互連結,與正比於黑洞蒸發末時貝肯斯坦上限對應的熵之紫外界限時,兩者可以相互關聯。
Based on the discretized horizon picture, we introduce a macroscopic effective model of the horizon area quanta that encapsulates the features necessary for black holes to evaporate consistently. The price to pay is the introduction of a ``hidden sector'' that represents our lack of knowledge about the final destination of the black hole entropy. We focus on the peculiar form of the interaction between this hidden sector and the black hole enforced by the self-consistency. Despite the expressive power of the model, we arrive at several qualitative statements.
Furthermore, we identify these statements as features inside the microscopic density of states of the horizon quanta with the dimension of the configuration space being associated with the area per quanta in Planck unit, a UV cutoff proportional to the amount of excess entropy relative to Bekenstein's law at the end of evaporation, and a zero-frequency-pole-like structure corresponding to, similarly, the amount of excess entropy at IR limit. We then relate this nearly-zero-frequency structure to the soft hairs proposed by Strominger et al., and argue that we should consider deviating away from the zero frequency limit for soft hairs to participate in the black hole evaporation.
Verification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要v
Abstract vii
Contents ix
List of Figures xi
Chapter 1 Introduction 1
Chapter 2 CCCY Horizon Model 5
2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Quanta counting and Bekenstein’s bound . . . . . . . . . . . . . . . 7
2.3 Dimensional analysis and the extended Bekenstein’s law . . . . . . . 9
Chapter 3 Statistical analysis 13
3.1 Dimensionality and noncommutativity of the configuration space . . 15
Chapter 4 Conclusion 17
References 19
[1] R. J. Adler, P. Chen, and D. I. Santiago. The Generalized uncertainty principle and black hole remnants. Gen. Rel. Grav., 33:2101–2108, 2001.
[2] A. Almheiri, N. Engelhardt, D. Marolf, and H. Maxfield. The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole. JHEP, 12:063, 2019.
[3] A. Almheiri, R. Mahajan, J. Maldacena, and Y. Zhao. The Page curve of Hawking radiation from semiclassical geometry. JHEP, 03:149, 2020.
[4] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully. Black Holes: Complementarity or Firewalls? JHEP, 02:062, 2013.
[5] J. M. Bardeen, B. Carter, and S. W. Hawking. The Four laws of black hole mechanics. Commun. Math. Phys., 31:161–170, 1973.
[6] E. Batista and S. Majid. Noncommutative geometry of angular momentum space U(su(2)). J. Math. Phys., 44:107–137, 2003.
[7] J. D. Bekenstein. Black holes and entropy. Phys. Rev. D, 7:2333–2346, 1973.
[8] D. Carney, L. Chaurette, D. Neuenfeld, and G. W. Semenoff. Infrared quantum information. Phys. Rev. Lett., 119(18):180502, 2017.
[9] P. Chen and G. Mourou. Accelerating Plasma Mirrors to Investigate Black Hole Information Loss Paradox. Phys. Rev. Lett., 118(4):045001, 2017.
[10] P. Chen, Y. C. Ong, and D.h. Yeom. Black Hole Remnants and the Information Loss Paradox. Phys. Rept., 603:1–45, 2015.
[11] H.W. Chiang, Y.C. Hu, and P. Chen. Quantization of spacetime based on a spacetime interval operator. Phys. Rev. D, 93(8):084043, 2016.
[12] H.W. Chiang, Y.H. Kung, and P. Chen. Modification to the Hawking temperature of a dynamical black hole by a flowinduced supertranslation. 4 2020.
[13] P. T. Chrusciel, J. Lopes Costa, and M. Heusler. Stationary Black Holes: Uniqueness and Beyond. Living Rev. Rel., 15:7, 2012.
[14] M.Z. Chung, Y.T. Huang, J.W. Kim, and S. Lee. The simplest massive Smatrix: from minimal coupling to Black Holes. JHEP, 04:156, 2019.
[15] A. Connes. Gravity coupled with matter and foundation of noncommutative geometry. Commun. Math. Phys., 182:155–176, 1996.
[16] J. S. Cotler, G. GurAri, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka. Black Holes and Random Matrices. JHEP, 05:118, 2017. [Erratum: JHEP 09, 002 (2018)].
[17] S. Doplicher, K. Fredenhagen, and J. E. Roberts. The Quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys., 172:187 220, 1995.
[18] E. E. Flanagan. OrderUnity Correction to Hawking Radiation. Phys. Rev. Lett., 127(4):041301, 2021.
[19] G. W. Gibbons and S. W. Hawking. Action Integrals and Partition Functions in Quantum Gravity. Phys. Rev. D, 15:2752–2756, 1977.
[20] A. Hashimoto and N. Itzhaki. Noncommutative YangMills and the AdS / CFT correspondence. Phys. Lett. B, 465:142–147, 1999.
[21] S. W. Hawking. Particle Creation by Black Holes. Commun. Math. Phys., 43:199 220, 1975. [,167(1975)]. [22] S. W. Hawking. Breakdown of Predictability in Gravitational Collapse. Phys. Rev. D, 14:2460–2473, 1976.
[23] S. W. Hawking, M. J. Perry, and A. Strominger. Soft Hair on Black Holes. Phys. Rev. Lett., 116(23):231301, 2016.
[24] S. W. Hawking, M. J. Perry, and A. Strominger. Superrotation Charge and Supertranslation Hair on Black Holes. JHEP, 05:161, 2017.
[25] P. Hayden and J. Preskill. Black holes as mirrors: Quantum information in random subsystems. JHEP, 09:120, 2007.
[26] M. Hotta, Y. Nambu, and K. Yamaguchi. SoftHairEnhanced Entanglement Beyond Page Curves in a Blackhole Evaporation Qubit Model. Phys. Rev. Lett., 120(18):181301, 2018.
[27] M. Hotta, R. Schützhold, and W. G. Unruh. Partner particles for moving mirror radiation and black hole evaporation. Phys. Rev. D, 91(12):124060, 2015.
[28] J. Hwang, D. S. Lee, D. Nho, J. Oh, H. Park, D.h. Yeom, and H. Zoe. Page curves for tripartite systems. Class. Quant. Grav., 34(14):145004, 2017.
[29] J. Maldacena and L. Susskind. Cool horizons for entangled black holes. Fortsch. Phys., 61:781–811, 2013.
[30] S. D. Mathur. The Information paradox: A Pedagogical introduction. Class. Quant. Grav., 26:224001, 2009.
[31] D. N. Page. Information in black hole radiation. Phys. Rev. Lett., 71:3743–3746, 1993.
[32] M. K. Parikh. A Secret tunnel through the horizon. Int. J. Mod. Phys. D, 13:2351– 2354, 2004.
[33] S. Pasterski and H. Verlinde. HPS meets AMPS: How Soft Hair Dissolves the Firewall. 12 2020.
[34] G. Penington, S. H. Shenker, D. Stanford, and Z. Yang. Replica wormholes and the black hole interior. 11 2019.
[35] S. Ryu and T. Takayanagi. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett., 96:181602, 2006.
[36] J. Steinhauer. Observation of selfamplifying Hawking radiation in an analog blackhole laser. Nature Phys., 10:864, 2014.
[37] A. Strominger. On BMS Invariance of Gravitational Scattering. JHEP, 07:152, 2014.
[38] L. Susskind, L. Thorlacius, and J. Uglum. The Stretched horizon and black hole complementarity. Phys. Rev. D, 48:3743–3761, 1993.
[39] W. G. Unruh. Notes on black hole evaporation. Phys. Rev. D, 14:870, 1976.
[40] W. G. Unruh. Experimental black hole evaporation. Phys. Rev. Lett., 46:1351–1353, 1981.
[41] W. G. Unruh and R. M. Wald. On evolution laws taking pure states to mixed states in quantum field theory. Phys. Rev. D, 52:2176–2182, 1995.
[42] W. G. Unruh and R. M. Wald. Information Loss. Rept. Prog. Phys., 80(9):092002, 2017.
[43] E. P. Verlinde. On the Origin of Gravity and the Laws of Newton. JHEP, 04:029, 2011.
[44] R. M. Wald. Black hole entropy is the Noether charge. Phys. Rev., D48(8):R3427– R3431, 1993.
[45] S. Weinberg and E. Witten. Limits on Massless Particles. Phys. Lett. B, 96:59–62, 1980.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top