跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/02/05 21:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許睿恩
研究生(外文):Jui-En Hsu
論文名稱:精油組合物對豬隻糞便臭味與血漿健康指標的影響
論文名稱(外文):Effects of essential oil mixtures on fecal odor and plasma healthy biomarkers of pigs
指導教授:陳靜宜陳靜宜引用關係
指導教授(外文):Ching-Yi Chen
口試委員:王翰聰李德南林原佑
口試委員(外文):Hang-Tsung WangDer-Nan LeeYuan-Yu Lin
口試日期:2020-11-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物科學技術學研究所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:122
中文關鍵詞:精油離乳豬生長豬臭味排放腸道健康
外文關鍵詞:essential oilweaning piggrowing pigodor emissionintestinal health
DOI:10.6342/NTU202004414
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腸道的健康影響著動物整體的消化、吸收與生長,而腸道菌群與宿主維持共生的關係,當宿主受到環境及飲食的變化,會影響腸道菌群及腸道型態,續而影響宿主的健康。離乳是豬隻出生後首先面臨的挑戰,此時常會因飼糧、併欄及環境的變化,造成腸道菌相改變,進而影響豬隻的生長。而飼糧及環境轉變帶來的壓力,在豬隻的生命週期的各個階段也持續發生,除了使生長表現低落外,消化吸收功能不彰也會使過多未消化的營養物質進入後腸中,增加微生物發酵利用並產生較多氨、吲哚、酚類及揮發性脂肪酸等臭味物質的機會。
精油是由植物萃取的揮發性有機化合物,目前已有許多研究證實具有抗微生物、抗發炎及抗氧化的能力,可改善動物的健康,並且能有效減少豬隻排泄物中的臭味物質,減少對環境造成的負面影響。本試驗欲找尋適合用於臺灣豬隻飼糧中的精油種類與比例,以探討其降低豬隻臭味排放及改善健康的潛力。
首先,在體外試驗中,將carvacrol、thymol及cinnamaldehyde三種精油以不同濃度組合添加於飼糧中,模擬豬隻消化及後腸發酵,欲找出能改善臭味排放的精油濃度,發現當飼糧中含有cinnamaldehyde 10 ppm、thymol 20 ppm (2EO組),以及cinnamaldehyde 20 ppm、thymol 20 ppm及carvacrol 200 ppm (3EO組) 時,可顯著減少發酵上清液中尿素酶與蛋白酶活性 (p < 0.05),降低氨態氮、對甲酚、吲哚及糞臭素濃度 (p < 0.05),並顯著具有較低的發酵潛能及發酵速率 (p < 0.05),因此以此精油種類及濃度組合進行後續動物試驗。
動物試驗中,以離乳豬及生長豬分別進行六週及四週試驗,結果顯示,無論是2EO或3EO組,皆不會對豬隻的生長表現產生負面影響,且3EO組能顯著提升生長豬的消化率及氮消化率 (p < 0.05)。與對照組相比,2EO組可顯著減少生長豬糞便中的總氮排放量、氨態氮、對甲酚、吲哚、糞臭素及血漿中尿素氮濃度 (p < 0.05),並降低糞便中的尿素酶、蛋白酶活性,促進血漿中的抗氧化能力及減少促炎細胞激素IL-6濃度 (p < 0.05)。3EO組則可顯著減少離乳豬糞便中的氨態氮及血漿中的尿素氮濃度 (p < 0.05),並顯著降低生長豬糞便中的氮排放量、氨態氮、對甲酚、吲哚、糞臭素、血漿中尿素氮濃度及糞便中尿素酶、蛋白酶活性 (p < 0.05),並能顯著提升此兩階段豬隻血漿中的抗氧化能力,減少脂質過氧化物MDA及IL-6濃度 (p < 0.05)。同時,從試驗中生長豬糞便揮發性脂肪酸的測定結果,可發現使用的兩種精油組合,都在不增加總揮發性脂肪酸的情況下,顯著增加丁酸的比例 (p < 0.05),推測在增加上皮細胞能量來源的同時,並未產生更多的臭味來源。
綜合體外試驗及動物試驗的結果,可發現對於對甲酚、吲哚、糞臭素等臭味物質的排放,2EO組顯著較其他處理組具有較佳的減量效果 (p < 0.05),但是根據生長表現及消化率的結果,顯示有可能對豬隻的生長具有負面的影響,而3EO組則能在顧及生長表現時,達到減少豬隻臭味物質排放的目的。
Intestinal health affects digestion, absorption and growth of the animal. Environmental factors and diets associate with alterations in the gut microbiota and morphology, usually impact host health and sometime induce diseases. Weaning is the first challenge a pig faces after birth, frequently accompanied with dysbiosis of gut microbiota, reduced feed intake, and negative effects of growth performance. The multiple stresses come from changes in diets and environmental factors keep occurring in pig’s life cycle. In addition to deteriorating growth performance, poor digestion and absorption also cause excessive undigested nutrients to enter the hindgut, increase microorganism fermentation, thus producing more odor substances such as ammonia, indole, phenols and volatile fatty acids.
Essential oils are aromatic, volatile organic compounds extracted from plant. Several studies summarize the effects of essential oil on anti-microbiota, antioxidant and reducing inflammation. Essential oils promote animal health, reduce odor substances of pig waste, and decrease negative effects to environment. The objectives of this study are to find out the optimal combination of essential oils suitable for pig industry in Taiwan, and to evaluate the possibility of odor reduction and pig health promotion.
First, the in vitro trial was applied to simulate pig digestion and hindgut fermentation. Various dosages of carvacrol, thymol and cinnamaldehyde were added to growing pig diets to find out the optimal combination of essential oils for reducing odor emission. It was found that when the diet contained cinnamaldehyde 10 ppm, thymol 20 ppm (2EO treatment), and cinnamaldehyde 20 ppm, thymol 20 ppm and carvacrol 200 ppm (3EO treatment), fecal activity of urease and protease was significantly reduced (p < 0.05). These two treatments decreased the fecal emission of odor substances, including ammonia nitrogen, p-cresol, indole and skatole (p < 0.05). A significantly lower fermentation potential and fermentation rate were observed in these two treatments (p < 0.05). Therefore, these two treatments were used in follow-up animal experiments.
In the animal experiment, there were six and four weeks respectively lasted in weaning and growing pig trial. The results showed that essential oils did not exist any negative impact on the growth performance of pigs, and 3EO significantly improved the growth performance, digestibility, and nitrogen digestibility of growing pigs. (p <0.05). Compared with the control group, 2EO significantly reduced total nitrogen emissions, ammonia nitrogen, p-cresol, indole, skatole, the activity of urease and protease in the feces of growing pig (p < 0.05), decreased the concentration of urea nitrogen and pro-inflammatory cytokine IL-6 in the blood as well as enhanced antioxidant capacity in growing pigs (p < 0.05). The 3EO significantly reduced the fecal concentration of ammonia nitrogen and the blood urea nitrogen in weaning pig (p <0.05). The 3EO significantly reduced the nitrogen emissions, ammonia nitrogen, p-cresol, indole, skatole, activity of urease and protease in feces, (p < 0.05), as well as significantly decreased concentration of blood urea nitrogen, MDA and IL-6 meanwhile improved the antioxidant capacity in the blood of growing pigs (p < 0.05). Essential oils significantly increased the ratio of butyric acid (p < 0.05) without affecting the amount of total volatile fatty acids, suggesting more energy supply to epithelial cells and less contribution to odor emissions.
Combining the results of in vitro and in vivo trial, we found that 2EO treatment have more effects on reduction of odors emission such as p-cresol, indole, skatole, however, it is more likely to have a negative impact on pig growth. The 3EO treatment could take into account the growth performance and pig health while reducing odor emission.
謝誌 I
摘要 II
Abstract IV
圖目錄 X
表目錄 XII
前言 1
第一章、文獻回顧 2
一、腸道炎症 2
(一) 腸道吸收與屏障功能 2
(二) 飲食對腸道炎症的影響 2
(三) 壓力對腸道炎症的影響 3
(四) 引起豬隻腸道炎症的因素 4
二、養豬臭味排放 5
(一) 養豬業的臭味排放問題 5
(二) 減少臭味排放的方式 7
三、離乳豬的困境 7
(一) 離乳壓力對豬隻健康造成的影響 7
(二) 減少離乳壓力的方式 9
四、精油在豬隻飼養的應用 12
(一) 精油的功能與作用機制 13
(二) 精油對動物健康的影響 14
(三) 精油在豬隻飼養的應用 17
(四) 動物飼糧中添加精油的挑戰 18
(五) 體外模擬試驗對於精油添加劑量評估之應用 19
五、論文研究目的 20
第二章、材料與方法 21
一、體外試驗步驟 21
二、動物試驗設計 25
三、樣品收集 26
四、蛋白質濃度 27
五、氨態氮 (NH3-N, ammonia nitrogen) 27
六、蛋白酶 (Protease) 活性 28
七、尿素酶 (Urease) 活性 28
八、菌相分析 29
九、DNA萃取與16S rRNA 微生物定序分析 30
十、揮發性脂肪酸 (Volatile fatty acids, VFA) 32
十一、吲哚 (Indole) 與糞臭素 (Skatole) 33
十二、乾物質 (Dry matter, DM) 34
十三、粗蛋白質(Crude protein, CP) 35
十四、消化率 (Digestibility) 36
十五、微生物菌體蛋白 (Microbial crude protein, MCP) 37
十六、產氣動力學 38
十七、血糖 (Blood sugar) 38
十八、血球計數 (Complete blood count, CBC) 38
十九、尿素 (Urea) 38
二十、抗氧化能力 (Oxygen radical absorbance capacity, ORAC) 測定 39
二十一、脂質過氧化 (Thiobarbituric acid reactive substances, TBARS) 40
二十二、發炎細胞激素 (Cytokines) 濃度測定 40
二十三、統計分析 43
第三章、試驗結果 44
一、體外試驗 44
(一) 乾物質消化率及氮消化率 44
(二) 產氣參數與產氣曲線 47
(三) 氨態氮及酵素活性 49
(四) 揮發性脂肪酸產量 51
(五) 微生物菌體蛋白 53
(六) 吲哚、糞臭素及對甲酚 54
二、離乳豬試驗 56
(一) 生長表現 56
(二) 血液參數 57
(三) 氧化壓力指標 58
(四) 促炎細胞激素 59
(五) 尿素 61
(六) 氨態氮 62
(七) 糞便菌相 63
三、生長豬試驗 64
(一) 生長表現 64
(二) 乾物質消化率及氮消化率 66
(三) 血糖 68
(四) 氧化壓力指標 69
(五) 促炎細胞激素 71
(六) 尿素 73
(七) 氨態氮及酵素活性 74
(八) pH值 76
(九) 揮發性脂肪酸 77
(十) 吲哚、糞臭素及對甲酚 78
(十一) 糞便微生物16S rRNA定序分析結果 81
四、飼料保存試驗 87
第四章、問題與討論 88
一、精油對於豬隻生長表現之影響 88
二、精油對於改善豬隻臭味排放之影響 89
三、精油對於改善豬隻氧化壓力及腸道健康之影響 91
四、精油對於豬隻腸道菌相之影響 93
五、體外試驗與動物試驗綜合比較及討論 95
第五章、結論 99
第六章、參考文獻 100
翁瑞奇。2001。豬飼養管理與豬場經營。畜牧要覽-養豬篇 (增修版)。中國畜牧學會編印。華香園出版社。臺北市。
劉松珍、張雁、張名位、孫遠明、魏振承。2013。腸道短鏈脂肪酸產生機制及生理功能的研究進展。廣東農業科學11:99-103。
Allen, M. S. 1997. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J. Dairy Sci. doi: 80:1447-1462. 10.3168/jds.S0022-0302(97)76074-0.
Aytac, Z., S. Ipek, E. Durgun, T. Tekinay, and T. Uyar. 2017. Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chem. 233:117-124. doi: 10.1016/j.foodchem.2017.04.095.
Barnes, P. J., and M. Karin. 1997. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336:1066-1071. doi: 10.1056/NEJM199704103361506.
Bauer, E., B. A. Williams, C. Voigt, R. Mosenthin and M. W. A. Verstegen. 2001. Microbial activities of faeces from unweaned and adult pigs, in relation to selected fermentable carbohydrates. Anim. Sci. 73: 313-322. doi: 10.1017/S135772980005829X.
Bergman, E. N. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70:567-90. doi: 10.1152/physrev.1990.70.2.567.
Bindelle, J., A. Buldgen, C. Boudry, and P. Leterme. 2007. Effect of inoculum and pepsin–pancreatin hydrolysis on fibre fermentation measured by the gas production technique in pigs. Anim. Feed Sci. Technol. 132:111-122. doi: 10.1016/j.anifeedsci.2006.03.009.
Blachier, F., F. Mariotti, J. F. Huneau, and D. Tomé. 2007. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids. 33:547-562. doi:10.1007/s00726-006-0477-9.
Boudry G., V. Péron, I. Le Huérou-Luron, J. P. Lallès, and B. Sève. 2004. Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. J. Nutr. 134:2256-2262. doi: 10.1093/jn/134.9.2256.
Bruininx, E. M. A. M., G. P. Binnendijk, C. M. C. van der Peet-Schwering, J. W. Schrama, L. A. den Hartog, H. Everts, and A. C. Beynen. 2002. Effect of creep feed consumption on individual feed intake characteristics and performance of group-housed weanling pigs. J. Anim. Sci. 80:1413-8. doi: 10.2527/2002.8061413x.
Burt S. A., V. T. A. Ojo-Fakunle, J. Woertman, and E. J. A. Veldhuizen. 2014. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One. 9:e93414. doi: 10.1371/journal.pone.0093414.
Carneiro, M. S. C., M. M. Lordelo, L. F. Cunha, and J. P. B. Freire. 2008. Effects of dietary fibre source and enzyme supplementation on faecal apparent digestibility, short chain fatty acid production and activity of bacterial enzymes in the gut of piglets. Anim. Feed Sci. Technol. 146:124-136. doi: 10.1016/j.anifeedsci.2007.12.001.
Che, L., L. Zhan, Z. Fang, Y. Lin, T. Yan, and D. Wu. Effects of dietary protein sources on growth performance and immune response of weanling pigs. Livest. Sci. 148:1-9. doi: 10.1016/j.livsci.2012.04.019.
Chen, H., X. Mao, J. He, B. Yu, Z. Huang, J. Yu, P. Zheng, and D. Chen. 2013. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Br. J. Nutr. 110:1837-1848. doi: 10.1017/S0007114513001293.
Chevalier, C., O. Stojanović, D. J. Colin, N. Suarez-Zamorano, V. Tarallo, C. Veyrat-Durebex, D. Rigo, S. Fabbiano, A. Stevanović, S. Hagemann, X. Montet, Y. Seimbille, N. Zamboni, S. Hapfelmeier, and M. Trajkovski. 2015. Gut microbiota orchestrates energy homeostasis during cold. Cell. 163:1360-74. doi: 10.1016/j.cell.2015.11.004.
Cava, R., J. Ruiz, J. Ventanas, and T. Antequera. 1999. Oxidative and lipolytic changes during ripening of Iberian hams as affected by feeding regime: extensive feeding and alpha-tocopheryl acetate supplementation. Meat Sci. 52:165-172. doi: 10.1016/S0309-1740(98)00164-8.
Cetin, E., A. Yibar, D. Yesilbag, I. Cetin, and S. S. Cengiz. 2016. The effect of volatile oil mixtures on the performance and ilio-caecal microflora of broiler chickens. Br. Poult. Sci. 57:780-787. doi: 10.1080/00071668.2016.1214682.
Cheng, C., Y. Zou, and J. Peng. 2018. Oregano essential oil attenuates RAW264.7 Cells from lipopolysaccharide-induced inflammatory response through regulating NADPH oxidase activation-driven oxidative stress. Molecules. 23:1857. doi: 10.3390/molecules23081857.
Chiang, M. L., H. C. Chen, K. N. Chen, Y. C. Lin, Y. T. Lin, and M. J. Chen. 2015. Optimizing production of two potential probiotic lactobacilli strains isolated from piglet feces as feed additives for weaned piglets. Asian-Australas. J. Anim. Sci. 28:1163-1170. doi: 10.5713/ajas.14.0780.
Cho, J. H., Y. J. Chen, B. J. Min, H. J. Kim, O. S. Kwon, K. S. Shon, I. H. Kim, S. J. Kim, and A. Asamer. 2006. Effects of essential oils supplementation on growth performance, IgG concentration and fecal noxious gas concentration of weaned pigs. Asian-Australas J. Anim. Sci. 19:80-85. doi: 10.5713/ajas.2006.80.
Cooper, T. A., M. P. Roberts, H. G. Kattesh, and C. J. Kojima. 2009. Effects of transport stress, sex, and weaning weight on postweaning performance in pigs. Prof. Anim. Sci. 25:189-194. doi: 10.15232/S1080-7446(15)30700-2.
Crespo-Piazuelo, D., L. Migura-Garcia, J. Estellé, L. Criado-Mesas, M. Revilla, A. Castelló, M. Muñoz, J. M. García-Casco, A. I. Fernández, M. Ballester, and J. M. Folch. 2019. Association between the pig genome and its gut microbiota composition. Sci. Rep. 9:8791. doi: 10.1038/s41598-019-45066-6.
Cui, B., Z. Gai, X. She, R. Wang, and Z. Xi. 2016. Effects of chronic noise on glucose metabolism and gut microbiota-host inflammatory homeostasis in rats. Sci. Rep. 6:36693. doi: 10.1038/srep36693.
David, L. A., C. F. Maurice, R. N. Carmody, D. B. Gootenberg, J. E. Button, B. E. Wolfe, A. V. Ling, A. Sloan Devlin, Y. Varma, M. A. Fischbach, S. B. Biddinger, R. J. Dutton, and P. J. Turnbaugh. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 505:559-563. doi: 10.1038/nature12820.
Davila, A. M., F. Blachier, M. Gotteland, M. Andriamihaja, P. H. Benetti, Y. Sanz, and D. Tomé. 2013. Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol. Res. 68:95-107. doi: 10.1016/j.phrs.2012.11.005.
De Kievit, T. R., and B.H. Iglewski. 2000. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68:4839-4849. doi: 10.1128/iai.68.9.4839-4849.2000.
De Klein, C. A. M., and R. Eckard. 2008. Targeted technologies for nitrous oxide abatement from animal agriculture. Aust. J. Exp. Agr. 48. doi: 10.1071/EA07217.
Desai, M. S., A. M. Seekatz, N. M. Koropatkin, N. Kamada, C. A. Hickey, M. Wolter, N. A. Pudlo, S. Kitamoto, N. Terrapon, A. Muller, V. B. Young, B. Henrissat, P. Wilmes, T. S. Stappenbeck, G. Núñez, and E. C. Martens. 2016. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 167:1339-1353. doi: 10.1016/j.cell.2016.10.043.
Diao, H., A. R. Jiao, B. Yu, X. B. Mao, and D. W. Chen. 2019. Gastric infusion of short-chain fatty acids can improve intestinal barrier function in weaned piglets. Genes Nutr. 14:4. doi: 10.1186/s12263-019-0626-x.
Dierick, N. A., I. J. Vervaeke, D. I. Demeyer, and J. A. Decuypere. 1989. Approach to the energetic importance of fibre digestion in pigs. I. Importance of fermentation in the overall energy supply. Anim. Feed Sci. Technol. 23:141-167. doi:10.1016/0377-8401(89)90095-3.
Dierick, N. A., J. A. Decuypere, K. Molly, E. Van Beek, and E. Vanderbeke. 2002. The combined use of triacylglycerols (TAGs) containing medium chain fatty acids (MCFAs) and exogenous lipolytic enzymes as an alternative to nutritional antibiotics in piglet nutrition: II. In vivo release of MCFAs in gastric cannulated and slaughtered piglets by endogenous and exogenous lipases; effects on the luminal gut flora and growth performance. Livest. Prod. Sci. 76:1-16. doi: 10.1016/S0301-6226(01)00331-1.
Dowarah, R., A. K. Verma, N. Agarwal, B. H. M. Patel, and P. Singh. 2017. Effect of swine based probiotic on performance, diarrhoea scores, intestinal microbiota and gut health of grower-finisher crossbred pigs. Livest. Sci. 195:74-79. doi: 10.1016/j.livsci.2016.11.006.
Faleiro, M. L. 2011. The mode of antibacterial action of essential oils. In: Science Against Microbial Pathogens: Communicating Current Research and Technological Advances. Formatex Research Center. 1143-56.
Franz, C., K. H. C. Baser, and W. Windisch. 2010. Essential oils and aromatic plants in animal feeding – a European perspective. A review. Flavour Fragr. J. 25:327-340. doi: 10.1002/ffj.1967.
Galley, J. D., and M. T. Bailey. 2014. Impact of stressor exposure on the interplay between commensal microbiota and host inflammation. Gut Microbes. 5:390-396. doi: 10.4161/gmic.28683.
Gao, X., Q. Cao, Y. Cheng, D. Zhao, Z. Wang, H. Yang, Q. Wu, L. You, Y. Wang, Y. Lin, X. Li, Y. Wang, J. S. Bian, D. Sun, L. Kong, L. Birnbaumer, and Y. Yang. 2018. Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. Proc. Natl. Acad. Sci. U.S.A. 115:E2960-E2969. doi: 10.1073/pnas.1720696115.
Gauthier, R. 2012. To protect or not to protect? That is the question! Pig progress. Altern Growth Promot. Special Issue: 2-3.
Gong, J., H. Yu, T. Liu, M. Li, W. Si, C. F. M.de Lange, and C. Dewey. 2008. Characterization of ileal bacterial microbiota in newly-weaned pigs in response to feeding lincomycin, organic acids or herbal extract. Livest. Sci. 116:318-322. doi: 10.1016/j.livsci.2008.01.001.
Gresse, R., F. Chaucheyras-Durand, M. A. Fleury, T. Van de Wiele, E. Forano, and S. Blanquet-Diot. 2017. Gut microbiota dysbiosis in postweaning piglets: understanding the keys to health. Trends. Microbiol. 25:851-873. doi: 10.1016/j.tim.2017.05.004.
Groot, J. C. J., J. W. Cone, B. A. Williams, F. M. A. Debersaques, and, E. A. Lantinga. 1996. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 64: 77-89.
Hammer, K. A., C. F. Carson, and T. V. Riley. 1999. Antimicrobial activity of essential oils and other plants extracts. J. Appl. Microbiol. 86:985-990. doi: 10.1046/j.1365-2672.1999.00780.x.
Han, Y. K., P. A. Thacker, and J. S. Yang. 2006. Effects of the duration of liquid feeding on performance and nutrient digestibility in weaned pigs. Asian-Aust. J. Anim. Sci. 19:396-401. doi: 10.5713/ajas.2006.396.
Hansen, L. L., H. Agerhem, K. Rosenvold, and M. T. Jensen. 2002. Effect of Brussels sprouts and inulin/rape seed cake on the sensory profile of pork M. longissimus dorsi. Meat Sci. 61: 441-448. doi:10.1016/S0309-1740(01)00218-2.
Hartung, J., and V. R. Philips. 1994. Control of gaseous emissions from livestock buildings and manure stores. J. Agric. Engng. Res. 57:173-189. doi: 10.1006/jaer.1994.1017.
Helander, I. M., H. L. Alakomi, K. Latva-Kala, T. Mattila-Sandholm, I. Pol, E. J. Smid, L. G. M. Gorris, and A. Von Wright. 1998. Characterization of the action of selected essential oil components on gram-negative bacteria. J. Agric. Food Chem. 46:3590-3595. doi: 10.1021/jf980154m.
Heo, J. M., F. O. Opapeju, J. R. Pluske, J. C. Kim, D. J. Hampson, and C. M. Nyachoti. 2012. Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J. Anim. Physiol. Anim. Nutr. 97:207-37. doi: 10.1111/j.1439-0396.2012.01284.x.
Hristov, A. N., J. Oh, J. L. Firkins, J. Dijkstra, E. Kebreab, G. Waghorn, H. P. S. Makkar, A. T. Adesogan, W. Yang, C. Lee, P. J. Gerber, B. Henderson, and J. M. Tricarico. 2013. Special topics--Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 91:5045-5069. doi: 10.2527/jas.2013-6583.
Hyun, Y., M. Ellis, G. Riskowski, and R. W. Johnson. 1998. Growth performance of pigs subjected to multiple concurrent environmental stressors. J. Anim. Sci. 1998. 76:721-727. doi: 10.2527/1998.763721x.
Imoto, S., and S. Namioka. 1978. VFA production in the pig large intestine. J. Anim. Sci. 47:467-478. doi: 10.2527/jas1978.472467x.
Inman, C. F., K. Haverson, S. R. Konstantinov, P. H. Jones, C. Harris, H. Smidt, B. Miller, and M. Bailey. 2010. Rearing environment affects development of the immune system in neonates. Clin. Exp. Immunol. 160:431-439. doi: 10.1111/j.1365-2249.2010.04090.x.
Jackson, M. J., A. L. Beaudet, and W. E. O'Brien. 1986. Mammalian urea cycle enzymes. Annu. Rev. Genet. 20:431-464. doi: 10.1146/annurev.ge.20.120186.002243.
Jang, I. S., Y. H. Ko, S. Y. Kang, and C. Y. Lee. 2007. Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Anim. Feed Sci. Tech. 134:304-315. doi: 10.1016/j.anifeedsci.2006.06.009.
Janz, J. A. M., P. C. H. Morel, B. H. P. Wilkinson, and R. W. Purchas. 2007. Preliminary investigation of the effects of low-level dietary inclusion of fragrant essential oils and oleoresins on pig performance and pork quality. Meat Sci. 75:350-5. doi: 10.1016/j.meatsci.2006.06.027.
Jaturasitha, S., Y. Wudthithumkanaporn, P. Rurksasen, and M. Kreuzer. 2002. Enrichment of pork with omega-3 fatty acids by tuna oil supplements: effects on performance as well as sensory, nutritional and processing properties of pork. Asian-Australas J Anim Sci. 15: 1622-1633. doi: 10.5713/ajas.2002.1622.
Jayaraman, B., J. K Htoo, and C. M. Nyachoti. 2017. Effects of different dietary tryptophan: lysine ratios and sanitary conditions on growth performance, plasma urea nitrogen, serum haptoglobin and ileal histomorphology of weaned pigs. Anim. Sci. J. 88:763-771. doi: 10.1111/asj.12695.
Jayaraman, B., and C. M. Nyachoti. 2017. Husbandry practices and gut health outcomes in weaned piglets: A review. Anim. Nutr. 3:205-211. doi: 10.1016/j.aninu.2017.06.002.
Jensen, P. 1986. Observations on the maternal behaviour of free-ranging domestic pigs. Appl. Anim. Behav. Sci. 16:131-142. doi: 10.1016/0168-1591(86)90105-X.
Jensen, B. B., and H. Jorgensen. 1994. Effect of dietary fiber on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs. Appl. Environ. Microbiol. 60: 1897-1904.
Jha, R., and J. F. D. Berrocoso. 2015. Review: Dietary fibre utlization and its effects on physiological functions and gut health of swine. Animal. 9:1441-1452. doi: 10.1017/S1751731115000919.
Jha, R., J. M. Fouhse, U. P. Tiwari, L. Li, and B. P. Willing. 2019. Dietary fiber and intestinal health of monogastric animals. Front. Vet. Sci. 6:48. doi: 10.3389/fvets.2019.00048.
Ji, J., F. Zhou, H. Yue, and Q. Song. 2014. Protective mechanism of Xuebijing injection against heat stroke in rats. Exp. Ther. Med. 7:1745-1751. doi: 10.3892/etm.2014.1639.
Jongbloed, A. W., and N. P. Lenis. 1992. Alteration of nutrition as a means to reduce environmental pollution by pigs. Livest. Prod. Sci. 31:75-94. doi: 10.1016/0301-6226(92)90057-B.
Joly, C., J. Gay-Quéheillard, A. Léké, K. Chardon, S. Delanaud, V. Bach, and H. Khorsi-Cauet. 2013. Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) and in the rat. Environ. Sci. Pollut. Res. Int. 20:2726-2734. doi: 10.1007/s11356-012-1283-4.
Kang, J. S., M. H. Han, G. Y. Kim, C. M. Kim, H. Y. Chung, H. J. Hwang, B. W. Kim, and Y. H. Choi. 2015. Schisandrae semen essential oil attenuates oxidative stress-induced cell damage in C2C12 murine skeletal muscle cells through Nrf2-mediated upregulation of HO-1. Int. J. Mol. Med. 35:453-9. doi: 10.3892/ijmm.2014.2028.
Keys, J. E., and J. V. DeBarthe. 1974. Site and extent of carbohydrate, dry matter, energy and protein digestion and the rate of passage of grain diets in swine. J. Anim. Sci. 39:57-62. doi: 10.2527/jas1974.39157x.
Kim, J. C., C. F. Hansen, B. P. Mullana, and J. R. Pluske. 2012. Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Anim. Feed Sci. Technol. 173:3-16. doi: 10.1016/j.anifeedsci.2011.12.022.
Kles, K. A., and E. B. Chang. 2006. Short-chain fatty acids impact on intestinal adaptation, inflammation, carcinoma, and failure. Gastroenterology. 130(2 Suppl 1):S100-5. doi: 10.1053/j.gastro.2005.11.048.
Kohn, R. A., M. M. Dinneen, and E. Russek-Cohen. 2005. Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J. Anim. Sci. 83:879-89. doi: 10.2527/2005.834879x.
Konstantinov, S. R., A. A. Awati, B. A. Williams, B. G. Miller, P. Jones, C. R. Stokes, A. D. L. Akkermans, H. Smidt, W. M. de Vos. 2006. Post-natal development of the porcine microbiota composition and activities. Environ. Microbiol. 8:1191-1199. doi: 10.1111/j.1462-2920.2006.01009.x.
Kröger, S., R. Pieper, J. R. Aschenbach, L. Martin, P. Liu, J. Rieger, H. G. Schwelberger, K. Neumann, and J. Zentek. 2015. Effects of high levels of dietary zinc oxide on ex vivo epithelial histamine response and investigations on histamine receptor action in the proximal colon of weaned piglets. J. Anim. Sci. 93:5265-5272. doi :10.2527/jas.2015-9095.
Kroismayr, A., J. Sehm, M. W. Pfaffl, K. Schedle, C. Plitzner, and W. Windisch. 2008. Effects of avilamycin and essential oils on mRNA expression of apoptotic and inflammatory markers and gut morphology of piglets. Czech J. Anim. Sci., 53: 377-387. doi: 10.17221/338-CJAS.
Le, P. D., A. J. A. Aarnink, N. W. M. Ogink, P. M. Becker, and M. W. A. Verstegen. 2005. Odour from animal production facilities: its relationship to diet. Nutr. Res. Rev. 18:3-30. doi: 10.1079/NRR200592.
Li, A. L., W. W. Ni, Q. M. Zhang, Y. Li, X. Zhang, H. Y. Wu, P. Du, J. C. Hou, and Y. Zhang. 2020. Effect of cinnamon essential oil on gut microbiota in the mouse model of dextran sodium sulfate-induced colitis. Microbiol. Immunol. 64:23-32. doi: 10.1111/1348-0421.12749.
Li, B. T., A. G. Van Kessel, W. R. Caine, S. X. Huang, and R. N. Kirkwood. 2001. Small intestinal morphology and bacterial populations in ileal digesta and feces of newly weaned pigs receiving a high dietary level of zinc oxide. Can. Vet. J. 81:511-516. doi: 10.4141/A01-043.
Li, P., X. Piao, Y. Ru, X. Han, L. Xue, and H. Zhang. 2012. Effects of adding essential oil to the diet of weaned pigs on performance, nutrient utilization, immune response and intestinal health. Asian-Aust. J. Anim. Sci. 25:1617-1626. doi: 10.5713/ajas.2012.12292.
Li, S. Y., Y. J. Ru, M. Liu, B. Xu, A. Péron, and X. G. Shi. 2012. The effect of essential oils on performance, immunity and gut microbial population in weaner pigs. Livest. Sci. 145:119-123. doi: 10.1016/j.livsci.2012.01.005.
Lobionda, S., P. Sittipo, H. Y. Kwon, and Y. K. Lee. 2019. The role of gut microbiota in intestinal inflammation with respect to diet and extrinsic stressors. Microorganisms. 7:271. doi: 10.3390/microorganisms7080271.
Lodemann, U., S. Amasheh, J. Radloff, M. Kern, A. Bethe, L. H. Wieler, R. Pieper, J. Zentek, J. R. Aschenbach. 2017. Effects of ex vivo infection with ETEC on jejunal barrier properties and cytokine expression in probiotic-supplemented pigs. Dig. Dis. Sci. 62:922-933. doi :10.1007/s10620-016-4413-x.
Lu, J. J., X. T. Zou, and Y. M. Wang. 2008. Effects of sodium butyrate on the growth performance, intestinal microflora and morphology of weanling pigs. J. Anim. Feed Sci. 17:568-578. doi:10.22358/jafs/66685/2008.
Ma, X., P. X. Fan, L. S. Li, S. Y. Qiao, G. L. Zhang, and D. F. Li. 2012. Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. J. Anim. Sci. 90 Suppl 4:266-268. doi: 10.2527/jas.50965.
Macfarlane, G. T., and S. Macfarlane. 2012. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int. 95:50-60. doi: 10.5740/jaoacint.sge_macfarlane.
Mach, N., M. Berri, J. Estellé, F. Levenez, G. Lemonnier, C. Denis, J. J. Leplat, C. Chevaleyre, Y. Billon, J. Doré, C. R. Gaillard, and P. Lepage. 2015. Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ. Microbiol. Rep. 7:554-569. doi: 10.1111/1758-2229.12285.
Macheboeuf, D., D. P. Morgavi, Y. Papon, J. L. Mousset. and M. Arturo-Schaan. 2008 Dose-response effects of essential oils on in vitro fermentation activity of the rumen microbial population. Anim. Feed Sci. Technol. 145:335-350. doi: 10.1016/j.anifeedsci.2007.05.044.
Mackie, R. I., P. G. Stroot, and V. H. Varel. 1998. Biochemical identification and biological origin of key odor components in livestock waste. J. Anim. Sci. 76:1331-1342. doi: 10.2527/1998.7651331x.
Malayer, J. R., D. T. Kelly, M. A. Diekman, K. E. Brandt, A. L. Sutton, G. G. Long, and D. D. Jones. 1987. Influence of manure gases on puberty in gilts. J. Anim. Sci. 64:1476-1483. doi: 10.2527/jas1987.6451476x.
Manichanh, C., N. Borruel, F. Casellas and F. Guarner. 2012. The gut microbiota in IBD. Nat. Rev. Gastroenterol. Hepatol. 9:599-608. doi: 10.1038/nrgastro.2012.152.
Manukumar, H., S. Umesha, and H. N. Kumar. 2017. Promising biocidal activity of thymol loaded chitosan silver nanoparticles (TC@AgNPs) as anti-infective agents against perilous pathogens. Int. J. Biol. Macromol. 102:1257-1265. doi: 10.1016/j.ijbiomac.2017.05.030.
Mc Alpine, P. O., C. J. O'Shea, P. F. Varley, P. Solan, T. Curran, and J. V. O'Doherty. 2012. The effect of protease and nonstarch polysaccharide enzymes on manure odor and ammonia emissions from finisher pigs. J. Anim. Sci. 90 Suppl 4:369-371. doi: 10.2527/jas.53948.
Meijers, B. K. I., and P. Evenepoel 2011. The gut-kidney axis: indoxyl sulfate, p-cresyl sulfate and CKD progression. Nephrol. Dial. Transplant. 26:759-761. doi: 10.1093/ndt/gfq818.
Melton, S. L. 1990. Effects of feeds on flavor of red meat: a review. J. Anim. Sci. 68:4421-4435. doi: 10.2527/1990.68124421x.
Meunier, J. P., E. G. Manzanilla, M. Anguita, S. Denis, J. F. Pérez, J. Gasa, J. M. Cardot, F. Garcia, X. Moll, and M. Alric. 2008. Evaluation of a dynamic in vitro model to simulate the porcine ileal digestion of diets differing in carbohydrate composition. 86:1156-63. doi: 10.2527/jas.2007-0145.
Meyer, T. W., and T. H. Hostetter. 2012. Uremic solutes from colon microbes. Kidney Int. 81:949-954. doi: 10.1038/ki.2011.504.
Michiels, J., J. Missotten, N. Dierick, D. Fremaut, P. Maene, and S. De Smet. 2008. In vitro degradation and in vivo passage kinetics of carvacrol, thymol, eugenol and trans-cinnamaldehyde along the gastrointestinal tract of piglets. J. Sci. Food Agric. 88:2371-2381. doi: 10.1002/jsfa.3358.
Michiels, J., J. A. M. Missotten, D. Fremaut, S. De Smet, and N. A. Dierick. 2009. In vitro characterisation of the antimicrobial activity of selected essential oil components and binary combinations against the pig gut flora. Anim. Feed Sci. Technol. 151:111-127. doi: 10.1016/j.anifeedsci.2009.01.004.
Mitev, K., and V. Taleski. 2019. Association between the gut microbiota and obesity. Open Access Maced. J. Med. Sci. 7:2050-2056. doi: 10.3889/oamjms.2019.586.
Namkung, H., M. Li, J. Gong, H. Yu, M. Cottrill, and C. F. M. de Lange. 2004 Impact of feeding blends of organic acids and herbal extracts on growth performance, gut microbiota and digestive function in newly weaned pigs. Can. Vet. J. 84:697-704. doi: 10.4141/A04-005.
Newbold, C. J., F. M. Mclntosh, P. Williams, R. Losa, and R. J. Wallace. 2004. Effects of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol. 114:105-112. doi: 10.1016/j.anifeedsci.2003.12.006.
NRC. 2012. Nutrient requirements of swine. 11th rev. ed Natl. Acad. Press, Washington, D.C.
Nyachoti, C. M., F. O. Omogbenigun, M. Rademacher, and G. Blank. 2006. Performance responses and indicators of gastrointestinal health in early-weaned pigs fed low-protein amino acid-supplemented diets. J. Anim. Sci. 84:125-134. doi: 10.2527/2006.841125x.
Ohene-Adjei, S., A. V. Chaves, T. A. Mcallister, and C. Benchaar. 2008. Evidence of Increased Diversity of Methanogenic Archaea with Plant Extract Supplementation. Microbial. Ecology. 56:234-242. doi: 10.1007/s00248-007-9340-0.
Omogbenigun, F. O., C. M. Nyachoti, and B. A. Slominski. 2004. Dietary supplementation with multienzyme preparations improves nutrient utilization and growth performance in weaned pigs. J. Anim. Sci. 82:1053-1061. doi: 10.2527/2004.8241053x.
Omonijo, F. A., L. Ni, J. Gong, Q. Wang, L. Lahaye, and C. Yang. 2018. Essential oils as alternatives to antibiotics in swine production. Anim. Nutr. 4:126-136. doi: 10.1016/j.aninu.2017.09.001.
Omonijo, F. A., S. Liu, Q. Hui, H. Zhang, L. Lahaye, J. C. Bodin, J. Gong, M. Nyachoti, and C. Yang. 2019. Thymol improves barrier function and attenuates inflammatory responses in porcine intestinal epithelial cells during lipopolysaccharide (LPS)-induced inflammation. J. Agric. Food Chem. 67:615-624. doi: 10.1021/acs.jafc.8b05480.
O'Neill, D. H., and V. R. Phillips. 1992. A review of the control of odour nuisance from livestock buildings: Part 3, properties of the odorous substances which have been identified in livestock wastes or in the air around them. J. Agr. Eng. Res. 53:23-50. doi: 10.1016/0021-8634(92)80072-Z.
Paschma, J., and M. Wawrzynski. 2003. Effect of dietary herb supplement for pigs on growth parameters, slaughter traits and dietetic value of pork. Roczniki Naukowe Zootechniki, 30 :79-88.
Pastorelli, H., N. Le Floc’h, E. Merlot, M. C. Meunier-Salaün, J. van Milgen, and L. Montagne. 2012. Sanitary housing conditions modify the performance and behavioural response of weaned pigs to feed- and housing-related stressors. Animal. 6:1811-1820. doi: 10.1017/S1751731112001231.
Petri, D., J. E. Hill, and A. G. Van Kessel. 2010. Microbial succession in the gastrointestinal tract (GIT) of the pre-weaned pig. Livest. Sci. 133:107-109. doi: 10.1016/j.livsci.2010.06.037.
Philippe, F. X., J. F. Cabaraux, and B. Nicks. 2011. Ammonia emissions from pig houses: Influencing factors and mitigation techniques. Agric. Ecosyst. Environ. 141:245-260. doi: 10.1016/j.agee.2011.03.012.
Pié, S., J. P. Lallés, F. Blazy, J. Laffitte, B. Séve, and I. P. Oswald. 2004. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J. Nutr. 134:641-7. doi: 10.1093/jn/134.3.641.
Saunders, P. R., U. Kosecka, D. M. McKay, and M. H. Perdue. 1994. Acute stressors stimulate ion secretion and increase epithelial permeability in rat intestine. Am. J. Physiol. 267:G794-799. doi: 10.1152/ajpgi.1994.267.5.G794.
Schiffman, S. S. 1998. Livestock Odors: Implications for Human Health and Well-Being. J. Animal. Sci. 76:1343-1355. doi: 10.2527/1998.7651343x.
Schiffman, S. S., E. A. S. Miller, M. S. Suggs, and B. G. Graham. 1995. The effect of environmental odors emanating from commercial swine operations on the mood of nearby residents. Brain Res. Bull. 37:369-375. doi: 10.1016/0361-9230(95)00015-1.
Shang, Q. H. Liu, S. Liu, T. He, and X. Piao. 2019. Effects of dietary fiber sources during late gestation and lactation on sow performance, milk quality, and intestinal health in piglets. J. Anim. Sci. 97:4922-4933. doi: 10.1093/jas/skz278.
Shin, T. K., Y. J. Yi, J. C. Kim, J. R. Pluske, H. M. Cho, S. S. Wickramasuriya, E. Kim, S. M. Lee, and J. M. Heo. 2017. Reducing the dietary omega-6 to omega-3 polyunsaturated fatty acid ratio attenuated inflammatory indices and sustained epithelial tight junction integrity in weaner pigs housed in a poor sanitation condition. Anim. Feed Sci. Technol. 234:312-320. doi: 10.1016/j.anifeedsci.2017.04.022.
Si, W., J. Gong, C. Chanas, S. Cui, H. Yu, and C. Caballero. 2006. In vitro assessment of antimicrobial activity of carvacrol, thymol and cinnamaldehyde towards Salmonella serotype Typhimurium DT104: effects of pig diets and emulsification in hydrocolloids. J. Appl. Microbiol. 101:1282-1291. doi: 10.1111/j.1365-2672.2006.03045.x.
Song, J., K. Xiao, Y. L. Ke, L. F. Jiao, C. H. Hu, Q. Y. Diao, B. Shi, and X. T. Zou. 2014. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poult. Sci. 93:581-8. doi: 10.3382/ps.2013-03455.
Southwell, I. A., A. J. Hayes, J. Markham, and D. N. Leach. 1993. The search for optimally bioactive Australian tea tree oil. Acta. Horticulturae. 334:256-265. doi: 10.17660/ActaHortic.1993.344.30.
Spreeuwenberg, M. A. M., J. M. A. J. Verdonk, H. R. Gaskins, and M. W. A. Verstegen. 2001. Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning. J. Nutr. 131: 1520-1527. doi: 10.1093/jn/131.5.1520.
Starke, I. C., R. Pieper, K. Neumann, J. Zentek, and W. Vahjen. 2014. The impact of high dietary zinc oxide on the development of the intestinal microbiota in weaned piglets. FEMS Microbiol. Ecol. 87:416-427. doi: 10.1111/1574-6941.12233.
Su, G., X. Zhou, Y. Wang, D. Chen, G. Chen, Y. Li, and J. He. 2018. Effects of plant essential oil supplementation on growth performance, immune function and antioxidant activities in weaned pigs. Lipids Health Dis. 17:139. doi: 10.1186/s12944-018-0788-3.
Su, G., X. Zhou, Y. Wang, D. Chen, G. Chen, Y. Li, and J. He. 2019. Dietary supplementation of plant essential oil improves growth performance, intestinal morphology and health in weaned pigs. J. Anim. Physiol. Anim. Nutr. 104:579-589. doi: 10.1111/jpn.13271.
Sutton, A. L., K. B. Kephart, M. W. Verstegen, T. T. Canh, and P. J. Hobbs. 1999. Potential for reduction of odorous compounds in swine manure through diet modification. J. Anim. Sci. 77:430-439. doi: 10.2527/1999.772430x.
Suzuki, T. 2013. Regulation of intestinal epithelial permeability by tight junctions. Cell. Mol. Life Sci. 70:631-659. doi: 10.1007/s00018-012-1070-x.
Szumacher-Strabel, M., and C. Adam. 2010. Potential of phytofactors to mitigate rumen ammonia and methane production. J. Anim. Feed Sci. 19:319-337. doi: 10.22358/jafs/66296/2010.
Tan, C., H. Wei, H. Sun, J. Ao, G. Long, S. Jiang, and J. Peng. 2015. Effects of dietary supplementation of oregano essential oil to sows on oxidative stress status, lactation feed intake of sows, and piglet performance. Biomed. Res. Int. 2015:525218. doi:10.1155/2015/525218.
Tang, M., B. Laarveld, A. G. Van Kessel, D. L. Hamilton, A. Estrada, and J. F. Patience. 1999. Effect of segregated early weaning on postweaning small intestinal development in pigs. J. Anim. Sci. 77:3191-3200. doi: 10.2527/1999.77123191x.
Tao, X., Z. Xu, and X. Men. 2016. Transient effects of weaning on the health of newly weaning piglets. Czech J. Anim. Sci. 61:82-90. doi: 10.17221/8731-CJAS.
Turner, J. L., S. S. Dritz, and J. E. Minton. 2001. Review: alternatives to conventional antimicrobials in swine diets. Anim. Sci. 17: 217-226. doi: 10.15232/S1080-7446(15)31633-8.
Uerlings, J., M. Schroyen, A. Bautil, C. Courtin, A. Richel, E. A. Sureda, G. Bruggeman, S. Tanghe, E. Willems, J. Bindelle, and N. Everaert. In vitro prebiotic potential of agricultural by-products on intestinal fermentation, gut barrier and inflammatory status of piglets. Br. J. Nutr. 123:293-307. doi: 10.1017/S0007114519002873.
Upadhaya, S. D., S. I. Lee, and I. H. Kim. 2016. Effects of cellulase supplementation to corn soybean meal‐based diet on the performance of sows and their piglets. Anim. Sci. J. 87:904-910. doi: 10.1111/asj.12511.
Van Beers-Schreurs, H. M. G., M. J. A. Nabuurs, L. Vellenga, H. J. Kalsbeek-van der Valk, T. Wensing, and H. J. Breukink. 1998. Weaning and the weanling diet influence the villous height and crypt depth in the small intestine of pigs and alter the concentrations of short-chain fatty acids in the large intestine and blood. J. Nutr. 128:947-953. doi: 10.1093/jn/128.6.947.
Van Kessel, J. S., and J. B. Russell. 1996. The effect of amino nitrogen on the energetics of ruminal bacteria and it impact on energy spilling. J. Dairy Sci. 79:1237-1243. doi: 10.3168/jds.S0022-0302(96)76476-7.
Varel, V. H. 2002. Carvacrol and thymol reduce swine waste odor and pathogens: stability of oils. Curr. Microbiol. 44:38-43. doi: 10.1007/s00284-001-0071-z.
Verdam, F. J., S. Fuentes, C. de Jonge, E. G. Zoetendal, R. Erbil, J. W. Greve, W. A. Buurman, W. M. de Vos, S. S. Rensen. 2013. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity (Silver Spring). 21:E607-15. doi: 10.1002/oby.20466.
Vhile, S. G., N. P. Kjos, H. Sørum, and M. Øverland. 2012. Feeding Jerusalem artichoke reduced skatole level and changed intestinal microbiota in the gut of entire male pigs. Animal. 6:5:807-814. doi:10.1017/S1751731111002138.
Wall, R., R. P. Ross, G. F. Fitzgerald, and C. Stanton. 2010. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev. 68:280-289. doi: 10.1111/j.1753-4887.2010.00287.x.
Wan, Y., F. Wang, J. Yuan, J. Li, D. Jiang, J. Zhang, H. Li, R. Wang, J. Tang, T. Huang, J. Zheng, A. J. Sinclair, J. Mann, and D. Li. 2019. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut. 68:1417-1429. doi: 10.1136/gutjnl-2018-317609.
Wei, H. K., H. X. Xue, Z. X. Zhou, and J. Peng. 2017. A carvacrol-thymol blend decreased intestinal oxidative stress and influenced selected microbes without changing the messenger RNA levels of tight junction proteins in jejunal mucosa of weaning piglets. Animal. 11:193-201. doi:10.1017/S1751731116001397.
Wen, X., L. Wang, C. Zheng, X. Yang, X. Ma, Y. Wu, Z. Chen, and Z. Jiang. 2018. Fecal scores and microbial metabolites in weaned piglets fed different protein sources and levels. Anim. Nutr. 4:31-36. doi: 10.1016/j.aninu.2017.10.006.
Wendakoon, C. N., and M. Sakaguchi. 1995. Inhibition of amino acid decarboxylase activity of enterobacter aerogenes by active components in spices. J. Food. Prot. 58:280-283. doi: 10.4315/0362-028X-58.3.280.
Westendarp, H. 2005. Essential oils in nutrition of poultry, swine and ruminants. Dtsch. Tierarztl. Wochenschr. 112:375-380.
Wiese, F., O. Simon, and K. D. Weyrauch. 2003. Morphology of the small intestine of weaned piglets and a novel method for morphometric evaluation. Anat. Histol. Embryol. 32:102-109. doi: 10.1046/j.1439-0264.2003.00430.x.
William, P., and R. Losa. 2001. The use of essential oils and their compounds in poultry nutrition. World Poultry. 17:14-15.
Williams, B. A., M. W. Verstegen, and S. Tamminga. 2001. Fermentation in the large intestine of single‐stomached animals and its relationship to animal health. Nutr. Res. Rev. 14:207-228. doi: 10.1079/NRR200127.
Windey, K., V. De Preter, and K. Verbeke. 2012. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res. 56:184-196. doi: 10.1002/mnfr.201100542.
Wondrak, G. T., N. F. Villeneuve, S. D. Lamore, A. S. Bause, T. Jiang, and D. D. Zhang. 2010. The cinnamon-derived dietary factor cinnamic aldehyde activates the Nrf2-Dependent antioxidant response in human epithelial colon cells. Molecules. 15:3338-3355. doi: 10.3390/molecules15053338.
Wong, M. L., A. Inserra, M. D. Lewis, C. A. Mastronardi, L. Leong, J. Choo, S. Kentish, P. Xie, M. Morrison, S. L. Wesselingh, G. B. Rogers, and J. Licinio. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol. Psychiatry. 21:797-805. doi: 10.1038/mp.2016.46.
Worthington, J. J., F. Reimann, and F. M. Gribble. 2018. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal. Immunol. 11:3-20. doi: 10.1038/mi.2017.73.
Wu, Y., Z. Jiang, C. Zheng, L. Wang, C. Zhu, X. Yang, X. Wen, and X. Ma. 2015. Effects of protein sources and levels in antibiotic-free diets on diarrhea, intestinal morphology, and expression of tight junctions in weaned piglets. Anim. Nutr. 1:170-176. doi: 10.1016/j.aninu.2015.08.013.
Xu, C. L., R. Sun, X. J. Qiao, C. C. Xu, X. Y. Shang, and W. N. Niu. 2014. Protective effect of glutamine on intestinal injury and bacterial community in rats exposed to hypobaric hypoxia environment. World J. Gastroenterol. 20:4662-4674. doi: 10.3748/wjg.v20.i16.4662.
Yan, L., J. P. Wang, H. J. Kim, Q. W. Meng, X. Ao, S. M. Hong, and I. H. Kim. 2010. Influence of essential oil supplementation and diets with different nutrient densities on growth performance, nutrient digestibility, blood characteristics, meat quality and fecal noxious gas content in grower–finisher pigs. Livest. Sci. 128:115-122. doi: 10.1016/j.livsci.2009.11.008.
Yan, L., Q. W. Meng, and I. H. Kim. 2011. The effect of an herb extract mixture on growth performance, nutrient digestibility, blood characteristics and fecal noxious gas content in growing pigs. Livest. Sci. 141:143-147. doi: 10.1016/j.livsci.2011.05.011.
Yen J. T., J. A. Nienaber, D. A. Hill, and W. G. Pond. 1991. Potential contribution of absorbed volatile fatty acids to whole-animal energy requirement in conscious swine. J. Anim. Sci. 69:2001-2012. doi:10.2527/1991.6952001.
Yin, J., M. M. Wu, H. Xiao, W. K. Ren, J. L. Duan, G. Yang, T. J. Li, and Y. L. Yin. 2014. Development of an antioxidant system after early weaning in piglets. J. Anim. Sci. 92:612-619. doi: 10.2527/jas.2013-6986.
Zahn, J. A., J. L. Hatfield, Y. S. Do, A. A. DiSpirito, D. A. Laird, and R. L. Pfeiffer. 1997. Characterization of volatile organic emissions and wastes from a swine production facility. J. Environ. Qual. 26:1687-1696. doi: 10.2134/jeq1997.00472425002600060032x.
Zeng, Z., X. Xu, Q. Zhang, P. Li, P. Zhao, Q. Li, J. Liu and X. Piao. 2015. Effects of essential oil supplementation of a low-energy diet on performance, intestinal morphology and microflora, immune properties and antioxidant activities in weaned pigs. Anim. Sci. J. 86:279-285. doi: 10.1111/asj.12277.
Zhang, Y., Q. C. Wang, H. Yu, J. Zhu, K. de Lange, and Y. Yin. 2016. Evaluation of alginate-whey protein microcapsules for intestinal delivery of lipophilic compounds in pigs. J. Sci. Food Agric. 96:2674-2681. doi: 10.1002/jsfa.7385.
Zhao, J., P. Liu, Y. Wu, P. Guo, L. Liu, N. Ma, C. Levesque, Y. Chen, J. Zhao, J. Zhang, and X. Ma. 2018. Dietary fiber increases butyrate-producing bacteria and improves the growth performance of weaned piglets. J. Agric. Food Chem. 66:7995-8004. doi: 10.1021/acs.jafc.8b02545.
Zhao, W., Y. Wang, S. Liu, J. Huang, Z. Zhai, C. He, J. Ding, J. Wang, H. Wang, W. Fan, J. Zhao, and M. He. 2015. The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS One. 10:e0117441. doi: 10.1371/journal.pone.0117441.
Zhou L., H. Zheng, Y. Tang, W. Yu, and Q. Gong. 2013. Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol. Lett. 35:631-7. doi: 10.1007/s10529-012-1126-x.
Zou, Y., J. Wang, J. Peng, and H. Wei. 2016. Oregano essential oil induces SOD1 and GSH expression through Nrf2 activation and alleviates hydrogen peroxide-induced oxidative damage in IPEC-J2 cells. Oxid. Med. Cell Longev. 2016:5987183. doi: 10.1155/2016/5987183.
Zuhl, M., S. Schneider, K. Lanphere, C. Conn, K. Dokladny, and P. Moseley. 2014. Exercise regulation of intestinal tight junction proteins. Br. J. Sports Med. 48:980-986. doi: 10.1136/bjsports-2012-091585.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top