跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/02/05 21:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐昶亘
研究生(外文):Chang-Syuan Syu
論文名稱:具船艉水翼滑航船形靜水阻力性能數值模擬
論文名稱(外文):Numerical Simulation of Planing Hull with Stern Hydrofoil in Calm Water
指導教授:趙修武
指導教授(外文):Shiu-Wu Chau
口試委員:蔡進發柯永澤林宗岳周顯光邵揮洲
口試委員(外文):Jing-Fa TsaiYoung-Zehr KehrTsung-Yueh LinXian-Guang ZhouHeiu-Jou Shaw
口試日期:2021-01-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:75
中文關鍵詞:滑航船形船艉升力裝置水翼阻力模擬航行俯仰角動態下沉量
外文關鍵詞:Planing hullStern lift deviceHydrofoilResistance simulationAngle of running trimDynamic sinkage
DOI:10.6342/NTU202100567
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究內容包括兩大部份,首先為滑航船形的靜水數值模擬,其次為具船艉升力翼裝置的阻力數值模擬,重點為該裝置的工作原理,本研究採用計算流體力學軟體 Simerics-MP求解滑航艇周圍流場,該軟體透過有限體積法離散流場控制方程式,其中時間維度具有一階離散精度,速度場則採用二階精度離散方法。另外透過k ϵ模型描述紊流流場,以紊流黏性計算雷諾應力,達到降低計算成本的效果。壓力及速度間的耦合關係則是透過SIMPLE法加以解析,同時以流體體積法來描述兩流體交界面處的自由液面行為。在船舶阻力數值模擬中,採用系列62中的Model4667 1船形做為目標船形,模擬船速對應福勞德數落於0.4至0.9之間。藉由數值結果與實驗數據比對以驗證流場求解器的精度,計算結果顯示阻力預估與實驗的誤差皆低於10%以下。船舶航行姿態,在高速時有較大的誤差,整體而言其誤差落於合理範圍。在船艉水翼的研究中,採用源自Model4667-1船形的Affine Model,使用實船尺寸為研究目標,加裝船艉水翼後最大減阻效果約為15%左右,而此時船速落於福勞德數0.5左右。為了說明船艉水翼工作原理,將水翼的受力拆解成阻力以及升力加以分析。因為升力的部分分量提供推力,進而降低了水翼所受阻力。模擬結果亦顯示,翼形所產生的升力顯著降低滑航船形於航行時的俯仰角,尤其在福勞德數為0.9時。
This study includes two major parts. The first part is the resistance simulation of a planning hull in calm water. The computational fluid dynamics (CFD) approach is adopted to reduce the cost of conventional resistance test in a towing tank. The second part is the ship simulation with a stern lift device and the understanding of its working principle. This study employs the commercial software, Simerics-MP, to solve the flow field around a planing hull. The software discretizes the Navier-Stokes equations through a finite volume method where the time term is first-order approximated and the velocity field is second-order approximated. The turbulence flow field is described through a k ϵ model for reducing the computational cost in modeling turbulence. SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) scheme is used to solve the coupling relation between pressure and velocity. A volume of fluid method is used to simulate the free surface between two fluids. In the ship resistance simulation, Model 4667-1 of series 62 serves as the target hull and the simulation ship speeds are determined corresponding to Froude number ranging from 0.4 to 0.9. The simulation result is compared with experimental data for validating the flow solver. The result shows that the resistance error between CFD and experimental result is below 10%. However, the sailing attitude prediction error is higher than the resistance prediction error, especially at high Froude numbers. Generally speaking, the prediction error is within a reasonable range. For the second part, the full-scale Affine model serves as the target hull for investigating the effect of stern hydrofoil. The maximum resistance reduction effect is about 15% near Froude number 0.5 after the hydrofoil is retrofitted. In order to understand the working principle of the stern hydrofoil, the force acting on the foil is decomposed into drag and lift. The result shows that a part of lift force provides thrust for reducing the hydrofoil drag and the lift force significantly decreases the angle of running trim near Froude number at 0.9.
Abstract I
摘要 II
Content III
Nomenclature V
List of Figures X
List of Tables X
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature Review 2
1.3 Stern Hydrofoil 6
1.4 Objective of This Study 7
Chapter 2 Ship and Hydrofoil 8
2.1 Coordinate System Definition 8
2.2 Hull Geometry 10
2.3 Hull with Stern Hydrofoil 12
2.4 Working Principle of Stern Hydrofoil 15
Chapter 3 Mathematical Model 20
3.1 Navier-Stokes Equations 20
3.2 Reynolds-Averaged Navier-Stokes Equations (RANSE) 22
3.3 Turbulence Model 23
3.4 Volume of Fluid Method 25
3.5 Numerical Setting 27
3.6 Boundary Condition 28
3.7 Mesh Distribution and Grid Dependency Study 30
3.7.1 Mesh Distribution 30
3.7.2 Grid Dependency Study 34
Chapter 4 Simulation Result 39
4.1 Case Description 39
4.2 Validation of Numerical Method 41
4.3 Model Scale Simulation of Bare Hull 45
4.3.1 Dynamic Pressure 45
4.3.2 Water Volume Fraction 48
4.3.3 Free Surface Elevation 50
4.3.4 Velocity Field 53
4.3.5 Streamline 55
4.4 Full-Scale Simulation 57
4.4.1 Hull with Stern Hydrofoil 58
4.4.2 Force Analysis 62
4.4.3 Hull-Hydrofoil Interaction 64
4.4.4 Local Free Surface Influence 67
Chapter 5 Conclusion 71
5-1 Conclusion 71
5-2 Future Work 72
References 73
1.Peters, H. J. (2001). Developments in global seatrade and container shipping markets: their effects on the port industry and private sector involvement. International Journal of Maritime Economics, vol. 3, no. 1, pp. 3-26.
2.Psaraftis, H. N., Kontovas, C. A. (2013). Speed models for energy-efficient maritime transportation: A taxonomy and survey. Transportation Research Part C: Emerging Technologies, vol. 26, pp. 331-351,
3.Seay, J., You, F. (2016). Biomass Supply Chains for Bioenergy and Biorefining. Woodhead Publishing, Cambridge.
4.https://www.ief.org/_resources/files/events/ief-lecture--bp-energy-outlook-2035/energy-outlook-2035-presentation.pdf.
5.Blount, D. L., Clement, E. P. (1963). Resistance tests of a systematic series of planing hull forms. SNAME Transactions, no. 10, pp. 491-579.
6.Savitsky, D. (1964). Hydrodynamic design of planing hulls. Marine Technology and SNAME News, vol. 1, no. 4, pp. 71-95.
7.Caponnetto, M. (2001). Practical CFD simulations for planing hulls. Proceedings of The Second International EuroConference on High Performance Marine Vehicles, Switzerland.
8.Azcueta, R. (2003). Steady and unsteady RANSE simulations for planing crafts. Proceedings of The International Conference on FAST Sea Transportation, Ischia, Italy.
9.Senocak, I., Iaccarino, G. (2005). Progress towards RANS simulation of free-surface flow around modern ships. Center for Turbulence Research, Annual Research Briefs, California.
10.Brizzolara, S., Serra, F. (2007). Accuracy of CFD codes in the prediction of planing surfaces hydrodynamic characteristics. Proceedings of the 2nd International Conference on Marine Research and Transportation, Italy.
11.Brizzolara, S., Villa, D. (2010). CFD simulation of planing hulls. Proceedings of the 7th International conference on High-Performance Marine Vehicles, Melbourne, Australia.
12.Su, Y., Chen, Q., Shen, H., Lu, Wei. (2012). Numerical simulation of a planing vessel at high speed. Journal of Marine Science and Application, vol. 11, no. 2, pp. 178 183.
13.Ghadimi, P., Mirhosseini, S., Dashtimanesh, A., Amini, M. (2013). RANS Simulation of Dynamic Trim and Sinkage of a Planing Hull. Applied Mathematics, vol. 1, no. 1, pp. 6-10.
14.Villa, D., Gaggero, S., Ferrando, M. (2014). An open source approach for the prediction of planing hull resistance. Proceedings of the 10th Symposium on High Speed Machine Vehicles, Naples, Italy.
15.Sukas, O. F., Kinaci, O. K., Cakici, F., Gokce, M. K. (2017). Hydrodynamic assessment of planing hulls using overset grids. Applied Ocean Research, vol. 65, pp. 35-46.
16.Khazaee, R., Rahmansetayesh, M. A., Hajizadeh, S. (2019). Hydrodynamic evaluation of a planing hull in calm water using RANS and Savitsky's method. Ocean Engineering, vol. 187, pp. 106221.
17.Ahmadzadehtalatapeh, M., Mousavi, M. (2015). A review on the drag reduction methods of the ship hulls for improving the hydrodynamic performance. International Journal of Maritime Technology, vol. 4, pp. 51-64.
18.方志中,艉翼對不等寬滑航艇波浪中運動性能之影響,國立臺灣大學造船工程學系碩士論文,1990。
19.林世宗,艉翼作用下定橫傾角滑航艇運動性能之研究,國立臺灣大學造船工程學系碩士論文,1988。
20.張義興,艉翼對滑航快艇在波浪中運動之影響探討,中正理工學院造船工程研究所碩士論文,1986。
21.薛尊仁,高速艇艉楔效應之研究,國立臺灣大學造船及海洋工程學系碩士論文,1993。
22.Tsai, J. F., Hwang, J. L. (2004). Study on the compound effects of interceptor with stern flap for two fast monohulls. Oceans' 04 MTS/IEEE Techno-Ocean'04 (IEEE Cat. No. 04CH37600), vol. 2, pp. 1023-1028.
23.Avci, A. G., Barlas, B. (2019). An experimental investigation of interceptors for a high speed hull. International Journal of Naval Architecture and Ocean Engineering, vol. 11, no. 1, pp. 256-273.
24.De Luca, F., Pensa, C. (2012). Experimental investigation on conventional and unconventional interceptors. International Journal of Small Craft Technology, vol. 154, pp. 65-72.
25.Uithof, K., Hagemeister, N., Bouckaert, B., Van oossanen, P. G., Moerke, N. (2016). A systematic comparison of the influence of the hull vane, interceptors, trim wedges, and ballasting on the performance of the 50M amecre series 13 patrol vessels. Proceedings of the Warship 2016: Advanced Tech. Naval Design, Constr. Operation, Bath, UK.
26.Van Oossanen, P. (2002). Vessel provided with a foil situated below the waterline. NL Patent No. 1,021,346.
27.Uithof, K., Van Oossanen, P., Moerke, N., Van Oossanen, P. G., Zaaijer, K.S. (2014). An update on the development of the Hull Vane. Proceedings of the 9th International Conference on High-Performance Marine Vehicles (HIPER), Athens.
28.Bouckaert, B., Uithof, K., Van Oossanen P., Moerke, N., Nienhuis, B., Van Bergen, Jan. (2015). A life-cycle cost analysis of the application of a Hull Vane to an Offshore Patrol Vessel. Proceedings of the 13th International Conference on Fast Sea Transport (FAST), Washington DC, USA.
29.Bouckaert, B., Uithof, K., Moerke, N., van Oossanen, P. G. (2015). Hull Vane on 108m Holland-Class OPVs: Effects on Fuel Consumption and Seakeeping. Proceeding of MAST Conference, Japan.
30.Uithof, K., Bouckaert, B., van Oossanen, P. G., Moerke, N. (2016). The Effects of the Hull Vane on Ship Motions of Ferries and RoPax Vessels. Proceedings of International Conference on RINA Design and Operation of Ferries and RoPax Vessels, London.
31.鄭正忠、華健,2012,截流板用於巡護船艇效果初探,船舶科技,vol. 41, pp. 75 81。
32.Hou, H., Krajewski, M., Kaan Iter, Y., Day, S., Atlar M., Shi, W. (2020). An experimental investigation of the impact of retrofitting an underwater stern foil on the resistance and motion. Ocean Engineering, vol. 205, pp. 107290.
33.Celik, C., Danisman, D. B., Kaklis, P., Khan, S. (2019). An investigation into the effect of the hull vane on the ship resistance in openfoam. Sustainable Development and Innovations in Marine Technologies: Proceedings of the 18th International Congress of the Maritime Association of the Mediterranean, Bulgaria.
34.Avala, V. K. (2017). CFD Analysis of Resistance Characteristics of High-Speed Displacement Hull Forms Fitted with Hull Vane®, Master thesis, Florida Institute of Technology.
35.Andrews, I., Avala, V. K., Sahoo, P. K., Ramakrishnan, S. (2015). Resistance characteristics for high-speed hull forms with vanes. Proceedings of the 13th International Conference on Fast Sea Transportation (FAST), Washington DC, USA.
36.http://airfoiltools.com/.
37.Spalding, D. B. (2015). Numerical Prediction of Flow, Heat transfer, Turbulence and Combustion, Pergamon press, New York.
38.Launder, B. E., Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Method in Applied Mechanics and Engineering, vol 3, no. 2, pp. 269-289.
39.Simerics-MP+ User Manual, Simerics Inc.
40.Anthony, F., Molland., Stephen R. Turnock., Dominic A. Hudson. (2011). Ship Resistance and Propulsion: Practical Estimation of Ship Propulsive Power. Cambridge University Press, Cambridge.
41.Hoppe, K. G. W. (1986). Catamaran with hydrofoils. U.S. Patent No. 4,606,291.
42.Ferziger, J. H., Peric, M. (2002). Computational Methods for Fluid Dynamics, 3rd Ed. Spinger, Berlin.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top