跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 10:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃冠穎
研究生(外文):Guan-Ying Huang
論文名稱:以模式參考強健適應性控制實現多軸離岸風機登塔系統主動調平控制之研究
論文名稱(外文):Leveling Control of an Offshore Turbine Access System with Multi-Axial Active Motion Compensation Using Model Reference Robust Adaptive Control
指導教授:江茂雄江茂雄引用關係
指導教授(外文):Mao-Hsiung Chiang
口試委員:張恆華陳宗傑
口試委員(外文):Heng-Hua ChangTsung-Chieh Chen
口試日期:2021-10-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:139
中文關鍵詞:離岸風機登塔系統主動運動補償電液伺服系統模式參考適應性控制強健適應性控制器
外文關鍵詞:offshore turbine access systemactive motion compensationelectro-hydraulic servo systemmodel reference robust adaptive control
DOI:10.6342/NTU202103943
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
離岸風機登塔系統可大幅提升施工與運維人員在運輸船舶與離岸風機之間移動的安全性。本篇論文提出一個四自由度的主動式補償機構,來補償端效器(end-effector)受波浪影響所產生的縱移(surge)位移、起伏(heave)位移、縱搖(pitch)角度以及橫搖(roll)角度,以及設計一模式參考強健適應性控制器(MRRAC)使施工運維人員立於登塔系統上依然維持一定的補償性能,避免人員的落海風險。
風機登塔系統的主動運動補償會透過機構動態模擬軟體(ADAMS)結合MATLAB/SIMULINK介面進行整合模擬,而實際實驗則以全尺實驗機台結合MATLAB/SIMULINK Desktop Real-Time介面完成,無論模擬或實驗都會在符合台灣海峽的浪況下進行空載與負載測試,來驗證登塔系統主動運動補償的有效性以及控制器的強健性。為了在模擬與實驗中執行登塔系統閉迴路控制,首先以變換矩陣建構順向運動學再經由逆向運動學求出各個子系統的補償目標。接著因本論文的登塔系統以電液伺服系統驅動,因此建立液壓伺服系統的數學模型以及機構的動力學模型來進行控制器的設計與整合模擬。藉由簡化液壓伺服系統與機構的非線性模型,可將強健適應性控制理論套用於簡化後的模型並設計出合適的模式參考強健適應性控制器。
透過整合模擬與實驗的結果可以推斷,本論文所提出的四軸登塔系統能有效減小端效器的縱移位移、起伏位移、縱搖角度以及橫搖角度,以及模式參考強健適應性控制器在多軸登塔系統的模擬與實驗中展現足夠的強健性,不論在空載或是負載條件下皆可維持相當的補償性能。
Turbine access system (TAS) plays an important role for safely transferring technicians between crew transfer vessel (CTV) and offshore turbine tower in offshore wind farm operation and maintenance (O&M) activities. This thesis proposed a four degrees of freedom (DOF) mechanism, so-called four-axial TAS, to compensate the surge displacement, heave displacement, pitch angle and roll angle of end-effector, and developed a model reference adaptive controller (MRAC) with robust adaptive law, so-called model reference robust adaptive controller (MRRAC), to keep the compensation performance when the technician is standing on the end-effector.
The active motion compensation (AMC) of multi-axial TAS was implemented by co-simulation analysis in automatic dynamic analysis of mechanical system (ADAMS) integrated with MATLAB/SIMULINK interface and conducted on experiment with multi-axial full-scale TAS test rig and MATLAB/SIMULINK Desktop Real-Time interface under wave condition of Taiwan Strait and load test. To realize the close-loop control in both co-simulation and experiment, we constructed the forward kinematics by transformation matrix and derived the compensation targets by inverse kinematics. Because the TAS proposed in this thesis was driven by electro-hydraulic servo system, we derived the mathematical model of electro-hydraulic valve-controlled servo system and dynamic model of mechanism system for both controller design and co-simulation. After simplifying the nonlinear model of electro-hydraulic system and mechanism system, we applied the robust adaptive control theory to design a MRRAC.
The co-simulation and experiment results verified that the four-axial TAS could significantly reduce the surge displacement, heave displacement, pitch angle and roll angle of end-effector, and the MRRAC can have a satisfactory performance with load test.
致謝 i
摘要 ii
Abstract iv
Contents vi
List of Figures ix
List of Tables xvii
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Literature Review 4
1.3 Motivation and Purpose 5
1.4 Organization 6
Chapter 2 Layout of Four-Axial TAS 8
2.1 Mechanism Design of Four-Axial TAS 8
2.1.1 Docking Method and Reduction of Ship Motions 8
2.1.2 End-Effector Motion Compensation 8
2.2 Specifications of Four-Axial TAS 12
2.2.1 Mechanism Specifications 12
2.2.2 Specifications of Electro-Hydraulic and Control System 14
Chapter 3 Kinematic Analysis 17
3.1 Forward Kinematics 17
3.1.1 Definition of Coordinates 17
3.1.2 Transformation Matrix 18
3.2 Inverse Kinematics 21
3.2.1 Compensation Targets 21
3.2.2 Displacement of Hydraulic Cylinder to TAS Rotational Motions 23
Chapter 4 Dynamic Modeling of TAS 27
4.1 Electro-Hydraulic Valve-Controlled System 27
4.1.1 Spool Dynamics 27
4.1.2 Flow Equation 28
4.1.3 Continuity Equation 29
4.2 Mechanism System 33
4.2.1 The Newton’s 2nd Law Equation 33
4.2.2 Automatic Dynamic Analysis of Mechanical Systems (ADAMS) 35
Chapter 5 Controller Design 37
5.1 Robust Adaptive Control Theory 37
5.1.1 On-Line Parameter Estimation with Robust Adaptive Law 38
5.1.2 Model Reference Control 40
5.2 Controller Design for TAS 43
5.2.1 Simplification of Dynamic Model 43
5.2.2 Controller Design for Single Hydraulic Axis 45
Chapter 6 Co-Simulation Analysis 50
6.1 Simulation Environment 50
6.1.1 Block Diagram of Co-Simulation 50
6.1.2 Wave and Load Conditions 51
6.2 Simulation Results 54
6.2.1 Three-Axial TAS 54
6.2.1.1 Case I 54
6.2.1.2 Case II 63
6.2.2 Four-Axial TAS 71
6.2.2.1 Case I 71
6.2.2.2 Case II 81
6.3 Discussion of Simulation Results 90
Chapter 7 Experiment 94
7.1 Experiment Environment 94
7.1.1 Block Diagram of Experiment 94
7.1.2 Experiment Conditions 95
7.2 Experiment Results 97
7.2.1 Three-Axial TAS 97
7.2.1.1 Case I 97
7.2.1.2 Case II 106
7.2.2 Four-Axial TAS 114
7.2.2.1 Case I 114
7.2.2.2 Case II 124
7.3 Discussion of Experiment Results 133
Chapter 8 Conclusions and Future Work 137
8.1 Conclusions 137
8.2 Future Work 138
REFERENCE 139
[1]H. Stumpf and B. Hu, "Offshore wind access 2018," Wind Energy, vol. 2017, p. 2016, 2018.
[2]"Offshore Wind Turbine Access System Trial Completed." https://www.maritimeprofessional.com/news/offshore-wind-turbine-access-system-228108 (accessed May 25, 2021).
[3]"Access Systems - Wind and Oil & Gas • Osbit.pdf." https://www.osbit.com/equipment/offshore-access/ (accessed May 26, 2021).
[4]B. Hu and C. Yung, "Offshore Wind Access Report 2020," 2020.
[5]"Ampelmann Nabs Five Gangway Orders in Offshore." https://www.oedigital.com/news/479734-ampelmann-nabs-five-gangway-orders-in-offshore-wind-space (accessed May 26, 2021).
[6]"Safeway Albatross - High-Tech ‘Motion-Compensated’ Walkway System _ Milestones _ News." https://www.oceannews.com/news/milestones/safeway-albatross-high-tech-motion-compensated-walkway-system (accessed May 26, 2021).
[7]吳俊辰, "三軸主動式運動補償離岸風機登塔系統之模擬與實驗," 工程科學及海洋工程學研究所, 國立臺灣大學, 2016年, 2016.
[8]羅俊龍, "類神經模糊滑動控制應用於離岸風機登塔系統調平控制之研究," 工程科學及海洋工程學研究所, 國立臺灣大學, 2017年, 2017.
[9]F.-C. Lee, "以線性回授控制實現三軸離岸風機登塔系統主動調平控制之研究," 臺灣大學工程科學及海洋工程學研究所學位論文, 2019.
[10]B.-Y. Chen and M.-H. Chiang, "Simulation and experiment of a turbine access system with three-axial active motion compensation," Ocean Engineering, vol. 176, pp. 8-19, 2019.
[11]"EMS Maritime Offshore extends contract with Nordsee One." https://www.offshoreservice.de/en/news/detail/news/ems-maritime-offshore-extends-contract-with-nordsee-one/?tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Baction%5D=detail&cHash=3e00b4cc06ea6d7b6040096ce5da623d (accessed June 14, 2021).
[12]"CEMLYN-BAY." https://mareeluk.com/wp-content/uploads/2020/04/CEMLYN-BAY.pdf (accessed May 25, 2021).
[13]E. M. Herbert, "Hydraulic control systems," John Willy and Sons Inc, 1967.
[14]P. A. Ioannou and J. Sun, Robust adaptive control. Courier Corporation, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top