跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/12 04:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾冠銓
研究生(外文):Kuan-Chuan Tseng
論文名稱:香蕉條紋病毒新型檢測技術之建立及應用
論文名稱(外文):Development and application of new detection methods for banana streak virus
指導教授:洪挺軒
指導教授(外文):Ting-Hsuan Hung
口試委員:陳煜焜葉信宏張雅君
口試委員(外文):Yuh-Kun ChenHsin-Hung YehYa-Chun Chang
口試日期:2021-09-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物病理與微生物學研究所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:92
中文關鍵詞:香蕉香蕉條紋病毒單株抗體即時定量聚合酶連鎖反應法反向聚合酶連鎖反應
外文關鍵詞:bananabanana streak virusmonoclonal antibody (McAb)quantitative polymerase chain reaction (qPCRor real-time PCR)abutting polymerase chain reaction
DOI:10.6342/NTU202104346
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
香蕉條紋病毒 (banana streak virus, BSV) 是香蕉的重要病毒之一,但目前BSV的檢測方法仍有極大的進步空間,原因是BSV會以內源性序列 (integrated sequence) 存在於香蕉的基因體中。香蕉的原始種源包括Musa acuminata (A蕉) 與 Musa balbisiana (B蕉) 兩種,現今蕉種多為這兩大原種雜交的多倍體後代,而BSV的內源性序列,則存在於B蕉的基因體中,這些內嵌序列並不會造成病害,但在生產香蕉組培苗時,會有機會活化而成為游離型 (episomal) 病毒,進而引起香蕉條紋病。因此在BSV的篩檢上,是否能區分內源性 (endogenous) 及游離型的序列將是檢測方法成功與否的重要關鍵。另一方面,由於BSV屬於複合群 (complex),其中包含9種病毒,無論是基因型 (genomic) 或是血清型 (serological) 都存在高度差異性,如此又提升了檢測難度。台灣國內現行標準檢測技術為利用Reverse transcription (RT)-PCR來檢測活化病毒之RNA,在大量篩檢時會消耗大量人力物力資源,且有一定機率在檢測時出現偽陽性的結果。本文目的在於研發出一套有效率且能夠將偽陽性機率降到最低的檢測方法。本研究主要著眼於三個可能的發展方向:單株抗體檢測、即時定量聚合酶連鎖反應檢測及反向聚合酶連鎖反應檢測。單株抗體檢測是最直接的檢測方法,因為只要能抓出病毒抗原,即代表該植株為染病植株;real-time PCR檢測法則是希望能找出專屬於游離型病毒顆粒的基因片段,而不會檢測到內嵌於香蕉genome中的序列片段;全基因檢測則是一個較新的概念,目前國際上並沒有相關文獻顯示有其他團隊利用全基因檢測來進行BSV感染植株的篩檢,此方法是利用BSV的genome為環狀DNA的特性,設計反向引子對 (abutting primer pair),藉此達到僅增幅出游離病毒顆粒genome的效果。本研究最後進行了針對香蕉條紋病毒的田間調查,證明了三個方法中,單株抗體檢測法以及反向PCR檢測法,皆能有效的檢測出病毒的存在,且能夠大大降低偽陽性的發生,並且提高檢測效率。
Banana streak caused by Banana streak virus (BSV) is one of the important diseases of bananas. Current detection methods of BSV need more improvement and accuracy because of the integrated sequences of BSV (or endogenous BSV, eBSV) in the genome of banana. Edible bananas are mainly triploids derived from two wild progenitors, Musa acuminate and Musa balbisiana, with A genome and B genome, respectively, and those integrants have been found in the B genome. in general, they are unharmful but only under certain stress conditions, such as tissue culture and hybridization, they would be activated to become episomal virus. Therefore, how to correctly distinguish the integrated sequences and episomal virus in banana is the top priority of reliable diagnostic methods of BSV. On the other hand, BSV is a species complex, which includes nine different virus species with high variation in both genomic and serological level which present challenges for correct diagnosis. In Taiwan, the standard BSV detecting method is Reverse transcription (RT)-PCR. this is a laborious and time consuming method with a certain risk to be false positive. This thesis is purpose to develop an efficiency and high accuracy detection method. This study adopts three different ways, monoclonal antibody (McAb), quantitative polymerase chain reaction (qPCR, or real-time PCR) and abutting polymerase chain reaction, to develop the method. Monoclonal antibody is the most direct method because only the disease plant has episomal virus particle. Real-time PCR is mainly relied on the sequence only exist in virus genome and not in the eBSV sequences. Abutting PCR is an idea, there are no reference about this method so far. BSV has a circular, double strand genome, with this character, this study designed an abutting primer pair. This abutting primer pair can only amplify the genome of BSV, and separate episomal virus from endogenous counterpart. According to the results of field survey, both indirect ELISA with monoclonal antibody and abutting PCR can effectively detect the banana streak OL virus. These two detection methods can decrease the false positive reaction, and improve the detection efficiency.
論文口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract v
目錄 vii
表目錄 x
圖目錄 xi
研究動機 1
前人研究背景 3
一. 香蕉條紋病的發現及分布 3
二. 香蕉條紋病之病徵 4
三. 香蕉條紋病毒之病原特性 5
四. 香蕉條紋病毒之寄主及傳播媒介 6
五. 內源性香蕉條紋病毒序列 7
六. 香蕉條紋病毒之偵測方法 9
實驗設計、材料及方法 11
壹、病毒接種及檢測 11
一、病毒及媒介昆蟲來源 11
二、BSOLV接種 11
三、BSOLV檢測 11
(1) 總核酸萃取法 11
(2) 聚合酶連鎖反應 (Polymerase chain reaction, PCR) 12
四、香蕉條紋病毒全解序 12
貳、單株抗體生產 13
一、表現質體之建構 13
(1) 專一性引子對之設計 13
(2) 細菌培養基製備 13
(3) BSOLV鞘蛋白DNA序列增幅及定序 13
(4) 表現質體之建構 14
二、表現及純化重組鞘蛋白 15
(1) 表現重組蛋白 15
(2) 蛋白質電泳分析 (SDS-PAGE) 15
(3) 西方墨點 (Western blot) 分析 16
(4) 純化表現蛋白 17
三、合成多肽序列選擇 18
四、單株抗體製作及篩選 19
(1) 小鼠免疫注射 19
(2) 細胞培養基製備 19
(3) 融合瘤製作 20
(4) 分泌抗體之融合瘤細胞篩選 21
(5) 單株融合瘤細胞株系之篩選 22
(6) 目標抗體篩選 23
(7) 單株抗體亞型 (Isotype) 測定 23
(8) 單株抗體大量生產 24
(9) 硫酸銨沉澱法 25
(10) 單株抗體之純化 25
(11) 單株抗體力價測試 26
(12) 抗體專一性測試 26
參、real-time PCR 及PCR檢測 27
一、Primer及probe選擇 27
二、Primer測試 27
三、real-time PCR循環條件 28
四、標準曲線之建立 28
五、Primer敏感性測試 29
肆、Abutting PCR 29
一、相鄰引子對設計 30
二、引子對最佳條件測試 30
三、引子對專一性測試 31
伍、香蕉條紋病毒田間染病情況調查 31
結果 33
壹、台蕉5號蕉苗接種BSOLV結果 33
貳、抗體製作結果 33
一、表現質體之建構 33
(1) BSOLV鞘蛋白DNA序列增幅及定序 33
(2) 表現質體之建構 34
二、表現及純化重組鞘蛋白 34
(1) 誘導表現重組蛋白 34
(2) 重組鞘蛋白大量誘導及純化 34
三、合成多肽序列選擇 35
四、單株抗體製作及篩選 35
(1) 小鼠免疫注射 35
(2) 單株抗體細胞株 35
(3) 純化自腹水及細胞培養上清液之單株抗體力價測試 36
(4) 抗體專一性測試 36
參、Real-time PCR及PCR檢測 37
一、Primer溫度測試 37
二、real-time PCR結果 37
(1) TaqMan system 38
(2) SYBR green system 38
三、Primer標準曲線之建立 38
四、primer pair F6R1偵測極限測試 38
肆、Abutting PCR 39
一、相鄰引子對設計 39
二、引子對最佳條件測試 39
三、引子對專一性測試 40
伍、香蕉條紋病毒田間染病情況調查 41
一、DNase / two step rt-PCR檢測BSV之結果 41
二、Abutting PCR檢測 41
三、抗體檢測 42
四、Primer F6R1適用性測試 42
討論 43
參考文獻 51
表 61
圖 71
附錄 86
吳孟玲。1994。單元抗體之製備與應用於香蕉嵌紋病原胡瓜嵌紋病毒之系統與感染生態硏究。國立臺灣大學。
吳柏辰。2019。建立香蕉病毒之四合一反轉錄聚合酶連鎖反應法檢測及調查臺灣香蕉之病毒感染情形。國立臺灣大學。
呂依儒。2006。香蕉條紋病調查與細胞病理學觀察及感染系統之建立。國立臺灣大學。
柳仁喜。1999。香蕉條紋病毒之粉介殼蟲媒介傳染性與發病生態。國立臺灣大學。
范力元。1998。香蕉條紋病之病原病毒與傳播生態。國立臺灣大學。
黃偲佳。2010。香蕉條紋病毒快速檢測方法之建立與臺灣香蕉種原條紋病之調查。國立臺灣大學。
鄧澄欣與朱慶國。1996。臺灣香蕉種源收集與保存圖介。臺灣香蕉研究所。
Afonina, I., Ankoudinova, I., Mills, A., Lokhov, S., Huynh, P., and Mahoney, W. 2007. Primers with 5' flaps improve real-time PCR. Biotechniques 43:770, 772, 774.
Agindotan, B. O., Thottappilly, G., Uwaifo, A., and Winter, S. 2003. Production of monoclonal and polyclonal antibodies against a Nigerian isolate of banana streak virus. Afr. J. Biotechnol. 2:171-178.
Ailsa M. C. 1984. Monoclonal antibody technology:the production and characterization of rodent and human hybridomas. Elsevier, Amsterdam.
Baranwal, V. K., Sharma, S. K., Khurana, D., and Verma, R. 2014. Sequence analysis of shorter than genome length episomal banana streak OL virus like sequences isolated from banana in India. Virus Genes 48:120-127.
Belalcázar, S., Reichel, H., Pérez, R., Gutiérrez, T., Múnera, G., and Arévalo, E. 1998. banana streak badnavirus infection in Musa plantations in Colombia. Pages 55-57 in: Banana streak virus: a unique virus-Musa interaction? E. A. Frison and S. L. Sharrock, eds. Proceedings of a workshop of the PROMUSA virology working group, Montpellier, France.
Benham. E. L. and Neil. E. O. 1999. Plant pararetroviruses: badviruses. Pages 1296-1300 in: Encyclopedia of Virology. A. G. a. R. G. Webster, ed. Elsevier, USA.
Bjartan, P. K. B. 2012. Optimisation of banana streak virus (BSV) diagnostic assays. Queensland University of Technology.
Briddon, R. W., Prescott, A. G., Lunness, P., Chamberlin, L. C. L., and Markham, P. G. 1993. Rapid production of full-length, infectious geminivirus clones by abutting primer PCR (AbP-PCR). J. Virol. Methods 43:7-20.
Chabannes, M. and Iskra-Caruana, M. L. 2013. Endogenous pararetroviruses – a reservoir of virus infection in plants. Curr. Opin. Virol. 3:615-620.
Chabannes, M., Baurens, F. C., Duroy, P. O., Bocs, S., Vernerey, M. S., Rodier-Goud, M., Barbe, V., Gayral, P., and Iskra-Caruana, M. L. 2013. Three infectious viral species lying in wait in the banana genome. J. Virol. 87:8624-8637.
Chen, D. Q., and Texada, D. E. 2006. Low-usage codons and rare codons of Escherichia coli. Gene Ther. Mol. Biol. 10a:1-12.
Cheng, C. P., Lockhart, B. E. L., and Olszewski, N. E. 1996. The ORF I and II proteins of commelina yellow mottle virus are virion-associated. Virology 223:263-271.
Cowton, V. M., Owsianka, A. M., Fadda, V., Ortega-Prieto, A. M., Cole, S. J., Potter, J. A., Skelton, J. K., Jeffrey, N., Di Lorenzo, C., Dorner, M., Taylor, G. L., and Patel, A. H. 2021. Development of a structural epitope mimic: an idiotypic approach to HCV vaccine design. NPJ Vaccines 6:7.
Dahal, G., Hughes, J. D., Thottappilly, G., and Lockhart, B. E. L. 1998. Effect of temperature on symptom expression and reliability of banana streak badnavirus detection in naturally infected plantain and banana (Musa spp.). Plant Dis. 82:16-21.
Dallot, S., Acuna, P., Rivera, C., Ramirez, P., Cote, F., Lockhart, B. E. L., and Caruana, M. L. 2001. Evidence that the proliferation stage of micropropagation procedure is determinant in the expression of banana streak virus integrated into the genome of the FHIA 21 hybrid (Musa AAAB). Arch. Virol. 146:2179-2190.
Daniells, J., Thomas, J. E., and Smith, M. 1995. Seed transmission of banana streak virus confirmed. Infomusa 4:7.
Dauthy, D., and Bové, J. M. 1966. Mosaique du bananier: identification et purification de diverses souches du virus. Fruits 21:449-466.
Deguchi, R., Matsushima, M., Suzuki, T., Mine, T., Fukuda, R., Nishina, M., Ozawa, H., and Takagi, A. 2009. Comparison of a monoclonal with a polyclonal antibody-based enzyme immunoassay stool test in diagnosing Helicobacter pylori infection after eradication therapy. J. Gastroenterol 44:713-716.
Delanoy, M., Salmon, M., Kummert, J., Frison, E., and Lepoivre, P. 2003. Development of real-time PCR for the rapid detection of episomal banana streak virus (BSV). Plant Dis. 87:33-38.
Dennis K. F., 2012. Immunogenicity and Antigenicity. Pages 23-30 in: D. K. Flaherty ed., Immunology for Pharmacy. Mosby, Saint Louis, USA, 272 pp.
Diekmann, M. and Putter, C. A. J., eds. 1996. Musa spp (2nd edition). Bioversity International, Rome, Italy.
Duroy, P. O., Perrier, X., Laboureau, N., Jacquemoud-Collet, J. P., and Iskra-Caruana, M. L. 2016. How endogenous plant pararetroviruses shed light on Musa evolution. Ann. Bot-London 117:625-641.
Fargette, D., Konate, G., Fauquet, C., Muller, E., Peterschmitt, M., and Thresh, J. M. 2006. Molecular ecology and emergence of tropical plant viruses. Annu. Rev. Phytopathol. 44:235-260.
Fishman, J. B., and Berg, E. A. 2018. Ammonium sulfate fractionation of antibodies. Cold Spring Harb Protoc 2018.
Frédéric Debode, A. M., Éric Janssen, Claude Bragard & Gilbert Berben. 2017. The influence of amplicon length on real-time PCR results. BASE 21 (1):3-11.
Gauhl, F., and Pasberg-Gauhl, C. 1994. Symptoms associated with banana streak virus (BSV). P. H. M. Division, ed. International Institute of Tropical Agriculture, Ibadan, Nigeria.
Gauhl, F., Pasberg-Gauhl, C., Lockhart, B. E. L., Hughes, J. D., and Dahal, G. 1999. Incidence and distribution of banana streak badnavirus in the plantain production region of southern Nigeria. Int. J. Pest Manage 45:167-171.
Gayral, P., Blondin, L., Guidolin, O., Carreel, F., Hippolyte, I., Perrier, X., and Iskra-Caruana, M. L. 2010. Evolution of endogenous sequences of banana streak virus: what can we learn from banana (Musa sp.) evolution? J. Virol. 84:7346-7359.
Gayral, P., Noa-Carrazana, J. C., Lescot, M., Lheureux, F., Lockhart, B. E., Matsumoto, T., Piffanelli, P., and Iskra-Caruana, M. L. 2008. A single banana streak virus integration event in the banana genome as the origin of infectious endogenous pararetrovirus. J. Virol. 82:6697-6710.
Geering, A. D. W., Olszewski, N. E., Dahal, G., Thomas, J. E., and Lockhart, B. E. 2001. Analysis of the distribution and structure of integrated banana streak virus DNA in a range of Musa cultivars. Mol. Plant Pathol. 2:207-213.
Geering, A. D. W., Pooggin, M. M., Olszewski, N. E., Lockhart, B. E. L., and Thomas, J. E. 2005a. Characterisation of banana streak Mysore virus and evidence that its DNA is integrated in the B genome of cultivated Musa. Arch. Virol. 150:787-796.
Geering, A. D. W., Olszewski, N. E., Harper, G., Lockhart, B. E. L., Hull, R., and Thomas, J. E. 2005b. Banana contains a diverse array of endogenous badnaviruses. J. Gen. Virol. 86:511-520.
Harper, G., and Hull, R. 1998. Cloning and sequence analysis of banana streak virus DNA. Virus Genes 17:271-278.
Harper, G., Hart, D., Moult, S., and Hull, R. 2002. Detection of banana streak virus in field samples of bananas from Uganda. Ann. Appl. Biol. 141:247-257.
Harper, G., Hart, D., Moult, S., and Hull, R. 2004. Banana streak virus is very diverse in Uganda. Virus Research 100:51-56.
Harper, G., Hart, D., Moult, S., Hull, R., Geering, A., and Thomas, J. E. 2005. The diversity of banana streak virus isolates in Uganda. Arch. Virol. 150:2407-2420.
Hull, R., Geering, A., Harper, G., Lockhart, B. E., Schoelz, J. E., and Elsevier, L. B. L. 2005. Family Caulimoviridae. Pages 385-396 in: Virus taxonomy: eighth report of the International Committee on Taxonomy of Viruses. C. M. Fauquet, M. A. Mayo, J. Maniloff, and U. Desselberger, eds. Elsevier academic press, London, UK.
Hung, T. H., Wu, M. L., and Su, H. J. 1999. Development of a rapid method for the diagnosis of citrus greening disease using the polymerase chain reaction. J. Phytopathol. 147:599-604.
Iskra-Caruana, M. L., Baurens, F. C., Gayral, P., and Chabannes, M. 2010. A four-partner plant-virus interaction: enemies can also come from within. Mol. Plant Microbe Interact. 23:1394-1402.
Iskra-Caruana, M. L., Chabannes, M., Duroy, P. O., and Muller, E. 2014. A possible scenario for the evolution of banana streak virus in banana. Virus Res. 186:155-162.
Jakowitsch, J., Mette, M. F., van Der Winden, J., Matzke, M. A., and Matzke, A. J. 1999. Integrated pararetroviral sequences define a unique class of dispersed repetitive DNA in plants. Proc. Natl. Acad. Sci. U.S.A. 96:13241-13246.
James, A. P., Geijskes, R. J., Dale, J. L., and Harding, R. M. 2011. Development of a novel rolling-circle amplification technique to detect banana streak virus that also discriminates between integrated and episomal virus sequences. Plant Dis. 95:57-62.
Jones, D. R., ed. 2018a. Diseases caused by viruses. Pages 393-408 in: Handbook of disease of banana, abaca and enset. CABI, Boston, USA.
Jones, D. R., ed. 2018b. Handbook of disease of banana, abaca and enset. CABI, Boston, USA.
Jones, D. R., and Lockhart, B. E. L. 1993. Banana streak disease. International network for the improvement of banana and plantain (INIBAP), Montpellier, France.
King, A. M., Lefkowitz, E., Adams, M. J., and Carstens, E. B. 2011. King A. M. Q., E. Lefkowitz, M. J. Adams, and E. B, Carstens, eds. Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses. Elsevier academic press, London, UK.
Kudla, G., Murray, A. W., Tollervey, D., and Plotkin, J. B. 2009. Coding-sequence determinants of gene expression in Escherichia coli. Science 324:255-258.
Kumar, P. L., Selvarajan, R., Iskra-Caruana, M.-L., Chabannes, M., and Hanna, R. 2015. Biology, etiology, and control of virus diseases of banana and plantain. Pages 229-269 in: Advances in virus research, vol. 91. L. Gad and I. K. Nikolaos, eds. Academic Press, Waltham, Massachusetts.
LaFleur, D. A., Lockhart, B. E. L., and Olszewski, N. E. 1996. Portions of the banana streak badnavirus genome are integrated in the genome of its host Musa sp. Phytopathology 86:100.
Lassoudière, A. 1974. La mosaque dite" à tirets" du bananier" Poyo" en Côte d'Ivoire. Fruits 29:349-357.
Le Provost, G., Iskra-Caruana, M. L., Acina, I., and Teycheney, P. Y. 2006. Improved detection of episomal banana streak viruses by multiplex immunocapture PCR. J. Virol. Methods 137:7-13.
Leclerc, D., Burri, L., Kajava, A. V., Mougeot, J. L., Hess, D., Lustig, A., Kleemann, G., and Hohn, T. 1998. The open reading frame III product of cauliflower mosaic virus forms a tetramer through a N-terminal coiled-coil. J. Biol. Chem. 273:29015-29021.
Lheureux, F., Carreel, F., Jenny, C., Lockhart, B. E., and Iskra-Caruana, M. L. 2003. Identification of genetic markers linked to banana streak disease expression in inter-specific Musa hybrids. Theor. Appl. Genet. 106:594-598.
Lockhart, B. 1995. Banana streak badnavirus infection in Musa: epidemiology, diagnosis and control. Food and Fertilizer Technology Center, Taipei, Taiwan.
Lockhart, B., and Olszewski, N. 1993. Serological and genomic heterogeneity of banana streak badnavirus: implications for virus detection in Musa germplasm. Pages 105-113 in: International Symposium on Genetic Improvement of Bananas for Resistance to Diseases and Pests. CIRAD-FLHOR, Montpellier, France.
Lockhart, B. E. L. 1986. Purification and serology of a bacilliform virus associated with banana streak disease. Phytopathology 76:995-999.
Mette, M. F., Kanno, T., Aufsatz, W., Jakowitsch, J., van der Winden, J., Matzke, M. A., and Matzke, A. J. 2002. Endogenous viral sequences and their potential contribution to heritable virus resistance in plants. EMBO J. 21:461-469.
Meyer, J. B., Kasdorf, G. G. F., Nel, L. H., and Pietersen, G. 2008. Transmission of activated-episomal banana streak OL (badna)virus (BSOLV) to cv. Williams banana (Musa sp.) by three mealybug species. Plant Dis. 92:1158-1163.
Ndowora, T., Dahal, G., LaFleur, D., Harper, G., Hull, R., Olszewski, N. E., and Lockhart, B. 1999. Evidence that badnavirus infection in Musa can originate from integrated pararetroviral sequences. Virology 255:214-220.
Ndowora, T. C. R., and Lockhart, B. E. L. 2000. Development of a serological assay for detecting serologically diverse banana streak virus isolates. Acta Hortic. 540:377-388.
Ngo, T. H., Webb, R., Crew, K. S., Vance, M. E., Thomas, J. E., and Geering, A. D. W. 2020. Identification of putative viroplasms within banana cells infected by banana streak MY virus. J. Gen. Virol. 101:1305-1312.
Noreen, F., Akbergenov, R., Hohn, T., and Richert-Poggeler, K. R. 2007. Distinct expression of endogenous petunia vein clearing virus and the DNA transposon dTph1 in two Petunia hybrida lines is correlated with differences in histone modification and siRNA production. Plant J. 50:219-229.
Pooggin, M. M. 2013. How can plant DNA viruses evade siRNA-directed DNA methylation and silencing? Int. J. Mol. Sci. 14:15233-15259.
Reichel, H., Belalcazar, S., Munera, G., Arevalo, E., and Narvaez, J. 1996. First report of banana streak virus infecting plantains (Musa spp.) in Colombia. Plant Dis. 80:463-463.
Richert-Poggeler, K. R., Noreen, F., Schwarzacher, T., Harper, G., and Hohn, T. 2003. Induction of infectious petunia vein clearing (pararetro) virus from endogenous provirus in petunia. EMBO J. 22:4836-4845.
Sacks, D. B., Porter, S. E., Ladenson, J. H., and McDonald, J. M. 1991. Monoclonal antibody to calmodulin: Development, characterization, and comparison with polyclonal anti-calmodulin antibodies. Anal. Biochem. 194:369-377.
Sambrook, J., and Russell, D. W. 2001. Molecular cloning, a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
Seymour, G. B. 1993. Banana. Pages 83-106 in: Biochemistry of fruit ripening. G. B. Seymour, J. E. Taylor, and G. A. Tucker, eds. Springer, Dordrecht, Netherlands.
Sharma, S. K., Kumar, P. V., and Baranwal, V. K. 2014. Immunodiagnosis of episomal banana streak MY virus using polyclonal antibodies to an expressed putative coat protein. J. Virol. Methods 207:86-94.
Staginnus, C., and Richert-Poggeler, K. R. 2006. Endogenous pararetroviruses: two-faced travelers in the plant genome. Trends Plant Sci. 11:485-491.
Su, H. J. and Wu, M. L. 1996. Detection and transmission of banana streak badnavirus in exotic and domestic cultivars of Taiwan banana. Plant Pathology Bulletin 5:222-223.
Su, H. J., Hung, T. H., and Wu, M. L. 1997. First report of banana streak virus infecting banana cultivars (Musa spp.) in Taiwan. Plant dis. 81:550-550.
Thomas, J. E, ed. 2015. Technical guidelines for the safe movement of Musa germplasm. Bioversity International, Rome.
Tripathi, J. N., Ntui, V. O., Ron, M., Muiruri, S. K., Britt, A., and Tripathi, L. 2019. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun. Biol. 2:46.
Vo, J. N., Mahfuz, N. N., Lockhart, B. E. L., and Geering, A. D. W. 2015. Improved methods for the purification and enrichment of banana streak virus for antibody production and protein detection. Eur. J. Plant Pathol. 143:619-626.
Vo, J. N., Campbell, P. R., Mahfuz, N. N., Ramli, R., Pagendam, D., Barnard, R., and Geering, A. D. 2016. Characterization of the banana streak virus capsid protein and mapping of the immunodominant continuous B-cell epitopes to the surface-exposed N terminus. J. Gen. Virol. 97:3446-3457.
Wambulwa, M. C., Wachira, F. N., Karanja, L. S., and Muturi, S. M. 2012. Rolling circle amplification is more sensitive than PCR and serology-based methods in detection of banana streak virus in Musa germplasm. Am. J. Plant Sci. 03:1581-1587.
Wu, R. Y., and Su, H. J. 1990. Production of monoclonal antibodies against banana bunchy top virus and their use in enzyme‐linked immunosorbent assay. J. Phytopatho. 128:203-208.
Zhuge, Y., Ding, C., Gong, X., Hu, D., Zhu, J., and Wang, C. 2021. Development and evaluation of two different double-antibody sandwich ELISAs for detecting severe fever with thrombocytopenia syndrome virus infection. Jpn. J. Infect Dis.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top