跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 18:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅筱君
研究生(外文):Hsiao-Chun Lo
論文名稱:應用幾丁寡醣防治草莓病害之研究
論文名稱(外文):Studies on application of chitosan oligosaccharide to control diseases of strawberry
指導教授:林乃君林乃君引用關係
指導教授(外文):Nai-Chun Lin
口試委員:陳昭瑩洪挺軒李國譚鍾嘉綾
口試委員(外文):Chao-Ying ChenTing-Hsuan HungKuo-Tan LiChia-Lin Chung
口試日期:2021-06-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物醫學碩士學位學程
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:91
中文關鍵詞:炭疽病葉枯病細菌性角斑病幾丁寡醣有害生物整合管理
外文關鍵詞:AnthracnoseLeaf blightBacterial angular leaf spotChitosan oligosaccharides (COS)Integrated pest management (IPM)
DOI:10.6342/NTU202101589
相關次數:
  • 被引用被引用:0
  • 點閱點閱:50
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究由尋求可用於臺灣草莓產業的天然安全資材切入,探討幾丁寡醣解決草莓病害問題的潛力。草莓是臺灣重要的經濟作物,由於原產於溫帶,在臺灣高溫高濕的氣候中不易越夏,須每年更新植株。於此氣候下,草莓容易受到炭疽病 (Colletotrichum spp.) 感染而冠腐死亡,使農民需大量補植而成本提高。此外,近年來因品種更迭,造成兩大新興病害─葉枯病 (Neopestalotiopsis rosae) 與細菌性角斑病 (Xanthomonas fragariae) 的出現,而目前臺灣種植最多的香水品種對葉枯病極為感病,造成農民嚴重損失,使草莓產業急需解決的病害問題加重。長期以來,化學防治被視為病害管理之主流方式,但隨著環境保護與食品安全意識抬頭,多加利用高安全性資材以降低化學藥劑使用量是一大趨勢。研究發現,天然生物資材─幾丁寡醣具有抑菌功效,且可以作為 pathogen-associated molecular patterns (PAMPs) 誘導宿主產生抗性,具有開發價值。因此,本研究針對幾丁寡醣對草莓病害的防治效果進行探討,並初步了解其可能的作用機制。首先,藉由測試幾丁寡醣對目前草莓主要病害致病菌之抑菌能力,並觀察其對炭疽病、葉枯病及細菌性角斑病病害嚴重度的影響,評估其應用於防治草莓病害之效果;最後,利用測定防禦相關酵素以及利用 3, 3’-diaminobenzidine (DAB) 染色法,初步探討幾丁寡醣可能參與的抗病機制。結果顯示,幾丁寡醣可以抑制炭疽病菌壓器形成以及葉枯病菌孢子發芽,但無法抑制細菌性角斑病菌生長。每週以 5000 mg/L 幾丁寡醣施於草莓植株防治效果佳,可以顯著降低炭疽病及葉枯病發病嚴重程度,但對於細菌性角斑病的防治沒有效果;以此防治炭疽病的效果至少可持續兩週,但兩週後便失去對葉枯病的防治效果。此外,預處理幾丁寡醣的草莓植株,在接種炭疽病菌 48 和 72 小時後,過氧化氫酶 (Catalase, CAT) 活性明顯被誘導,而苯丙胺酸裂解酶 (Phenylalanine ammonia-lyase, PAL) 活性可維持穩定,且在接種 72 小時後比對照組高。而 CAT 活性與 DAB 染色結果可相互印證,即 CAT 活性增加伴隨觀察到 H2O2 累積的下降。本研究提供了幾丁寡醣應用於草莓炭疽病及葉枯病防治潛力之成果,以及合適的施用頻率及濃度。希望未來將幾丁寡醣導入田間草莓有害生物整合管理 (Integrated pest management, IPM) 的策略中,以達到減少化學藥劑施用量與頻率的目標。
Searching for natural products for disease control applicable to strawberry industry in Taiwan, this study aimed to investigate the potential of chitosan oligosaccharides in solving strawberry disease problems. Strawberry is an important cash crop in Taiwan. As strawberry is a temperate plant, which cannot tolerate hot and humid summer in Taiwan, it is vulnerable to anthracnose (Colletotrichum spp.) infection, resulting in more cost due to higher replanting rate. In addition, two diseases, leaf blight caused by Neopestalotiopsis rosae and bacterial angular leaf spot caused by Xanthomonas fragariae, emerge in recent years, and the most cultivated strawberry variety Xiang-Shui is extremely susceptible to leaf blight. Such scenario makes farmers suffer from enormous loss and the disease problem aggravate in the strawberry industry. For a long time, chemical control is regarded as the mainstream for disease management. However, with the rising awareness of environmental protection and food security, it is trending to replace chemical agents with natural materials of higher safety. Previous studies have revealed that one of the natural biological materials, chitosan oligosaccharides (COS), has antibacterial effects, and can serve as a pathogen-associated molecular patterns (PAMPs) to induce plant defense response. Therefore, this study focused on the control effects of COS on strawberry diseases, and preliminary understanding of its possible mechanism. First, by testing the antimicrobial ability of COS on the major pathogens of strawberry diseases, and observing its influence on the severity of anthracnose, leaf blight and bacterial angular leaf spot, the control effects of COS on strawberry diseases were evaluated. Finally, the activities of defense-related enzymes and the 3, 3’-diaminobenzidine (DAB) staining method were used to preliminarily explore the possible defense mechanisms of COS. The results showed that COS can inhibit appressorium formation of Colletotrichum siamense ML133 and spore germination of Neopestalotiopsis rosae ML2411, but not growth of Xanthomonas fragariae B001. Weekly application of 5000 mg/L COS to strawberry plants is recommended for a better control effect. It can significantly reduce the severity of anthracnose and leaf blight, but is not effective on bacterial angular leaf spot disease. The control effect can last for two weeks for anthracnose, but diminished for leaf blight in two weeks. After pretreatment of COS, inoculation of anthracnose induced catalase (CAT) activity at 48 and 72 hours post inoculation (hpi), and phenylalanine ammonia lyase (PAL) activity maintained stable, and higher than that in control plants at 72 hpi. CAT activity was correlated with DAB staining results as reduction of H2O2 accumulation was observed when CAT activity increased. This study provides data for the potential of COS application on control of strawberry anthracnose and leaf blight, as well as the appropriate application frequency and concentration. We hope that COS can be introduced into the strawberry Integrated Pest Management (IPM) program in the future to achieve the goal of reducing the amount and frequency of chemical applications.
誌謝 I
摘要 II
Abstract IV
目錄 VI
表目錄 IX
圖目錄 X
壹、 前人研究 1
一、 臺灣草莓栽培概況 1
二、 臺灣草莓重要病害 4
(一)、 草莓炭疽病 (Anthracnose) 4
(二)、 草莓萎凋病 (Fusarium wilt) 5
(三)、 草莓白粉病 (Powdery mildew) 6
(四)、 草莓灰黴病 (Gray mold) 7
(五)、 草莓青枯病 (Bacterial wilt) 7
(六)、 草莓葉枯病 (Leaf blight) 8
(七)、 草莓細菌性角斑病 (Bacterial angular leaf spot) 9
三、 草莓炭疽病、葉枯病和細菌性角斑病之防治 10
(一)、 草莓炭疽病之防治 10
(二)、 草莓葉枯病之防治 11
(三)、 草莓細菌性角斑病之防治 13
四、 臺灣草莓病害常用之非化學農藥植物保護資材 13
五、 幾丁寡醣於植物病害防治上之應用 16
(一)、 幾丁質、幾丁聚醣與幾丁寡醣 16
(二)、 幾丁聚醣與幾丁寡醣具防治病害潛力 17
(三)、 幾丁寡醣具抑菌效果 18
六、 幾丁寡醣可誘導植物防禦系統 19
貳、 研究動機 22
參、 材料方法 24
一、 供試植物及栽培條件 24
二、 草莓炭疽病菌與葉枯病菌之製備 24
三、 草莓細菌性角斑病菌之製備 25
四、 幾丁寡醣對草莓炭疽病菌及葉枯病菌孢子發芽抑制效果 25
五、 幾丁寡醣對草莓炭疽病菌及葉枯病菌菌絲生長抑制效果 26
六、 幾丁寡醣對草莓細菌性角斑病菌抑制效果 26
七、 幾丁寡醣於草莓炭疽病、葉枯病及細菌性角斑病之抗病效果測試 27
八、 防禦相關酵素活性測定 28
九、 以 3, 3’-diaminobenzidine (DAB) 進行過氧化氫 (H2O2) 染色 33
十、 統計分析 34
肆、 結果 35
一、 幾丁寡醣對草莓炭疽病菌之抑菌試驗 35
二、 幾丁寡醣防治草莓炭疽病之效果評估 35
(一)、 幾丁寡醣防治草莓炭疽病之效果評估 (草莓組織培養苗) 36
(二)、 幾丁寡醣防治草莓炭疽病之效果評估 (草莓走莖苗) 37
(三)、 幾丁寡醣防治草莓炭疽病之效期評估 38
(四)、 幾丁寡醣治療草莓炭疽病之效果評估 38
三、 幾丁寡醣對草莓葉枯病菌之抑菌試驗 38
四、 幾丁寡醣防治草莓葉枯病之效果評估 39
五、 幾丁寡醣對草莓細菌性角斑病菌之抑菌試驗 40
六、 幾丁寡醣防治草莓細菌性角斑病之效果評估 40
七、 防禦相關抗氧化酵素活性測定 41
八、 幾丁寡醣誘導活性氧化物質 H2O2 累積之影響 42
伍、 討論 44
陸、 結論 52
柒、 參考文獻 53
捌、 圖表集 65
玖、 附錄 86
1.王清玲。2010。作物蟲害非農藥防治資材。農試所特刊 142: 84-85。
2.王偉玲、王展及王晶英。2010。植物過氧化物酶活性测定方法優化。實驗室研究與探索 29: 21-23。
3.安寶貞、蔡志濃、徐子惠、楊正偉及林筑蘋。2012。草莓萎凋病之研究初報。中華民國植物病理學會會刊 21: 148-149。
4.朱盛祺。2018。寡糖植物免疫調節疫苗於作物病害防治之應用。苗栗區農業專訊 84: 16-18。
5.朱盛祺及鐘珮哲。2013。非農藥應用與草莓健康管理。苗栗區農業專訊 61: 14-16。
6.吳岱融。2018。草莓種苗產業概況與市場契機。農友月刊 69: 22-25。
7.吳岱融。2021。草苺產業品種與苗栗 1 號之育成。2021草苺研發成果與產業應用研討會專輯 114-117。
8.吳彰哲及黃瀚寧。2010。湛藍奇蹟:蝦蟹殼中的寶貝–幾丁質。科學發展 448: 12-19。
9.吳竑毅、蔡季芸、吳意眉、鍾嘉綾及鐘珮哲。2021。臺灣草莓葉枯病之發生與鑑定。中華民國 109 年度植物病理學年會 5-6。
10.吳岱融、鐘珮哲及李裕娟。2018。隔離生產之草莓種苗田間定植後炭疽病感病評估。苗栗區農業改良場研究彙報 7: 33-41。
11.李敏郎。2009。植物殺菌劑之使用介紹。作物診斷與農藥安全使用手冊 6: 61-89。
12.李豐在。2005。草莓灰黴病之防治策略。花蓮區農業專訊 54: 11-12。
13.邵玲。2010。植物生理學實驗教學中 H2O2 可視化檢測方法的改進。植物生理學通訊 46: 385-387。
14.林俊義、安寶貞、張清安、羅朝村及謝廷芳。2004。作物病害之非農藥防治。農業試驗所特刊 110。
15.姚瑞禎。2014。草莓新病害—萎凋病。桃園區農業專訊 90: 10-11。
16.徐巧芳、鄭婷文、陳冠勳、連怡婷、林政谷、黃卓君、夏凱及王惠亮。2020。由 Neopestalotiopsis rosae 引起之臺灣草莓新病害與藥劑篩選。植物醫學 62: 39-47。
17.許永華。1984。草莓青枯病-台灣新紀錄的草莓病害。桃園區農業改良場研究彙報 2: 59-63。
18.莊曉萍。2019。木瓜農藥減量管理成效彰 保護身體又有好收益。農傳媒。
19.莊鈴木及吳孟玲。2005。非農藥防治應用:礦物油及生物防治。林業叢刊 170: 1-17。
20.張雅玲、朱盛祺及王仁助。2014。處理非農藥防治資材對有機栽培草莓苗生育之影響。台灣農學會報 15: 39-53。
21.張小莉、王鵬程及宋純鵬。2009。植物細胞過氧化氫的測定方法。植物學報 44: 103-106。
22.張嘉滿、高景輝和王自存。2007。乙烯誘導芥藍葉片老化過程中之抗氧化反應。臺灣園藝 53: 427-400。
23.陳冠霖、張碧芳及黃振文。2017。臺灣草莓萎凋病菌之生理生化特性分析。植物醫學 59: 13-22。
24.陳澄河。2003。蝦蟹殼傳奇。科學發展 369: 62-67。
25.陳玉芹、聶姬鋒、客紹英、陳桂平及宋麗莎。2008。不同倍性菘藍超氧化物歧化酶的活性變化。唐山師範學院學報 30: 44-47。
26.黃㯖昌。2008。台灣作物細菌性病害防治要領。作物診斷與農藥安全使用技術手冊 142-161。
27.彭淑貞。2002。利用草莓走莖檢測草莓青枯病菌技術。農政與農情 116。
28.彭淑貞、姚瑞禎及李煜輝。2013。草莓白粉病 (Sphaerotheca macularis f. sp. fragariae) 防治藥劑篩選研究。苗栗改良場研究彙報 3: 33-42。
29.曾獻嫺及陳保良。2021。草苺種苗病害驗證作業簡介。2021草苺研發成果與產業應用研討會專輯 35-39。
30.葉文彬。2010。幾丁聚醣之製備及其於農業之應用。臺中區農業改良場特刊 105: 127-131。
31.劉增城。1998。草莓王國大湖鄉。苗栗區農業專訊 4。
32.蔣永正。2011。植物對環境逆境之調控與應用。農政與農情 231。
33.盧煜勝。2004。草莓栽培管理。行政院委員會苗栗區改良場技術手冊 1-13。
34.簡怡文、邱燕欣、文紀鑾及張定霖。2021。草苺健康種苗之生產。2021草苺研發成果與產業應用研討會專輯 11-22。
35.羅國偉。2012。草莓田間管理技術。桃園區農業技術專輯-草莓專輯 9: 9-13。
36.鐘珮哲。2016。草莓病害檢測技術之應用與發展。苗栗區農業專訊 76: 13-14。
37.鐘珮哲及吳添益。2018a。草莓栽培管理技術降低炭疽病發生率之探討。苗栗區農業專訊 81: 1-3。
38.鐘珮哲及吳添益。2018b。草莓大小葉,先釐清土壤或種苗帶菌-萎凋病緊急手術採「切除患部」,疾病預防採「土壤健康促進」。豐年雜誌 68: 88-93。
39.鐘珮哲及吳竑毅。2020。草莓育苗病害管理策略。苗栗區農業專訊 89: 9-11。
40.鐘珮哲、吳竑毅及曹嘉惠。2020。偵測潛伏感染期草莓炭疽病病原菌技術之研發。苗栗區農業改良場 研究彙報 9: 46-57。
41.鐘珮哲及潘俊傑。2018。草莓苗培育經驗談。苗栗區農業專訊 81: 4-6。
42.鐘珮哲、彭淑貞、張廣淼、楊秀珠及余思葳。2012。草莓病蟲害之發生與管理。合理、安全及有效使用農藥輔導教材 1-31。
43.鐘珮哲、黃勝泉、蔡正賢、吳添益、張訓堯、張素貞及吳登楨。2014。草莓健康管理生產體系之研究。102年度重點作物健康管理生產體系及關鍵技術之研發成果研討會論文集 46-57。
44.Alburquenque, C., Bucarey, S.A., Neira‐Carrillo, A., Urzúa, B., Hermosilla, G., and Tapia, C.V. 2010. Antifungal activity of low molecular weight chitosan against clinical isolates of Candida spp. Medical Mycology 48: 1018-1023.
45.Andreazza, F., E Vacacela Ajila, H., Haddi, K., Colares, F., Pallinia, A., and E Oliveira, E. 2018. Toxicity to and egg-laying avoidance of Drosophila suzukii (Diptera: Drosophilidae) caused by an old alternative inorganic insecticide preparation. Pest Management Science 74: 861-867.
46.Amrutha, P., and Vijayarghavan, R. 2018. Evaluation of fungicides and biocontrol agents against Neopestalotiopsis clavispora causing leaf blight of strawberry (Fragaria x ananassa Duch.). International Journal of Current Microbiology and Applied Sciences 7: 622-628.
47.Ayoubi, N., and Soleimani, M. J. 2016. Strawberry fruit rot caused by Neopestalotiopsis iranensis sp. nov., and N. mesopotamica. Current Microbiology 72: 329-336.
48.Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
49.Boller T. 1995. Chemoperception of microbial signals in plant cells. Annual Review of Plant Physiology and Plant Molecular Biology 46: 189–214.
50.Ben-Shalom, N., Ardi, R., Pinto, R., Aki, C., and Fallik, E. 2003. Controlling gray mold caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Protection 22: 285-290.
51.Beauchamp, C., and Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44: 276-287.
52.Braun, P. G., and Hildebrand, P. D. 2013. Effect of sugar alcohols, antioxidants and activators of systemically acquired resistance on severity of bacterial angular leaf spot (Xanthomonas fragariae) of strawberry in controlled environment conditions. Plant Pathology 35: 20-26.
53.Bautista-Banos, S., Hernandez-Lopez, M., Bosquez-Molina, E., and Wilson, C. L. 2003. Effects of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Protection 22: 1087-1092.
54.Bindoli, A., and Rigobello, M. P. 2013. Peroxidase biochemistry and redox signaling. Encyclopedia of Biological Chemistry 407-412.
55.Bestfleisch, M., Richter, K., Wensing, A., Wünsche, J.N., Hanke, M.-V., Höfer, M., Schulte, E., and Flachowsky, H. 2015. Resistance and systemic dispersal of Xanthomonas fragariaein strawberry germplasm (Fragaria L.). Plant Pathology 64: 71-80.
56.Bonin, M., Sreekumar, S., Cord-Landwehr, S., and Moerschbacher, B. M. 2020. Preparation of defined chitosan oligosaccharides using chitin deacetylases. International Journal of Molecular Sciences 21: 1-22.
57.Bakshi, P. S., Selvakumar, D., Kadirvelu, K., and Kumar, N. S. 2020. Chitosan as an environment friendly biomaterial - a review on recent modifications and applications. International Journal of Biological Macromolecules 150: 1072-1083.
58.Chun, S. C., and Chandrasekaran, M. 2019. Chitosan and chitosan nanoparticles induced expression of pathogenesis-related proteins genes enhances biotic stress tolerance in tomato. International Journal of Biological Macromolecules 125: 948-954.
59.Camacho, E., Chrissian, C., Cordero, R. J. B., Liporagi‐Lopes, L., Stark, R. E., and Casadevall, A. 2017. N‐acetylglucosamine affects Cryptococcus neoformans cell‐wall composition and melanin architecture. Microbiology 163: 1540-1556.
60.Chandra, S., Chakraborty, N., Dasgupta, A., Sarkar, J., Panda, K., and Acharya, K. 2015. Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Scientific Reports 5: 1-14.
61.Chong, J. X., Lai, S. J., Yang, H. S. 2015. Chitosan combined with calcium chloride impacts fresh-cut honeydew melon by stabilising nanostructures of sodium-carbonate-soluble pectin. Food Control 53:195-205.
62.Cheong, Y. H., and Kim, M. C. 2010. Functions of MAPK cascade pathways in plant defense signaling. Plant Pathology Journal 26: 101-109.
63.Chandrasekaran, M., Kim, K. D., and Chun, S. C. 2020. Antibacterial activity of chitosan nanoparticles: a review. Processes 8: 1-21.
64.Chung, P. C., Wu, H. Y., Ariyawansa, H. A., Tzean, S. S., and Chung, C. L. 2019. First report of anthracnose crown rot of strawberry caused by Colletotrichum siamense in Taiwan. Plant Disease 103: 1775-1776.
65.Chung, P. C., Wu, H. Y., Wang, Y. W., Ariyawansa, H. A., Hu, H. P., Hung, T. H., Tzean, S. S., and Chung, C. L. 2020. Diversity and pathogenicity of Colletotrichum species causing strawberry anthracnose in Taiwan and description of a new species, Colletotrichum miaoliense sp. nov. Scientific Reports 10: 10664.
66.Daranas, N., Rosello, G., Cabrefiga, J., Donati, I., Frances, J., Badosa, E., Spinelli, F., Montesinos, E., and Bonaterra, A. 2019. Biological control of bacterial plant diseases with Lactobacillus plantarum strains selected for their broad-spectrum activity. Annals of Applied Biology 174: 92-105.
67.Divya, K., Thampi, M., Vijayan, S., Varghese, S., and Jisha, M. S. 2020. Induction of defence response in Oryza sativa L. against Rhizoctonia solani (Kuhn) by chitosan nanoparticles. Microbial Pathogenesis 149: 1-7.
68.De Tender, C., Vandecasteele, B., Verstraeten, B., Ommeslag, S., De Meyer, T., De Visscher, J., Dawyndt, P., Clement, L., Kyndt, T., and Debode, J. 2021. Chitin in strawberry cultivation: foliar growth and defense response promotion, but reduced fruit yield and disease resistance by nutrient imbalances. Molecular Plant-Microbe Interactions 34: 227-239.
69.Epstein, A. H. 1966. Angular leaf spot of strawberry. Plant Disease Report 50: 167.
70.Embaby, E. M. 2007. First record of Pestalotia rot on strawberry plants in Egypt. Egyptian Journal of Phytopathology 35: 89-90.
71.El Ghaouth, A., Arul, J., Grenier, J., and Asselin, A. 1992. Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits. Phytopathology 82: 398-402.
72.El Gueddari, N. E., Rauchhaus, U., Moerschbacher, B. M., and Deising, H. B. 2002. Developmentally regulated conversion of surface-exposed chitin to chitosan in cell walls of plant pathogenic fungi. New Phytologist 156: 103-112.
73.Freeman, B. C., and Beattie, G. A. 2008. An overview of plant defenses against pathogens and herbivores. Plant Pathology and Microbiology Publications 94:1-12.
74.Fang, X. P., Chen, W. Y., Xin, Y., Zhang, H. M., Yan, C. Q., Yu, H., Liu, H., Xiao, W. F., Wang, S. Z., Zheng, G. Z., Liu, H. B., Jin, L., Ma, H. S., and Ruan, S. L. 2012. Proteomic analysis of strawberry leaves infected with Colletotrichum fragariae. Journal of Proteomics 75: 4074-4090.
75.Federico, L. M., Magdalena, M. U, Miriam, O. R. Vincent, M., Were, M. D., Fricker, G. L., Luis, V. L. L., and Nicholas, J. T. 2021. Chitosan inhibits septin‐mediated plant infection by the rice blast fungus Magnaporthe oryzae in a protein kinase C and Nox1 NADPH oxidase‐dependent manner. New Phytologist 230: 1578-1593.
76.Goy, R. C., de Britto, D., and Assis, O. B. G. 2009. A review of the antimicrobial activity of chitosan. Polimeros-Ciencia E Tecnologia 19: 241-247.
77.Garces-Fiallos, F. R., de Borba, M. C., Schmidt, E. C., Bouzon, Z. L., and Stadnik, M. J. 2017. Delayed upward colonization of xylem vessels is associated with resistance of common bean to Fusarium oxysporum f. sp phaseoli. European Journal of Plant Pathology 149: 477-489.
78.Gillings, M. R., Fahy, P. C., and Bradley, J. 1998. Identification of Xanthomonas fragariae, the cause of an outbreak of angular leaf spot on strawberry in South Australia, and comparison with the cause of previous outbreaks in New South Wales and New Zealand. Plant Pathology 27: 97-103.
79.Goya, R. C., Moraisb, S. T. B., and Assis, O. B. G. 2016. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira de Farmacognosia 26: 122-127.
80.Guo, X., Sun, T., Zhong, R., Ma, L., You, C., Tian, M., and Wang, C. W. 2018. Effects of chitosan oligosaccharides on human blood components. Frontiers in Pharmacology 9: 1-10.
81.He, Y. Q., Bose, S. K., Wang, W. X., Jia, X. C., Lu, H., and Yin, H. 2018. Pre-harvest treatment of chitosan oligosaccharides improved strawberry fruit quality. International Journal of Molecular Sciences 19: 1-13.
82.Hassan, O., and Chang, T. 2017. Chitosan for eco-friendly control of plant disease. Asian Journal of Plant Pathology 11: 53-70.
83.Hyodo, H., and Fujinami, H. 1989. The effects of 2, 5-norbornadiene on the induction of the activity of 1-aminocyclopropane-l-carboxylate synthase and of phenylalanine ammonia-lyase in wounded mesocarp tissue of Cucurbita maxima. Plant and Cell Physiology 30: 857-860.
84.Hancock, J. F., Finn, C. E., Luby, J. J., Dale, A., Callow, P. W., and Serce, S. 2010. Reconstruction of the strawberry, Fragaria xananassa, using genotypes of F. virginiana and F. chiloensis. Hortscience 45: 1006-1013.
85.Howard, C. M., Maas, J. L., Chandler, C. K., and Albregts, E. E. 1992. Anthracnose of strawberry caused by the Colletotrichum complex in Florida. Plant Disease 76: 976-981.
86.Hammerschmidt, R., Nuckles, E. M., and Kuc, J. 1982. Association of enhanced peroxidase-activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiological Plant Pathology 20: 73-82.
87.Hernández-Téllez, C. N., Plascencia-Jatomea, M., and Cortez-Rocha, M. O. 2016. Chapter 12 - chitosan-based bionanocomposites: development and perspectives in food and agricultural applications. Academic Press 315-338.
88.Huang, H. L., Ullah, F., Zhou, D. X., Yi, M., and Zhao, Y. 2019. Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science 10: 1-10.
89.Ishikawa, S. 2004. Simple diagnosis using ethanol immersion of strawberry plants with latent infection by Colletotrichum acutatum, Dendrophoma obscurans, and Fusarium oxysporum f. sp. fragariae. Journal of General Plant Pathology 70: 249-255.
90.Jung, W. J., and Park, R. D. 2014. Bioproduction of chitooligosaccharides: present and perspectives. Marine Drugs 12: 5328-5356.
91.Jia, X. C., Qin, H. Q., Bose, S. K., Liu, T. M., He, J. X., Xie, S. Q., Ye, M. L., and Yin, H. 2020. Proteomics analysis reveals the defense priming effect of chitosan oligosaccharides in Arabidopsis-Pst DC3000 interaction. Plant Physiology and Biochemistry 149: 301-312.
92.Jogaiah, S., Satapute, P., De Britto, S., Konappa, N., and Udayashankar, A. C. 2020. Exogenous priming of chitosan induces upregulation of phytohormones and resistance against cucumber powdery mildew disease is correlated with localized biosynthesis of defense enzymes. International Journal of Biological Macromolecules 162: 1825-1838.
93.Jia, X. C., Zeng, H. H., Wang, W. X., Zhang, F. Y., and Yin, H. 2018. Chitosan oligosaccharide induces resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana by activating both salicylic acid- and jasmonic acid-mediated pathways. Molecular Plant-Microbe Interactions 31: 1271-1279.
94.Kong, M., Chen, X. G., Xing, K., and Park, H. J. 2010. Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology 144: 51-63.
95.Kim, D. S., and Hwang, B. K. 2014. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. Journal of Experimental Botany 65: 2295-2306.
96.Kumaraswamya, R.V., Kumaria, S., Choudharya, R. C. Palb, A., Raliyac, R., Biswasc, P., and Saharan, V. 2018. Engineered chitosan based nanomaterials: bioactivities, mechanisms and perspectives in plant protection and growth. International Journal of Biological Macromolecules 113: 494-506.
97.Kuroki, M., Okauchi, K., Yoshida, S., Ohno, Y., Murata, S., Nakajima, Y., Taguchi, H., Saitoh, K., Teraoka, T., Narukawa, M., and Kamakura, T. 2017. Chitin-deacetylase activity induces appressorium differentiation in the rice blast fungus Magnaporthe oryzae. Scientific Reports 7.
98.Kim, S. K., and Rajapakse, N. 2005. Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohydrate Polymers 62: 357-368.
99.Kato, M., and Shimizu, S. 1987. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Canadian Journal of Botany 65: 729-735.
100.Lopez‐Moya, F., Escudero, N., Zavala‐Gonzalez, E. A., Esteve‐Bruna, D., Blázquez, M. A., Alabadí, D., and Lopez‐Llorca, L. V. 2017. Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan. Scientific Reports 7: 16813.
101.Lin, W. L., Hu, X. Y., Zhang, W. Q., Rogers, W. J., and Cai, W. M. 2005. Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. Plant Physiology 162: 937-944.
102.Lee, D. S., and Je, J. Y. 2013. Gallic acid-grafted-chitosan inhibits foodborne pathogens by a membrane damage mechanism. Journal of Agricultural and Food Chemistry 61:6574-6579.
103.Lowe, A., Rafferty-McArdle, S. M., and Cassells, A. C. 2012. Effects of AMF- and PGPR-root inoculation and a foliar chitosan spray in single and combined treatments on powdery mildew disease in strawberry. Agricultural and Food Science 21: 28-38.
104.Meier, U. 2001. Growth stages of mono-and dicotyledonous plants. Federal Biological Research Centre for Agriculture and Forestry.
105.Ma, Z. X., Garrido-Maestu, A., and Jeong, K. C. 2017. Application, mode of action, and in vivo activity of chitosan and its micro and nanoparticles as antimicrobial agents: a review. Carbohydrate Polymers 176: 257-265.
106.Wenneker, M., and Kanne, J. 2010. Effect of potassium bicarbonate on the control of powdery mildew (Sphaerotheca mors-uvae) of gooseberry (Ribes uva-crispa). Journal of Semantics 366-370.
107.Mertely, J. C., and Legard, D. E. 2004. Detection, isolation, and pathogenicity of Colletotrichum spp. from strawberry petioles. Plant Disease 88: 407-412.
108.Ma, B., Wang, J. H., Liu, C. Z., Hu, J. F., Tan, K. F., Zhao, F. Y., Yuan, M., Zhang J. H., and Gai, Z. J. 2019. Preventive effects of fluoro-substituted benzothiadiazole derivatives and chitosan oligosaccharide against the rice seedling blight induced by Fusarium oxysporum. Plants-Basel 8: 1-18.
109.Narula, K., Elagamey, E., Abdellatef, M. A. E., Sinha, A., Ghosh, S., Chakraborty, N., and Chakraborty, S. 2020. Chitosan-triggered immunity to Fusarium in chickpea is associated with changes in the plant extracellular matrix architecture, stomatal closure and remodeling of the plant metabolome and proteome. Plant Journal 103: 561-583.
110.Nelson, M., Gubler, W. D., and Shaw, D. V. 1996. Relative Resistance of 47 Strawberry cultivars to powdery mildew in California greenhouse and field environments. Plant Disease 80: 326-328.
111.Naveed, M., Phil, L., Sohail, M., Hasnat, M., Baig, M., Ihsan, A. U., Shumzaid, M., Kakar, M. U., Khan, T. M., Akabar, M., Hussain, M. I., and Zhou, Q. G. 2019. Chitosan oligosaccharide (COS): an overview. International Journal of Biological Macromolecules 129: 827-843.
112.Obregón, V. G., Meneguzzi, N., Ibañez, M., Lattar, T., and Kirschbaum, D. 2018. First report of Neopestalotiopsis clavispora causing root and crown rot on strawberry plants in Argentina. Plant Disease 102: 1856-1856.
113.Paulus, A. O. 1990. Fungal diseases of strawberry. Hortscience 25: 885-889.
114.Prasannath, K. 2017. Plant defense-related enzymes against pathogens: a review. Journal of Agricultural Sciences 11: 38-48.
115.Pandey, V. P., Awasthi, M., Singh, S., Tiwari, S., and Dwivedi, U. N. 2017. A comprehensive review on function and application of plant peroxidases. Biochemistry & Analytical Biochemistry 6: 1-16.
116.Pichyangkura, R., and Chadchawan, S. 2015. Biostimulant activity of chitosan in horticulture. Scientia Horticulturae 196: 49-65.
117.Penet, L., Guyader, S., Petro, D., Salles, M., and Busslere, F. 2014. Direct splash dispersal prevails over indirect and subsequent spread during rains in Colletotrichum gloeosporioides infecting yams. PLoS ONE 9.
118.Pitzschke, A., Schikora, A., and Hirt, H. 2009. MAPK cascade signalling networks in plant defence. Current Opinion in Plant Biology 12: 421-426.
119.Palma-Guerrero, J., Jansson, H. B., Salinas, J., and Lopez-Llorca, L. V. 2008. Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. Journal of Applied Microbiology 104: 541-553.
120.Robinson, R. H. 1924. The preparation of spray materials. Station Bulletin 201: 4-6.
121.Roberts, P. D., Berger, R. D., Jones, J. B., Chandler, C. K., and Stall, R. E. 1997. Disease progress, yield loss, and control of Xanthomonas fragariae on strawberry plants. Plant Disease 81: 917-921.
122.Romanazzi G., Feliziani E., and Sivakumar D. 2018. Chitosan, a biopolymer with triple action on postharvest decay of fruit and vegetables: eliciting, antimicrobial and film-forming properties. Frontiers in Microbiology 9: 2745.
123.Rahman, M.H., Hjeljord, L.G., Aam, B.B., Sørlie, M., and Tronsmo, A. 2015. Antifungal effect of chito‐oligosaccharides with different degrees of polymerization. European Journal of Plant Pathology 141: 147-158.
124.Roberts, P. D., Jones, J. B., Chandler, C. K., Stall, R. E., and Berger, R. D. 1996. Survival of Xanthomonas fragariae on strawberry in summer nurseries in Florida detected by specific primers and nested polymerase chain reaction. Plant Disease 80: 1283-1288.
125.Rebollar-Alviter, A., Silva-Rojas, H. V., Fuentes-Aragón, D., Acosta-González, U., Martínez-Ruiz, M., and Parra-Robles, B. E. 2020. An emerging strawberry fungal disease associated with root rot, crown rot and leaf spot caused by Neopestalotiopsis rosae in Mexico. Plant Disease 104: 2054-2059.
126.Smith, S. N. 2007. An overview of ecological and habitat aspects in the genus Fusarium with special emphasis on the soil-borne pathogenic forms. Plant Pathology Bulletin 16: 97-120.
127.Sharp, R. G. 2013. A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy 3: 757-793.
128.Sharma, I., and Ahmad, P. 2014. Chapter 4 - catalase: a versatile antioxidant in plants. Oxidative Damage to Plants Antioxidant Networks and Signaling 131-148.
129.Sun, Q., Harishchandra, D., Jia, J. Y., Zuo, Q., Zhang, G. Z., Wang, Q., Yan, J. Y., Zhang, W., and Li, X. H. 2021. Role of Neopestalotiopsis rosae in causing root rot of strawberry in Beijing, China. Crop Protection 147: 1-8.
130.Sakka, K., Kusaka, R., Kawano, A., Karita, S., Sukhumavasi, J., Kimura, T., and Ohmiya, K. 1998. Cloning and sequencing of the gene encoding chitinase ChiA from Xanthomonas sp. strain AK and some properties of ChiA. Journal of Fermentation and Bioengineering 86: 527-533.
131.Schmitz, I. M., McNamar, D. G., Scott, P. R., and Harris, K. M. 1992. “Xanthomonas fragariae”. In quarantine pests for Europe. Data Sheets on European Communities and for the European and Mediterranean Plant Protection Organization 829-833.
132.Tayel, A. A., Moussa, S., Opwis, K., Knittel, D., Schollmeyer, E., and Nickisch-Hartfiel, A. 2010. Inhibition of microbial pathogens by fungal chitosan. International Journal of Biological Macromolecules 47:10-14.
133.Turechek, W. W., and Peres, N. A. 2009. Heat treatment effects on strawberry plant survival and angular leaf spot, caused by Xanthomonas fragariae, in nursery production. Plant Disease 93: 299-308.
134.Thordal-Christensen, H., Zhang, Z. G., Wei, Y. D., and Collinge, D. B. 1997. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant Journal 11: 1187-1194.
135.van der Wolf, J. M., Evenhuis, A., Kastelein, P., Krijger, M. C., Funke, V. Z., van den Berg, W., and Moene, A. F. 2018. Risks for infection of strawberry plants with an aerosolized inoculum of Xanthomonas fragariae. European Journal of Plant Pathology 152: 711-722.
136.Wojdyla, A. T. 2012. Effect of vegetable and mineral oils on the germination of spores of Diplocarpon rosae Wolf. Acta Scientiarum Polonorum-Hortorum Cultus 11: 143-156.
137.Wyenandt A. 2020. Neopestalotiopsis - Something to scout for in fall-transplanted strawberry. Plant & Pest Advisory.
138.Wu, H. Y., Lai, Q. J., Wu, Y. M., Chung, C. L., Chung, P. C., and Lin N. C. 2021a. First report of Xanthomonas fragariae causing angular leaf spot on strawberry (Fragaria × ananassa) in Taiwan. Plant Disease 105: 1187.
139.Wu, H. Y., Tsai, C. Y., Wu, Y. M., Ariyawansa, H. A., Chung, C. L., and Chung, P. C. 2021b. First report of Neopestalotiopsis rosae causing leaf blight and crown rot on strawberry in Taiwan. Plant Disease 105: 487.
140.Wen, H., Wei, J., Zhang, G., Bi, Y., and Yan, Z. 2019. Laboratory toxicity of nine fungicides against Neopestalotiopsis clavispora. Chinese Journal of Pesticide Science 21: 437-443.
141.Xing, K., Zhu, X., Peng, X., and Qin, S. 2015. Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development 35: 569-588.
142.Yin, H., Li, Y., Zhang, H. Y., Wang, W. X., Lu, H., Grevsen, K., Zhao, X., and Du, Y. G. 2013. Chitosan oligosaccharides-triggered innate immunity contributes to oilseed rape resistance against Sclerotinia sclerotiorum. International Journal of Plant Sciences 174: 722-732.
143.Yang, A. M., Yu, L., Chen, Z., Zhang, S. X., Shi, J., Zhao, X. Z., Yang, Y. Y., Hu, D. Y., and Song, B. A. 2017. Label-free quantitative proteomic analysis of chitosan oligosaccharide-treated rice infected with southern rice black-streaked dwarf virus. Viruses-Basel 9: 1-16.
144.Zeng, K. F., Deng, Y. Y., Ming, J. A., and Deng, L. L. 2010. Induction of disease resistance and ROS metabolism in navel oranges by chitosan. Scientia Horticulturae 126: 223-228.
145.Zhu, X., Wang, Q. M., Cao, J. K., and Jiang, W. B. 2008. Effects of chitosan coating on postharvest quality of mango (Mangifera indica L. cv. Tainong) fruits. Food Processing and Preservation 32: 770-784.
146.Zhu, X. F., Zhou, Y., and Feng, J. I. 2007. Analysis of both chitinase and chitosanase produced by Sphingomonas sp. CJ-5*. Journal of Zhejiang University-SCIENCE B 8: 831-838.
147.Zhou, Y. H., Zhang, L., and Zeng, K. F. 2016. Efficacy of Pichia membranaefaciens combined with chitosan against Colletotrichum gloeosporioides in citrus fruits and possible modes of action. Biological Control 96: 39-47.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top